void CostmapLayer::updateWithMax(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
{
  if (!enabled_)
    return;

  unsigned char* master_array = master_grid.getCharMap();
  unsigned int span = master_grid.getSizeInCellsX();

  for (int j = min_j; j < max_j; j++)
  {
    unsigned int it = j * span + min_i;
    for (int i = min_i; i < max_i; i++)
    {
      if (costmap_[it] == NO_INFORMATION){
        it++;
        continue;
      }

      unsigned char old_cost = master_array[it];
      if (old_cost == NO_INFORMATION || old_cost < costmap_[it])
        master_array[it] = costmap_[it];
      it++;
    }
  }
}
void CostmapLayer::updateWithAddition(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
{
  if (!enabled_)
    return;
  unsigned char* master_array = master_grid.getCharMap();
  unsigned int span = master_grid.getSizeInCellsX();

  for (int j = min_j; j < max_j; j++)
  {
    unsigned int it = j * span + min_i;
    for (int i = min_i; i < max_i; i++)
    {
      if (costmap_[it] == NO_INFORMATION){
        it++;
        continue;
      }

      unsigned char old_cost = master_array[it];
      if (old_cost == NO_INFORMATION)
        master_array[it] = costmap_[it];
      else
      {
        int sum = old_cost + costmap_[it];
        if (sum >= costmap_2d::INSCRIBED_INFLATED_OBSTACLE)
            master_array[it] = costmap_2d::INSCRIBED_INFLATED_OBSTACLE - 1;
        else
            master_array[it] = sum;
      }
      it++;
    }
  }
}
Exemplo n.º 3
0
void upTo(costmap_2d::Costmap2D &gradient_){

	for (int varX = 0; varX < gradient_.getSizeInCellsX(); varX++) {
		for (int varY = 0; varY < gradient_.getSizeInCellsY(); varY++) {
			//if(gradient_.getCost(varX, varY) == 0)
				gradient_.setCost(varX, varY, DEF);
		}
	}
}
Exemplo n.º 4
0
bool CSUROGlobalPlanner::isCoordInMap(const costmap_2d::Costmap2D &costmap, const float& x, const float& y)
{
	int cellI, cellJ;

	original_costmap_.worldToMapEnforceBounds(x, y, cellI, cellJ);

	if(cellI < costmap.getSizeInCellsX() && cellI >= 0 && cellJ < costmap.getSizeInCellsY() && cellJ >= 0)
		return true;
	return false;
}
Exemplo n.º 5
0
bool inMap(costmap_2d::Costmap2D &gradient_, int i, int j)
{
	if(i < gradient_.getSizeInCellsX() && i >= 0 && j < gradient_.getSizeInCellsY() && j >= 0)
	{
		return true;
	}
	else
	{
		return false;
	}
}
Exemplo n.º 6
0
//mark the point of the costmap as local goal where global_plan first leaves the area (or its last point)
void MapGrid::setLocalGoal (const costmap_2d::Costmap2D& costmap,
                            const std::vector<geometry_msgs::PoseStamped>& global_plan)
{
    sizeCheck (costmap.getSizeInCellsX(), costmap.getSizeInCellsY());

    int local_goal_x = -1;
    int local_goal_y = -1;
    bool started_path = false;

    std::vector<geometry_msgs::PoseStamped> adjusted_global_plan;
    adjustPlanResolution (global_plan, adjusted_global_plan, costmap.getResolution());

    // skip global path points until we reach the border of the local map
    for (unsigned int i = 0; i < adjusted_global_plan.size(); ++i)
    {
        double g_x = adjusted_global_plan[i].pose.position.x;
        double g_y = adjusted_global_plan[i].pose.position.y;
        unsigned int map_x, map_y;

        if (costmap.worldToMap (g_x, g_y, map_x, map_y) && costmap.getCost (map_x, map_y) != costmap_2d::NO_INFORMATION)
        {
            local_goal_x = map_x;
            local_goal_y = map_y;
            started_path = true;
        }
        else
        {
            if (started_path)
            {
                break;
            }// else we might have a non pruned path, so we just continue
        }
    }

    if (!started_path)
    {
        ROS_ERROR ("None of the points of the global plan were in the local costmap, global plan points too far from robot");
        return;
    }

    queue<MapCell*> path_dist_queue;

    if (local_goal_x >= 0 && local_goal_y >= 0)
    {
        MapCell& current = getCell (local_goal_x, local_goal_y);
        costmap.mapToWorld (local_goal_x, local_goal_y, goal_x_, goal_y_);
        current.target_dist = 0.0;
        current.target_mark = true;
        path_dist_queue.push (&current);
    }

