Exemplo n.º 1
0
void Picture::setAnimation(const AnimationEnum &animationEnum, 
	const cv::InputArray &startImg, const cv::InputArray &endImg)
{
	delete animation;

	Mat startImage = startImg.getMat();
	Mat endImage = endImg.getMat();
	if (!startImg.empty() && startImg.size() != this->size())
		cv::resize(startImg, startImage, this->size());
	if (!endImg.empty() && endImg.size() != this->size())
		cv::resize(endImg, endImage, this->size());
	
	animation = AnimationFactory::createAnimation(animationEnum, startImage, endImage);
}
Exemplo n.º 2
0
Arquivo: ippe.cpp Projeto: lz89/IPPE
void IPPE::PoseSolver::solveGeneric(cv::InputArray _objectPoints, cv::InputArray _imagePoints, cv::InputArray _cameraMatrix, cv::InputArray _distCoeffs,
                                    cv::OutputArray _rvec1, cv::OutputArray _tvec1, float& err1, cv::OutputArray _rvec2, cv::OutputArray _tvec2, float& err2)
{
    cv::Mat normalizedImagePoints; //undistored version of imagePoints

    if (_cameraMatrix.empty()) {
        //there is no camera matrix and image points are given in normalized pixel coordinates.
        _imagePoints.copyTo(normalizedImagePoints);
    }
    else {
        //undistort the image points (i.e. put them in normalized pixel coordinates):
        cv::undistortPoints(_imagePoints, normalizedImagePoints, _cameraMatrix, _distCoeffs);
    }

    //solve:
    cv::Mat Ma, Mb;
    solveGeneric(_objectPoints, normalizedImagePoints, Ma, Mb);

    //the two poses computed by IPPE (sorted):
    cv::Mat M1, M2;

    //sort poses by reprojection error:
    sortPosesByReprojError(_objectPoints, _imagePoints, _cameraMatrix, _distCoeffs, Ma, Mb, M1, M2, err1, err2);

    //fill outputs
    rot2vec(M1.colRange(0, 3).rowRange(0, 3), _rvec1);
    rot2vec(M2.colRange(0, 3).rowRange(0, 3), _rvec2);

    M1.colRange(3, 4).rowRange(0, 3).copyTo(_tvec1);
    M2.colRange(3, 4).rowRange(0, 3).copyTo(_tvec2);
}
Exemplo n.º 3
0
void cv::SCascade::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
{
    // only color images are supperted
    cv::Mat image = _image.getMat();
    CV_Assert(image.type() == CV_8UC3);

    Fields& fld = *fields;
    fld.calcLevels(image.size(),(float) minScale, (float)maxScale, scales);

    objects.clear();

    if (_rois.empty())
        return detectNoRoi(image, objects);

    int shr = fld.shrinkage;

    cv::Mat roi = _rois.getMat();
    cv::Mat mask(image.rows / shr, image.cols / shr, CV_8UC1);

    mask.setTo(cv::Scalar::all(0));
    cv::Rect* r = roi.ptr<cv::Rect>(0);
    for (int i = 0; i < (int)roi.cols; ++i)
        cv::Mat(mask, cv::Rect(r[i].x / shr, r[i].y / shr, r[i].width / shr , r[i].height / shr)).setTo(cv::Scalar::all(1));

    // create integrals
    ChannelStorage storage(image, shr);

    typedef std::vector<Level>::const_iterator lIt;
    for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it)
    {
         const Level& level = *it;

