Exemplo n.º 1
0
  void ViewerState::processCommands(){
    _meHasNewFrame = false;
    refreshFlags();
    updateDrawableParameters();
    if(!wasInitialGuess && !newCloudAdded && drawableFrameVector.size() > 1 && *initialGuessViewer) {
      initialGuessSelected();
      continuousMode = false;
    } else if(newCloudAdded && drawableFrameVector.size() > 1 && *optimizeViewer && !(*stepByStepViewer)) {
      optimizeSelected();
      continuousMode = false;
    }
    // Add cloud was pressed.
    else if(*addCloud) {
      addCloudSelected();
      continuousMode = false;
    }
    // clear buttons pressed.
    else if(*clearAll) {
      clear();
      *clearAll = 0;
      continuousMode = false;
    }
    else if(*clearLast) {
      clearLastSelected();
      continuousMode = false;
    } 
    else if(continuousMode){
      addNextAndOptimizeSelected();
    }
    // To avoid memorized commands to be managed.
    *initialGuessViewer = 0;
    *optimizeViewer = 0;
    *addCloud = 0; 
    *clearAll = 0;
    *clearLast = 0;

    if (0 && drawableFrameVector.size()){
      Eigen::Isometry3f globalT = drawableFrameVector.front()->transformation();
      qglviewer::Vec robotPose(globalT.translation().x(), globalT.translation().y(), globalT.translation().z());
      qglviewer::Vec robotAxisX(globalT.linear()(0,0), globalT.linear()(1,0), globalT.linear()(2,0));
      qglviewer::Vec robotAxisZ(globalT.linear()(0,2), globalT.linear()(1,2), globalT.linear()(2,2));
      pwnGMW->viewer_3d->camera()->setPosition(robotPose+.5*robotAxisZ+.5*robotAxisX);
      pwnGMW->viewer_3d->camera()->setUpVector(robotAxisX+robotAxisZ);
      pwnGMW->viewer_3d->camera()->setViewDirection(robotPose+.5*robotAxisZ+.5*robotAxisX);
    }


    pwnGMW->viewer_3d->updateGL();
  }
Exemplo n.º 2
0
int
 main(int argc, char** argv){
  string dirname;
  string graphFilename;
  float numThreads;

  int ng_step;
  int ng_minPoints;
  int ng_imageRadius;
  float ng_worldRadius;
  float ng_maxCurvature;
  
  float al_inlierDistance;
  float al_inlierCurvatureRatio;
  float al_inlierNormalAngle;
  float al_inlierMaxChi2;
  float al_scale;
  float al_flatCurvatureThreshold;
  float al_outerIterations;
  float al_nonLinearIterations;
  float al_linearIterations;
  float al_minInliers;
  float al_lambda;
  float al_debug;

  PointWithNormalStatistcsGenerator normalGenerator;
  PointWithNormalAligner aligner;

  g2o::CommandArgs arg;
  arg.param("ng_step",ng_step,normalGenerator.step(),"compute a normal each x pixels") ;
  arg.param("ng_minPoints",ng_minPoints,normalGenerator.minPoints(),"minimum number of points in a region to compute the normal");
  arg.param("ng_imageRadius",ng_imageRadius,normalGenerator.imageRadius(), "radius of a ball in the works where to compute the normal for a pixel");
  arg.param("ng_worldRadius",ng_worldRadius,  normalGenerator.worldRadius(), "radius of a ball in the works where to compute the normal for a pixel");
  arg.param("ng_maxCurvature",ng_maxCurvature, normalGenerator.maxCurvature(), "above this threshold the normal is not computed");
  