    computeTargetDistance (path_dist_queue, costmap);
}
Exemplo n.º 7
0
//update what map cells are considered path based on the global_plan
void MapGrid::setTargetCells (const costmap_2d::Costmap2D& costmap,
                              const std::vector<geometry_msgs::PoseStamped>& global_plan)
{
    sizeCheck (costmap.getSizeInCellsX(), costmap.getSizeInCellsY());

    bool started_path = false;

    queue<MapCell*> path_dist_queue;

    std::vector<geometry_msgs::PoseStamped> adjusted_global_plan;
    adjustPlanResolution (global_plan, adjusted_global_plan, costmap.getResolution());

    if (adjusted_global_plan.size() != global_plan.size())
    {
        ROS_DEBUG ("Adjusted global plan resolution, added %zu points", adjusted_global_plan.size() - global_plan.size());
    }

    unsigned int i;

    // put global path points into local map until we reach the border of the local map
    for (i = 0; i < adjusted_global_plan.size(); ++i)
    {
        double g_x = adjusted_global_plan[i].pose.position.x;
        double g_y = adjusted_global_plan[i].pose.position.y;
        unsigned int map_x, map_y;

        if (costmap.worldToMap (g_x, g_y, map_x, map_y) && costmap.getCost (map_x, map_y) != costmap_2d::NO_INFORMATION)
        {
            MapCell& current = getCell (map_x, map_y);
            current.target_dist = 0.0;
            current.target_mark = true;
            path_dist_queue.push (&current);
            started_path = true;
        }
        else if (started_path)
        {
            break;
        }
    }

    if (!started_path)
    {
        ROS_ERROR ("None of the %d first of %zu (%zu) points of the global plan were in the local costmap and free",
                   i, adjusted_global_plan.size(), global_plan.size());
        return;
    }

    computeTargetDistance (path_dist_queue, costmap);
}
void CostmapLayer::updateWithOverwrite(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
{
  if (!enabled_)
    return;
  unsigned char* master = master_grid.getCharMap();
  unsigned int span = master_grid.getSizeInCellsX();

  for (int j = min_j; j < max_j; j++)
  {
    unsigned int it = span*j+min_i;
    for (int i = min_i; i < max_i; i++)
    {
      if (costmap_[it] != NO_INFORMATION)
        master[it] = costmap_[it];
      it++;
    }
  }
}
Exemplo n.º 9
0
  //update what map cells are considered path based on the global_plan
  void MapGrid::setPathCells(const costmap_2d::Costmap2D& costmap, const std::vector<geometry_msgs::PoseStamped>& global_plan){
    sizeCheck(costmap.getSizeInCellsX(), costmap.getSizeInCellsY(), costmap.getOriginX(), costmap.getOriginY());
    int local_goal_x = -1;
    int local_goal_y = -1;
    bool started_path = false;
    queue<MapCell*> path_dist_queue;
    queue<MapCell*> goal_dist_queue;
    for(unsigned int i = 0; i < global_plan.size(); ++i){
      double g_x = global_plan[i].pose.position.x;
      double g_y = global_plan[i].pose.position.y;
      unsigned int map_x, map_y;
      if(costmap.worldToMap(g_x, g_y, map_x, map_y) && costmap.getCost(map_x, map_y) != costmap_2d::NO_INFORMATION){
        MapCell& current = getCell(map_x, map_y);
        current.path_dist = 0.0;
        current.path_mark = true;
        path_dist_queue.push(&current);
        local_goal_x = map_x;
        local_goal_y = map_y;
        started_path = true;
      }
      else{
        if(started_path)
          break;
      }
    }

    if(local_goal_x >= 0 && local_goal_y >= 0){
      MapCell& current = getCell(local_goal_x, local_goal_y);
      costmap.mapToWorld(local_goal_x, local_goal_y, goal_x_, goal_y_);
      current.goal_dist = 0.0;
      current.goal_mark = true;
      goal_dist_queue.push(&current);
    }
    //compute our distances
    computePathDistance(path_dist_queue, costmap);
    computeGoalDistance(goal_dist_queue, costmap);
  }
void InflationLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i,
                                          int max_j)
{
  boost::unique_lock < boost::shared_mutex > lock(*access_);
  if (!enabled_)
    return;

  //make sure the inflation queue is empty at the beginning of the cycle (should always be true)
  ROS_ASSERT_MSG(inflation_queue_.empty(), "The inflation queue must be empty at the beginning of inflation");

  unsigned char* master_array = master_grid.getCharMap();
  unsigned int size_x = master_grid.getSizeInCellsX(), size_y = master_grid.getSizeInCellsY();

  memset(seen_, false, size_x * size_y * sizeof(bool));