        // we train only 3 scales.
        if (level.origScale > 2.5) break;

         for (int dy = 0; dy < level.workRect.height; ++dy)
         {
             uchar* m  = mask.ptr<uchar>(dy);
             for (int dx = 0; dx < level.workRect.width; ++dx)
             {
                 if (m[dx])
                 {
                     storage.offset = dy * storage.step + dx;
                     fld.detectAt(dx, dy, level, storage, objects);
                 }
             }
         }
    }

    if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
}
Exemplo n.º 4
0
cv::viz::WCloud::WCloud(cv::InputArray cloud, cv::InputArray colors, cv::InputArray normals)
{
    CV_Assert(!cloud.empty() && !colors.empty());

    vtkSmartPointer<vtkCloudMatSource> cloud_source = vtkSmartPointer<vtkCloudMatSource>::New();
    cloud_source->SetColorCloudNormals(cloud, colors, normals);
    cloud_source->Update();

    vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
    VtkUtils::SetInputData(mapper, cloud_source->GetOutput());
    mapper->SetScalarModeToUsePointData();
#if VTK_MAJOR_VERSION < 8
    mapper->ImmediateModeRenderingOff();
#endif
    mapper->SetScalarRange(0, 255);
    mapper->ScalarVisibilityOn();

    vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
    actor->GetProperty()->SetInterpolationToFlat();
    actor->GetProperty()->BackfaceCullingOn();
    actor->SetMapper(mapper);

    WidgetAccessor::setProp(*this, actor);
}
Exemplo n.º 5
0
void RadiometricResponse::directMap(cv::InputArray _E, cv::OutputArray _I) const {
  if (_E.empty()) {
    _I.clear();
    return;
  }
  auto E = _E.getMat();
  _I.create(_E.size(), CV_8UC3);
  auto I = _I.getMat();
#if CV_MAJOR_VERSION > 2
  E.forEach<cv::Vec3f>(
      [&I, this](cv::Vec3f& v, const int* p) { I.at<cv::Vec3b>(p[0], p[1]) = inverseLUT(response_channels_, v); });
#else
  for (int i = 0; i < E.rows; i++)
    for (int j = 0; j < E.cols; j++) I.at<cv::Vec3b>(i, j) = inverseLUT(response_channels_, E.at<cv::Vec3f>(i, j));
#endif
}
Exemplo n.º 6
0
Arquivo: ippe.cpp Projeto: lz89/IPPE
void IPPE::PoseSolver::evalReprojError(cv::InputArray _objectPoints, cv::InputArray _imagePoints, cv::InputArray _cameraMatrix, cv::InputArray _distCoeffs, cv::InputArray _M, float& err)
{
    cv::Mat projectedPoints;
    cv::Mat imagePoints = _imagePoints.getMat();
    cv::Mat r;
    rot2vec(_M.getMat().colRange(0, 3).rowRange(0, 3), r);

    if (_cameraMatrix.empty()) {
        //there is no camera matrix and image points are in normalized pixel coordinates
        cv::Mat K(3, 3, CV_64FC1);
        K.setTo(0);
        K.at<double>(0, 0) = 1;
        K.at<double>(1, 1) = 1;
        K.at<double>(2, 2) = 1;
        cv::Mat kc;
        cv::projectPoints(_objectPoints, r, _M.getMat().colRange(3, 4).rowRange(0, 3), K, kc, projectedPoints);
    }
    else {
        cv::projectPoints(_objectPoints, r, _M.getMat().colRange(3, 4).rowRange(0, 3), _cameraMatrix, _distCoeffs, projectedPoints);
    }

    err = 0;
    size_t n = _objectPoints.rows() * _objectPoints.cols();

    float dx, dy;
    for (size_t i = 0; i < n; i++) {
        if (projectedPoints.depth() == CV_32FC1) {
            dx = projectedPoints.at<Vec2f>(i)[0] - imagePoints.at<Vec2f>(i)[0];
            dy = projectedPoints.at<Vec2f>(i)[0] - imagePoints.at<Vec2f>(i)[0];
        }
        else {
            dx = projectedPoints.at<Vec2d>(i)[0] - imagePoints.at<Vec2d>(i)[0];
            dy = projectedPoints.at<Vec2d>(i)[0] - imagePoints.at<Vec2d>(i)[0];
        }

        err += dx * dx + dy * dy;
    }
    err = sqrt(err / (2.0f * n));
}
Exemplo n.º 7
0
void unprojectPointsFisheye( cv::InputArray distorted, cv::OutputArray undistorted, cv::InputArray K, cv::InputArray D, cv::InputArray R, cv::InputArray P)
{
    // will support only 2-channel data now for points
    CV_Assert(distorted.type() == CV_32FC2 || distorted.type() == CV_64FC2);
    undistorted.create(distorted.size(), CV_MAKETYPE(distorted.depth(), 3));