  arg.param("al_inlierDistance", al_inlierDistance, aligner.inlierDistanceThreshold(),  "max metric distance between two points to regard them as iniliers");
  arg.param("al_inlierCurvatureRatio", al_inlierCurvatureRatio, aligner.inlierCurvatureRatioThreshold(), "max metric distance between two points to regard them as iniliers");
  arg.param("al_inlierNormalAngle", al_inlierNormalAngle, aligner.inlierNormalAngularThreshold(), "max metric distance between two points to regard them as iniliers");
  arg.param("al_inlierMaxChi2", al_inlierMaxChi2, aligner.inlierMaxChi2(), "max metric distance between two points to regard them as iniliers");
  arg.param("al_minInliers", al_minInliers, aligner.minInliers(), "minimum numver of inliers to do the matching");
  arg.param("al_scale", al_scale, aligner.scale(), "scale of the range image for the alignment");
  arg.param("al_flatCurvatureThreshold", al_flatCurvatureThreshold, aligner.flatCurvatureThreshold(), "curvature above which the patches are not considered planar");
  arg.param("al_outerIterations", al_outerIterations, aligner.outerIterations(), "outer interations (incl. data association)");
  arg.param("al_linearIterations", al_linearIterations, aligner.linearIterations(), "linear iterations for each outer one (uses R,t)");
  arg.param("al_nonLinearIterations", al_nonLinearIterations, aligner.nonLinearIterations(), "nonlinear iterations for each outer one (uses q,t)");
  arg.param("al_lambda", al_lambda, aligner.lambda(), "damping factor for the transformation update, the higher the smaller the step");
  arg.param("al_debug", al_debug, aligner.debug(), "prints lots of stuff");
  arg.param("numThreads", numThreads, 1, "numver of threads for openmp");
  

  if (numThreads<1)
    numThreads = 1;
  
  std::vector<string> fileNames;

  arg.paramLeftOver("dirname", dirname, "", "", true);
  arg.paramLeftOver("graph-file", graphFilename, "out.g2o", "graph-file", true);
  arg.parseArgs(argc, argv);
  cerr << "dirname " << dirname << endl;

  std::vector<string> filenames;
  std::set<string> filenamesset = readDir(dirname);
  for(set<string>::const_iterator it =filenamesset.begin(); it!=filenamesset.end(); it++) {
    filenames.push_back(*it);
  }
  
  normalGenerator.setStep(ng_step);
  normalGenerator.setMinPoints(ng_minPoints);
  normalGenerator.setImageRadius(ng_imageRadius);
  normalGenerator.setWorldRadius(ng_worldRadius);
  normalGenerator.setMaxCurvature(ng_maxCurvature);
#ifdef _PWN_USE_OPENMP_
  normalGenerator.setNumThreads(numThreads);
#endif //_PWN_USE_OPENMP_

  aligner.setInlierDistanceThreshold(al_inlierDistance);
  aligner.setInlierCurvatureRatioThreshold(al_inlierCurvatureRatio);
  aligner.setInlierNormalAngularThreshold(al_inlierNormalAngle);
  aligner.setInlierMaxChi2(al_inlierMaxChi2);
  aligner.setMinInliers(al_minInliers);
  aligner.setScale(al_scale);
  aligner.setFlatCurvatureThreshold(al_flatCurvatureThreshold);
  aligner.setOuterIterations(al_outerIterations);
  aligner.setLinearIterations(al_linearIterations);
  aligner.setNonLinearIterations(al_nonLinearIterations);
  aligner.setLambda(al_lambda);
  aligner.setDebug(al_debug);
#ifdef _PWN_USE_OPENMP_
  aligner.setNumThreads(numThreads);
#endif //_PWN_USE_OPENMP_


  Frame* referenceFrame= 0;