  // We need to include in the inflation cells outside the bounding
  // box min_i...max_j, by the amount cell_inflation_radius_.  Cells
  // up to that distance outside the box can still influence the costs
  // stored in cells inside the box.
  min_i -= cell_inflation_radius_;
  min_j -= cell_inflation_radius_;
  max_i += cell_inflation_radius_;
  max_j += cell_inflation_radius_;

  min_i = std::max( 0, min_i );
  min_j = std::max( 0, min_j );
  max_i = std::min( int( size_x  ), max_i );
  max_j = std::min( int( size_y  ), max_j );

  for (int j = min_j; j < max_j; j++)
  {
    for (int i = min_i; i < max_i; i++)
    {
      int index = master_grid.getIndex(i, j);
      unsigned char cost = master_array[index];
      if (cost == LETHAL_OBSTACLE)
      {
        enqueue(master_array, index, i, j, i, j);
      }
    }
  }

  while (!inflation_queue_.empty())
  {
    //get the highest priority cell and pop it off the priority queue
    const CellData& current_cell = inflation_queue_.top();

    unsigned int index = current_cell.index_;
    unsigned int mx = current_cell.x_;
    unsigned int my = current_cell.y_;
    unsigned int sx = current_cell.src_x_;
    unsigned int sy = current_cell.src_y_;

    //attempt to put the neighbors of the current cell onto the queue
    if (mx > 0)
      enqueue(master_array, index - 1, mx - 1, my, sx, sy);
    if (my > 0)
      enqueue(master_array, index - size_x, mx, my - 1, sx, sy);
    if (mx < size_x - 1)
      enqueue(master_array, index + 1, mx + 1, my, sx, sy);
    if (my < size_y - 1)
      enqueue(master_array, index + size_x, mx, my + 1, sx, sy);

    //remove the current cell from the priority queue
    inflation_queue_.pop();
  }
}
Exemplo n.º 11
0
  bool transformGlobalPlan(
      const tf::TransformListener& tf,
      const std::vector<geometry_msgs::PoseStamped>& global_plan,
      const tf::Stamped<tf::Pose>& global_pose,
      const costmap_2d::Costmap2D& costmap,
      const std::string& global_frame,
      std::vector<geometry_msgs::PoseStamped>& transformed_plan){
    const geometry_msgs::PoseStamped& plan_pose = global_plan[0];

    transformed_plan.clear();

    try {
      if (!global_plan.size() > 0) {
        ROS_ERROR("Received plan with zero length");
        return false;
      }

      // get plan_to_global_transform from plan frame to global_frame
      tf::StampedTransform plan_to_global_transform;
      tf.waitForTransform(global_frame, ros::Time::now(),
                          plan_pose.header.frame_id, plan_pose.header.stamp,
                          plan_pose.header.frame_id, ros::Duration(0.5));
      tf.lookupTransform(global_frame, ros::Time(),
                         plan_pose.header.frame_id, plan_pose.header.stamp, 
                         plan_pose.header.frame_id, plan_to_global_transform);

      //let's get the pose of the robot in the frame of the plan
      tf::Stamped<tf::Pose> robot_pose;
      tf.transformPose(plan_pose.header.frame_id, global_pose, robot_pose);

      //we'll discard points on the plan that are outside the local costmap
      double dist_threshold = std::max(costmap.getSizeInCellsX() * costmap.getResolution() / 2.0,
                                       costmap.getSizeInCellsY() * costmap.getResolution() / 2.0);

      unsigned int i = 0;
      double sq_dist_threshold = dist_threshold * dist_threshold;
      double sq_dist = 0;

      //we need to loop to a point on the plan that is within a certain distance of the robot
      while(i < (unsigned int)global_plan.size()) {
        double x_diff = robot_pose.getOrigin().x() - global_plan[i].pose.position.x;
        double y_diff = robot_pose.getOrigin().y() - global_plan[i].pose.position.y;
        sq_dist = x_diff * x_diff + y_diff * y_diff;
        if (sq_dist <= sq_dist_threshold) {
          break;
        }
        ++i;
      }

      tf::Stamped<tf::Pose> tf_pose;
      geometry_msgs::PoseStamped newer_pose;

      //now we'll transform until points are outside of our distance threshold
      while(i < (unsigned int)global_plan.size() && sq_dist <= sq_dist_threshold) {
        const geometry_msgs::PoseStamped& pose = global_plan[i];
        poseStampedMsgToTF(pose, tf_pose);
        tf_pose.setData(plan_to_global_transform * tf_pose);
        tf_pose.stamp_ = plan_to_global_transform.stamp_;
        tf_pose.frame_id_ = global_frame;
        poseStampedTFToMsg(tf_pose, newer_pose);

        transformed_plan.push_back(newer_pose);

        double x_diff = robot_pose.getOrigin().x() - global_plan[i].pose.position.x;
        double y_diff = robot_pose.getOrigin().y() - global_plan[i].pose.position.y;
        sq_dist = x_diff * x_diff + y_diff * y_diff;