    CV_Assert(P.empty() || P.size() == cv::Size(3, 3) || P.size() == cv::Size(4, 3));
    CV_Assert(R.empty() || R.size() == cv::Size(3, 3) || R.total() * R.channels() == 3);
    CV_Assert(D.total() == 4 && K.size() == cv::Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));

    cv::Vec2d f, c;
    if (K.depth() == CV_32F)
    {
        cv::Matx33f camMat = K.getMat();
        f = cv::Vec2f(camMat(0, 0), camMat(1, 1));
        c = cv::Vec2f(camMat(0, 2), camMat(1, 2));
    }
    else
    {
        cv::Matx33d camMat = K.getMat();
        f = cv::Vec2d(camMat(0, 0), camMat(1, 1));
        c = cv::Vec2d(camMat(0, 2), camMat(1, 2));
    }

    cv::Vec4d k = D.depth() == CV_32F ? (cv::Vec4d)*D.getMat().ptr<cv::Vec4f>(): *D.getMat().ptr<cv::Vec4d>();

    cv::Matx33d RR = cv::Matx33d::eye();
    if (!R.empty() && R.total() * R.channels() == 3)
    {
        cv::Vec3d rvec;
        R.getMat().convertTo(rvec, CV_64F);
        RR = cv::Affine3d(rvec).rotation();
    }
    else if (!R.empty() && R.size() == cv::Size(3, 3))
        R.getMat().convertTo(RR, CV_64F);

    if(!P.empty())
    {
        cv::Matx33d PP;
        P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
        RR = PP * RR;
    }

    // start undistorting
    const cv::Vec2f* srcf = distorted.getMat().ptr<cv::Vec2f>();
    const cv::Vec2d* srcd = distorted.getMat().ptr<cv::Vec2d>();
    cv::Vec3f* dstf = undistorted.getMat().ptr<cv::Vec3f>();
    cv::Vec3d* dstd = undistorted.getMat().ptr<cv::Vec3d>();

    size_t n = distorted.total();
    int sdepth = distorted.depth();

    for(size_t i = 0; i < n; i++ )
    {
        cv::Vec2d pi = sdepth == CV_32F ? (cv::Vec2d)srcf[i] : srcd[i];  // image point
        cv::Vec2d pw((pi[0] - c[0])/f[0], (pi[1] - c[1])/f[1]);      // world point

        double theta_d = sqrt(pw[0]*pw[0] + pw[1]*pw[1]);
        double theta = theta_d;
        if (theta_d > 1e-8)
        {
            // compensate distortion iteratively
            for(int j = 0; j < 10; j++ )
            {
                double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta6*theta2;
                theta = theta_d / (1 + k[0] * theta2 + k[1] * theta4 + k[2] * theta6 + k[3] * theta8);
            }
        }
        double z = std::cos(theta);
        double r = std::sin(theta);

        cv::Vec3d pu = cv::Vec3d(r*pw[0], r*pw[1], z); //undistorted point

        // reproject
        cv::Vec3d pr = RR * pu; // rotated point optionally multiplied by new camera matrix
        cv::Vec3d fi;       // final
        normalize(pr, fi);

        if( sdepth == CV_32F )
            dstf[i] = fi;
        else
            dstd[i] = fi;
    }
}
Exemplo n.º 8
0
bool VideoWriter_IntelMFX::write_one(cv::InputArray bgr)
{
    mfxStatus res;
    mfxFrameSurface1 *workSurface = 0;
    mfxSyncPoint sync;

    if (!bgr.empty() && (bgr.dims() != 2 || bgr.type() != CV_8UC3 || bgr.size() != frameSize))
    {
        MSG(cerr << "MFX: invalid frame passed to encoder: "
            << "dims/depth/cn=" << bgr.dims() << "/" << bgr.depth() << "/" << bgr.channels()
            << ", size=" << bgr.size() << endl);
        return false;