  Eigen::Matrix3f cameraMatrix;
  cameraMatrix << 
    525.0f, 0.0f, 319.5f,
    0.0f, 525.0f, 239.5f,
    0.0f, 0.0f, 1.0f;

  ostringstream os(graphFilename.c_str());
  

  cerr << "there are " << filenames.size() << " files  in the pool" << endl; 
  Isometry3f trajectory;
  trajectory.setIdentity();
  int previousIndex=-1;
  int graphNum=0;
  int nFrames = 0;
  string baseFilename = graphFilename.substr( 0, graphFilename.find_last_of( '.' ) );
  for (size_t i=0; i<filenames.size(); i++){
    cerr << endl << endl << endl;
    cerr << ">>>>>>>>>>>>>>>>>>>>>>>> PROCESSING " << filenames[i] << " <<<<<<<<<<<<<<<<<<<<" <<  endl;
    Frame* currentFrame= new Frame();
    if(!currentFrame->load(filenames[i])) {
      cerr << "failure in loading image: " << filenames[i] << ", skipping" << endl;
      delete currentFrame;
      continue;
    }
    nFrames ++;
    if (! referenceFrame ){
      os << "PARAMS_CAMERACALIB 0 0 0 0 0 0 0 1 525 525 319.5 239.5"<< endl;
      trajectory.setIdentity();
    }
    {
      // write the vertex frame
      Vector6f x = t2v(trajectory);
      Vector3f t = x.head<3>();
      Vector3f mq = x.tail<3>();
      float w = mq.squaredNorm();
      if (w>1){
	mq.setZero();
	w = 1.0f;
      } else {
	w = sqrt(1-w);
      }
      
      os << "VERTEX_SE3:QUAT " << i << " " << t.transpose() << " " << mq.transpose() << " " << w << endl;
      os << "DEPTH_IMAGE_DATA 0 " << filenames[i] << " 0 0 " << endl;
    }
    
    currentFrame->computeStats(normalGenerator,cameraMatrix);
    if (referenceFrame) {
      referenceFrame->setAligner(aligner, true);
      currentFrame->setAligner(aligner, false);

      Matrix6f omega;
      Vector6f mean;
      float tratio;
      float rratio;
      aligner.setImageSize(currentFrame->depthImage.rows(), currentFrame->depthImage.cols());
      Eigen::Isometry3f X;
      X.setIdentity();
      double ostart = get_time();
      float error;
      int result = aligner.align(error, X, mean, omega, tratio, rratio);
      cerr << "inliers=" << result << " error/inliers: " << error/result << endl;
      cerr << "localTransform : " << endl;
      cerr << X.inverse().matrix() << endl;
      trajectory=trajectory*X;
      cerr << "globaltransform: " << endl;
      cerr << trajectory.matrix() << endl;
      double oend = get_time();
      cerr << "alignment took: " << oend-ostart << " sec." << endl;
      cerr << "aligner scaled image size: " << aligner.scaledImageRows() << " " << aligner.scaledImageCols() << endl;
      
      if(rratio < 100 && tratio < 100) {
	// write the edge frame
	Vector6f x = mean;
	Vector3f t = x.head<3>();
	Vector3f mq = x.tail<3>();
	float w = mq.squaredNorm();
	if (w>1){
	  mq.setZero();
	  w = 1.0f;
	} else {
	  w = sqrt(1-w);
	}
	
	os << "EDGE_SE3:QUAT " << previousIndex << " " << i << " ";
	os << t.transpose() << " " << mq.transpose() << " " << w <<  " ";
	for (int r=0; r<6; r++){
	  for (int c=r; c<6; c++){
	    os << omega(r,c) << " ";
	  }
	} 
	os << endl;
      } else {
	if (nFrames >10) {
	  char buf[1024];
	  sprintf(buf, "%s-%03d.g2o", baseFilename.c_str(), graphNum);	
	  ofstream gs(buf);
	  gs << os.str();
	  gs.close();
	}
	os.str("");
	os.clear();
	if (referenceFrame)
	  delete referenceFrame;
	referenceFrame = 0;
	graphNum ++;
	nFrames = 0;
      }