        ++i;
      }
    }
    catch(tf::LookupException& ex) {
      ROS_ERROR("No Transform available Error: %s\n", ex.what());
      return false;
    }
    catch(tf::ConnectivityException& ex) {
      ROS_ERROR("Connectivity Error: %s\n", ex.what());
      return false;
    }
    catch(tf::ExtrapolationException& ex) {
      ROS_ERROR("Extrapolation Error: %s\n", ex.what());
      if (global_plan.size() > 0)
        ROS_ERROR("Global Frame: %s Plan Frame size %d: %s\n", global_frame.c_str(), (unsigned int)global_plan.size(), global_plan[0].header.frame_id.c_str());

      return false;
    }

    return true;
  }
void InflationLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
{
  boost::unique_lock < boost::recursive_mutex > lock(*inflation_access_);
  if (!enabled_ || (cell_inflation_radius_ == 0))
    return;

  // make sure the inflation list is empty at the beginning of the cycle (should always be true)
  ROS_ASSERT_MSG(inflation_cells_.empty(), "The inflation list must be empty at the beginning of inflation");

  unsigned char* master_array = master_grid.getCharMap();
  unsigned int size_x = master_grid.getSizeInCellsX(), size_y = master_grid.getSizeInCellsY();

  if (seen_ == NULL) {
    ROS_WARN("InflationLayer::updateCosts(): seen_ array is NULL");
    seen_size_ = size_x * size_y;
    seen_ = new bool[seen_size_];
  }
  else if (seen_size_ != size_x * size_y)
  {
    ROS_WARN("InflationLayer::updateCosts(): seen_ array size is wrong");
    delete[] seen_;
    seen_size_ = size_x * size_y;
    seen_ = new bool[seen_size_];
  }
  memset(seen_, false, size_x * size_y * sizeof(bool));

  // We need to include in the inflation cells outside the bounding
  // box min_i...max_j, by the amount cell_inflation_radius_.  Cells
  // up to that distance outside the box can still influence the costs
  // stored in cells inside the box.
  min_i -= cell_inflation_radius_;
  min_j -= cell_inflation_radius_;
  max_i += cell_inflation_radius_;
  max_j += cell_inflation_radius_;

  min_i = std::max(0, min_i);
  min_j = std::max(0, min_j);
  max_i = std::min(int(size_x), max_i);
  max_j = std::min(int(size_y), max_j);

  // Inflation list; we append cells to visit in a list associated with its distance to the nearest obstacle
  // We use a map<distance, list> to emulate the priority queue used before, with a notable performance boost

  // Start with lethal obstacles: by definition distance is 0.0
  std::vector<CellData>& obs_bin = inflation_cells_[0.0];
  for (int j = min_j; j < max_j; j++)
  {
    for (int i = min_i; i < max_i; i++)
    {
      int index = master_grid.getIndex(i, j);
      unsigned char cost = master_array[index];
      if (cost == LETHAL_OBSTACLE)
      {
        obs_bin.push_back(CellData(index, i, j, i, j));
      }
    }
  }

  // Process cells by increasing distance; new cells are appended to the corresponding distance bin, so they
  // can overtake previously inserted but farther away cells
  std::map<double, std::vector<CellData> >::iterator bin;
  for (bin = inflation_cells_.begin(); bin != inflation_cells_.end(); ++bin)
  {
    for (int i = 0; i < bin->second.size(); ++i)
    {
      // process all cells at distance dist_bin.first
      const CellData& cell = bin->second[i];

      unsigned int index = cell.index_;

      // ignore if already visited
      if (seen_[index])
      {
        continue;
      }

      seen_[index] = true;

      unsigned int mx = cell.x_;
      unsigned int my = cell.y_;
      unsigned int sx = cell.src_x_;
      unsigned int sy = cell.src_y_;

      // assign the cost associated with the distance from an obstacle to the cell
      unsigned char cost = costLookup(mx, my, sx, sy);
      unsigned char old_cost = master_array[index];
      if (old_cost == NO_INFORMATION && (inflate_unknown_ ? (cost > FREE_SPACE) : (cost >= INSCRIBED_INFLATED_OBSTACLE)))
        master_array[index] = cost;
      else
        master_array[index] = std::max(old_cost, cost);

      // attempt to put the neighbors of the current cell onto the inflation list
      if (mx > 0)
        enqueue(index - 1, mx - 1, my, sx, sy);
      if (my > 0)
        enqueue(index - size_x, mx, my - 1, sx, sy);
      if (mx < size_x - 1)
        enqueue(index + 1, mx + 1, my, sx, sy);
      if (my < size_y - 1)
        enqueue(index + size_x, mx, my + 1, sx, sy);
    }
  }

  inflation_cells_.clear();
}