    }
    if (!bgr.empty())
    {
        workSurface = pool->getFreeSurface();
        if (!workSurface)
        {
            // not enough surfaces
            MSG(cerr << "MFX: Failed to get free surface" << endl);
            return false;
        }
        const int rows = workSurface->Info.Height;
        const int cols = workSurface->Info.Width;
        Mat Y(rows, cols, CV_8UC1, workSurface->Data.Y, workSurface->Data.Pitch);
        Mat UV(rows / 2, cols, CV_8UC1, workSurface->Data.UV, workSurface->Data.Pitch);
        to_nv12(bgr, Y, UV);
        CV_Assert(Y.ptr() == workSurface->Data.Y);
        CV_Assert(UV.ptr() == workSurface->Data.UV);
    }

    while (true)
    {
        outSurface = 0;
        DBG(cout << "Calling with surface: " << workSurface << endl);
        res = encoder->EncodeFrameAsync(NULL, workSurface, &bs->stream, &sync);
        if (res == MFX_ERR_NONE)
        {
            res = session->SyncOperation(sync, 1000); // 1 sec, TODO: provide interface to modify timeout
            if (res == MFX_ERR_NONE)
            {
                // ready to write
                if (!bs->write())
                {
                    MSG(cerr << "MFX: Failed to write bitstream" << endl);
                    return false;
                }
                else
                {
                    DBG(cout << "Write bitstream" << endl);
                    return true;
                }
            }
            else
            {
                MSG(cerr << "MFX: Sync error: " << res << endl);
                return false;
            }
        }
        else if (res == MFX_ERR_MORE_DATA)
        {
            DBG(cout << "ERR_MORE_DATA" << endl);
            return false;
        }
        else if (res == MFX_WRN_DEVICE_BUSY)
        {
            DBG(cout << "Waiting for device" << endl);
            sleep(1);
            continue;
        }
        else
        {
            MSG(cerr << "MFX: Bad status: " << res << endl);
            return false;
        }
    }
}
void savePointCloud(const std::string file, cv::InputArray point_cloud, const bool is_binary, cv::InputArray color_image, const bool remove_miss_point)
{
	const cv::Mat points = point_cloud.getMat();
	const bool color_cloud = (!color_image.empty() && (point_cloud.size() == color_image.size()));
	
	if (points.empty())
		return;

	if (points.type() != CV_32FC1)
		points.reshape(1, 3);

	if (color_cloud)
	{
		const cv::Mat im = color_image.getMat();
		pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>);

		for (int row = 0; row < points.rows; ++row)
		{
			const auto ptr = points.ptr<cv::Vec3f>(row);
			const auto ptr_image = im.ptr<cv::Vec3b>(row);

			for (int col = 0; col < points.cols; ++col)
			{
				const auto val = ptr[col];
				const auto color = ptr_image[col];

				if (!remove_miss_point || (remove_miss_point && val[2] < 9999.9f))
				{
					pcl::PointXYZRGB p;
					p.x = val[0], p.y = val[1], p.z = val[2], p.r = color[0], p.g = color[1], p.b = color[2];
					cloud->push_back(p);
				}
			}
		}

		if (cloud->size() == 0)
			return;
		else if (is_binary)
			pcl::io::savePLYFileBinary(file, *cloud);
		else
			pcl::io::savePLYFileASCII(file, *cloud);
	}
	else
	{
		pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);

		for (int row = 0; row < points.rows; ++row)
		{
			const auto ptr = points.ptr<cv::Vec3f>(row);

			for (int col = 0; col < points.cols; ++col)
			{
				const auto val = ptr[col];

				if (!remove_miss_point || (remove_miss_point && val[2] < 9999.9f))
					cloud->push_back(pcl::PointXYZ(val[0], val[1], val[2]));
			}
		}

		if (cloud->size() == 0)
			return;
		else if (is_binary)
			pcl::io::savePLYFileBinary(file, *cloud);
		else
			pcl::io::savePLYFileASCII(file, *cloud);
	}
	return;
}