    }
    previousIndex = i;
    if (referenceFrame)
      delete referenceFrame;
    referenceFrame = currentFrame;
  }

  char buf[1024];
  sprintf(buf, "%s-%03d.g2o", baseFilename.c_str(), graphNum);	
  cerr << "saving final frames, n: " << nFrames << " in file [" << buf << "]" << endl;
  cerr << "filesize:" << os.str().length() << endl; 
  ofstream gs(buf);
  gs << os.str();
  cout << os.str();
  gs.close();
  
}
Exemplo n.º 3
0
void ICPOdometry::getIncrementalTransformation(Eigen::Vector3f & trans, Eigen::Matrix<float, 3, 3, Eigen::RowMajor> & rot, int threads, int blocks)
{
    iterations[0] = 10;
    iterations[1] = 5;
    iterations[2] = 4;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rprev = rot;
    Eigen::Vector3f tprev = trans;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rcurr = Rprev;
    Eigen::Vector3f tcurr = tprev;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rprev_inv = Rprev.inverse();
    Mat33 & device_Rprev_inv = device_cast<Mat33>(Rprev_inv);
    float3& device_tprev = device_cast<float3>(tprev);

    cv::Mat resultRt = cv::Mat::eye(4, 4, CV_64FC1);

    for(int i = NUM_PYRS - 1; i >= 0; i--)
    {
        for(int j = 0; j < iterations[i]; j++)
        {
            Eigen::Matrix<float, 6, 6, Eigen::RowMajor> A_icp;
            Eigen::Matrix<float, 6, 1> b_icp;

            Mat33&  device_Rcurr = device_cast<Mat33> (Rcurr);
            float3& device_tcurr = device_cast<float3>(tcurr);

            DeviceArray2D<float>& vmap_curr = vmaps_curr_[i];
            DeviceArray2D<float>& nmap_curr = nmaps_curr_[i];

            DeviceArray2D<float>& vmap_g_prev = vmaps_g_prev_[i];
            DeviceArray2D<float>& nmap_g_prev = nmaps_g_prev_[i];

            float residual[2];

            icpStep(device_Rcurr,
                    device_tcurr,
                    vmap_curr,
                    nmap_curr,
                    device_Rprev_inv,
                    device_tprev,
                    intr(i),
                    vmap_g_prev,
                    nmap_g_prev,
                    distThres_,
                    angleThres_,
                    sumData,
                    outData,
                    A_icp.data(),
                    b_icp.data(),
                    &residual[0],
                    threads,
                    blocks);

            lastICPError = sqrt(residual[0]) / residual[1];
            lastICPCount = residual[1];

            Eigen::Matrix<double, 6, 1> result;
            Eigen::Matrix<double, 6, 6, Eigen::RowMajor> dA_icp = A_icp.cast<double>();
            Eigen::Matrix<double, 6, 1> db_icp = b_icp.cast<double>();

            lastA = dA_icp;
            lastb = db_icp;
            result = lastA.ldlt().solve(lastb);

            Eigen::Isometry3f incOdom;

            OdometryProvider::computeProjectiveMatrix(resultRt, result, incOdom);

            Eigen::Isometry3f currentT;
            currentT.setIdentity();
            currentT.rotate(Rprev);
            currentT.translation() = tprev;

            currentT = currentT * incOdom.inverse();

            tcurr = currentT.translation();
            Rcurr = currentT.rotation();
        }
    }

    trans = tcurr;
    rot = Rcurr;
}
Exemplo n.º 4
0
void Aligner::align() {
  struct timeval tvStart, tvEnd;
  gettimeofday(&tvStart,0);

  if (! _projector || !_linearizer || !_correspondenceGenerator){
    cerr << "I do nothing since you did not set all required algorithms" << endl;
    return;
  }
  // the current points are seen from the frame of the sensor
  _projector->setTransform(_sensorOffset);
  _projector->project(_correspondenceGenerator->currentIndexImage(),
		      _correspondenceGenerator->currentDepthImage(),
		      _currentScene->points());
  _T = _initialGuess;
  for(int i = 0; i < _outerIterations; i++) {
    //cout << "********************* Iteration " << i << " *********************" << endl;
    
    /************************************************************************
     *                         Correspondence Computation                   *
     ************************************************************************/
    //cout << "Computing correspondences...";
    
    // compute the indices of the current scene from the point of view of the sensor
    _projector->setTransform(_T*_sensorOffset);
    _projector->project(_correspondenceGenerator->referenceIndexImage(),
			_correspondenceGenerator->referenceDepthImage(),
			_referenceScene->points());
    
    // Correspondences computation.    
    _correspondenceGenerator->compute(*_referenceScene, *_currentScene, _T.inverse());

    //cout << " done." << endl;
    //cout << "# inliers found: " << _correspondenceGenerator->numCorrespondences() << endl;

    /************************************************************************
     *                            Alignment                                 *
     ************************************************************************/

    Eigen::Isometry3f invT = _T.inverse();
    for (int k = 0; k < _innerIterations; k++) {      
      invT.matrix().block<1, 4>(3, 0) << 0, 0, 0, 1;
      Matrix6f H;
      Vector6f b;

      _linearizer->setT(invT);
      _linearizer->update();
      H = _linearizer->H() + Matrix6f::Identity() * 10.0f;
      b = _linearizer->b();
      
      // add the priors
      for (size_t i=0; i<_priors.size(); i++){
	const SE3Prior* prior = _priors[i];
	Vector6f priorError = prior->error(invT);
	Matrix6f priorJacobian = prior->jacobian(invT);
	Matrix6f priorInformationRemapped = prior->errorInformation(invT);

	Matrix6f Hp = priorJacobian.transpose()*priorInformationRemapped*priorJacobian;
	Vector6f bp = priorJacobian.transpose()*priorInformationRemapped*priorError;

	H += Hp;
	b += bp;
      }


      Vector6f dx = H.ldlt().solve(-b);
      Eigen::Isometry3f dT = v2t(dx);
      invT = dT * invT;
    }
    _T = invT.inverse();
    _T.matrix().block<1, 4>(3, 0) << 0, 0, 0, 1;
  }

  gettimeofday(&tvEnd, 0);
  double tStart = tvStart.tv_sec*1000+tvStart.tv_usec*0.001;
  double tEnd = tvEnd.tv_sec*1000+tvEnd.tv_usec*0.001;
  _totalTime = tEnd - tStart;
  _error = _linearizer->error();
  _inliers = _linearizer->inliers();
}
  void ImageMessageListener::imageCallback(const sensor_msgs::ImageConstPtr& in_msg) {
    static int counter = 0;     // counter to add periodic line breaks
    _image_deque.push_back(*in_msg);
    if (_image_deque.size()<_deque_length){
      return;
    }
    sensor_msgs::Image msg = _image_deque.front();
    _image_deque.pop_front();
    
    
    if (_listener) {
      tf::StampedTransform transform;
      try{
        _listener->waitForTransform(_odom_frame_id, 
                                    _base_link_frame_id, 
                                    msg.header.stamp, 
                                    ros::Duration(0.5) );
        _listener->lookupTransform (_odom_frame_id, 
                                    _base_link_frame_id, 
                                    msg.header.stamp, 
                                    transform);
      }
      catch (tf::TransformException ex){
        ROS_ERROR("%s",ex.what());
      }
      Eigen::Quaternionf q;
      q.x() = transform.getRotation().x();
      q.y() = transform.getRotation().y();
      q.z() = transform.getRotation().z();
      q.w() = transform.getRotation().w();
      _odom_pose.linear()=q.toRotationMatrix();
      _odom_pose.translation()=Eigen::Vector3f(transform.getOrigin().x(),
                                               transform.getOrigin().y(),
                                               transform.getOrigin().z());
    }      


    cv_bridge::CvImageConstPtr bridge;
    bridge = cv_bridge::toCvCopy(msg,msg.encoding);

  
    if (! _has_camera_matrix){
      cerr << "received: " << _image_topic << " waiting for camera matrix" << endl;
      return;
    }
    _cv_image = bridge->image.clone();
 
  
    PinholeImageMessage* img_msg = new PinholeImageMessage(_image_topic, msg.header.frame_id,  msg.header.seq, msg.header.stamp.toSec());
    img_msg->setImage(_cv_image);
    img_msg->setOffset(_camera_offset);
    img_msg->setCameraMatrix(_K);
    img_msg->setDepthScale(_depth_scale);
  
    if (_imu_interpolator && _listener) {
      Eigen::Isometry3f imu = Eigen::Isometry3f::Identity();
      Eigen::Quaternionf q_imu;
      if (!_imu_interpolator->getOrientation(q_imu, msg.header.stamp.toSec()))
        return;
      imu.linear() = q_imu.toRotationMatrix();
      if (_verbose) {
        cerr << "i";
        counter++;
        if( counter % 1024 == 0 )
          cerr << endl;
      }
      img_msg->setImu(imu);
    } else if (_listener) {
      img_msg->setOdometry(_odom_pose);
      if (_verbose)
        cerr << "o";
        counter++;
        if( counter % 1024 == 0 )
          cerr << endl;
    } else {
      if (_verbose)
        cerr << "x";
        counter++;
        if( counter % 1024 == 0 )
          cerr << endl;
    }
    _sorter->insertMessage(img_msg);
  }
Exemplo n.º 6
0
  void ViewerState::load(const std::string& filename){
    clear();
    listWidget->clear();
    graph->clear();
    graph->load(filename.c_str());

    vector<int> vertexIds(graph->vertices().size());
    int k=0;
    for (OptimizableGraph::VertexIDMap::iterator it = graph->vertices().begin(); it != graph->vertices().end(); ++it) {
      vertexIds[k++] = (it->first);
    }

    sort(vertexIds.begin(), vertexIds.end());

    listAssociations.clear();
    size_t maxCount = 20000;
    for(size_t i = 0; i < vertexIds.size() &&  i< maxCount; ++i) {
      OptimizableGraph::Vertex* _v = graph->vertex(vertexIds[i]);
      g2o::VertexSE3* v = dynamic_cast<g2o::VertexSE3*>(_v);
      if (! v)
	continue;
      OptimizableGraph::Data* d = v->userData();
      while(d) {
	RGBDData* rgbdData = dynamic_cast<RGBDData*>(d);
	if (!rgbdData){
	  d=d->next();
	  continue;
	}
	// retrieve from the rgb data the index of the parameter
	int paramIndex = rgbdData->paramIndex();
	// retrieve from the graph the parameter given the index  
	g2o::Parameter* _cameraParam = graph->parameter(paramIndex);
	// attempt a cast to a parameter camera  
	ParameterCamera* cameraParam = dynamic_cast<ParameterCamera*>(_cameraParam);
	if (! cameraParam){
	  cerr << "shall thou be damned forever" << endl;
	  return;
	}
	// yayyy we got the parameter
	Eigen::Matrix3f cameraMatrix;
	Eigen::Isometry3f sensorOffset;
	cameraMatrix.setZero();
      
	int cmax = 4;
	int rmax = 3;
	for (int c=0; c<cmax; c++){
	  for (int r=0; r<rmax; r++){
	    sensorOffset.matrix()(r,c)= cameraParam->offset()(r, c);
	    if (c<3)
	      cameraMatrix(r,c) = cameraParam->Kcam()(r, c);
	  }
	}
	char buf[1024];
	sprintf(buf,"%d",v->id());
	QString listItem(buf);
	listAssociations.push_back(rgbdData);
	listWidget->addItem(listItem);
	d=d->next();
      }
    }

  }
void PointWithNormalStatistcsGenerator::computeNormalsAndSVD(PointWithNormalVector& points, PointWithNormalSVDVector& svds, const Eigen::MatrixXi& indices, 
							     const Eigen::Matrix3f& cameraMatrix, const Eigen::Isometry3f& transform){
  _integralImage.compute(indices,points);
  int q=0;
  int outerStep = _numThreads * _step;
  PixelMapper pixelMapper;
  pixelMapper.setCameraMatrix(cameraMatrix);
  pixelMapper.setTransform(transform);
  Eigen::Isometry3f inverseTransform = transform.inverse();
  #pragma omp parallel
  {
#ifdef _PWN_USE_OPENMP_
    int threadNum = omp_get_thread_num();
#else // _PWN_USE_OPENMP_
    int threadNum = 0; 
    Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigenSolver;
#endif // _PWN_USE_OPENMP_

    for (int c=threadNum; c<indices.cols(); c+=outerStep) {
#ifdef _PWN_USE_OPENMP_
      Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigenSolver;
#endif // _PWN_USE_OPENMP_
      for (int r=0; r<indices.rows(); r+=_step, q++){
	int index  = indices(r,c);
	//cerr << "index("  << r <<"," << c << ")=" << index <<  endl;
	if (index<0)
	  continue;
	// determine the region
	PointWithNormal& point = points[index];
	PointWithNormalSVD& originalSVD = svds[index];
	PointWithNormalSVD svd;
	Eigen::Vector3f normal = point.normal();
	Eigen::Vector3f coord = pixelMapper.projectPoint(point.point()+Eigen::Vector3f(_worldRadius, _worldRadius, 0));
	svd._z=point(2);

	coord.head<2>()*=(1./coord(2));
	int dx = abs(c - coord[0]);
	int dy = abs(r - coord[1]);
	if (dx>_imageRadius)
	  dx = _imageRadius;
	if (dy>_imageRadius)
	  dy = _imageRadius;
	PointAccumulator acc = _integralImage.getRegion(c-dx, c+dx, r-dy, r+dy);
	svd._mean=point.point();
	if (acc.n()>_minPoints){
	  Eigen::Vector3f mean = acc.mean();
	  svd._mean = mean;
	  svd._n = acc.n();
	  Eigen::Matrix3f cov  = acc.covariance();
	  eigenSolver.compute(cov);
	  svd._U=eigenSolver.eigenvectors();
	  svd._singularValues=eigenSolver.eigenvalues();
	  if (svd._singularValues(0) <0)
	    svd._singularValues(0) = 0;
	  /*
	    cerr << "\t svd.singularValues():" << svd.singularValues() << endl;
	    cerr << "\t svd.U():" << endl << svd.U() << endl;
	    //cerr << "\t svd.curvature():" << svd.curvature() << endl;
	
	    */
	

	  normal = eigenSolver.eigenvectors().col(0).normalized();
	  if (normal.dot(inverseTransform * mean) > 0.0f)
	    normal =-normal;
	  svd.updateCurvature();
	  //cerr << "n(" << index << ") c:"  << svd.curvature() << endl << point.tail<3>() << endl;
	  if (svd.curvature()>_maxCurvature){
	    //cerr << "region: " << c-dx << " " <<  c+dx << " " <<  r-dx << " " << r+dx << " points: " << acc.n() << endl;
	    normal.setZero();
	  } 
	} else {
	  normal.setZero();
	  svd = PointWithNormalSVD();
	}
	if (svd.n() > originalSVD.n()){
	  originalSVD = svd;
	  point.setNormal(normal);
	}
      } 
    }
  }
}
int main (int argc, char** argv) {
    // Handle input
    float pointSize;
    float pointStep;
    float alpha;
    int applyTransform;
    int step;
    string logFilename;
    string configFilename;
    float di_scaleFactor;
    float scale;

    g2o::CommandArgs arg;
    arg.param("vz_pointSize", pointSize, 1.0f, "Size of the points where are visualized");
    arg.param("vz_transform", applyTransform, 1, "Choose if you want to apply the absolute transform of the point clouds");
    arg.param("vz_step", step, 1, "Visualize a point cloud each vz_step point clouds");
    arg.param("vz_alpha", alpha, 1.0f, "Alpha channel value used for the color points");
    arg.param("vz_pointStep", pointStep, 1, "Step at which point are drawn");
    arg.param("vz_scale", scale, 2, "Depth image size reduction factor");
    arg.param("di_scaleFactor", di_scaleFactor, 0.001f, "Scale factor to apply to convert depth images in meters");
    arg.paramLeftOver("configFilename", configFilename, "", "Configuration filename", true);
    arg.paramLeftOver("logFilename", logFilename, "", "Log filename", true);
    arg.parseArgs(argc, argv);

    // Create GUI
    QApplication application(argc,argv);
    QWidget *mainWindow = new QWidget();
    mainWindow->setWindowTitle("pwn_tracker_log_viewer");
    QHBoxLayout *hlayout = new QHBoxLayout();
    mainWindow->setLayout(hlayout);
    QVBoxLayout *vlayout = new QVBoxLayout();
    hlayout->addItem(vlayout);
    QVBoxLayout *vlayout2 = new QVBoxLayout();
    hlayout->addItem(vlayout2);
    hlayout->setStretch(1, 1);

    QListWidget* listWidget = new QListWidget(mainWindow);
    listWidget->setSelectionMode(QAbstractItemView::MultiSelection);
    vlayout->addWidget(listWidget);
    PWNQGLViewer* viewer = new PWNQGLViewer(mainWindow);
    vlayout2->addWidget(viewer);
    Eigen::Isometry3f T;
    T.setIdentity();
    T.matrix().row(3) << 0.0f, 0.0f, 0.0f, 1.0f;

    // Read config file
    cout << "Loading config file..." << endl;
    Aligner *aligner;
    DepthImageConverter *converter;
    std::vector<Serializable*> instances = readConfig(aligner, converter, configFilename.c_str());
    converter->projector()->scale(1.0f/scale);
    cout << "... done" << endl;

    // Read and parse log file
    std::vector<boss::Serializable*> objects;
    std::vector<PwnTrackerFrame*> trackerFrames;
    std::vector<PwnTrackerRelation*> trackerRelations;
    Deserializer des;
    des.setFilePath(logFilename);
    cout << "Loading log file..." << endl;
    load(trackerFrames, trackerRelations, objects, des, step);
    cout << "... done" << endl;

    // Load the drawable list with the PwnTrackerFrame objects
    std::vector<Frame*> pointClouds;
    pointClouds.resize(trackerFrames.size());
    Frame *dummyFrame = 0;
    std::fill(pointClouds.begin(), pointClouds.end(), dummyFrame);
    for(size_t i = 0; i < trackerFrames.size(); i++) {
        PwnTrackerFrame *pwnTrackerFrame = trackerFrames[i];
        char nummero[1024];
        sprintf(nummero, "%05d", (int)i);
        listWidget->addItem(QString(nummero));
        QListWidgetItem *lastItem = listWidget->item(listWidget->count() - 1);

        Isometry3f transform = Isometry3f::Identity();
        if(applyTransform) {
            isometry3d2f(transform, pwnTrackerFrame->transform());
            transform = transform*pwnTrackerFrame->sensorOffset;
        }
        transform.matrix().row(3) << 0.0f, 0.0f, 0.0f, 1.0f;

        GLParameterFrame *frameParams = new GLParameterFrame();
        frameParams->setStep(pointStep);
        frameParams->setShow(false);
        DrawableFrame* drawableFrame = new DrawableFrame(transform, frameParams, pointClouds[i]);
        viewer->addDrawable(drawableFrame);
    }

    // Manage GUI
    viewer->init();
    mainWindow->show();
    viewer->show();
    listWidget->show();
    viewer->setAxisIsDrawn(true);
    bool selectionChanged = false;
    QListWidgetItem *item = 0;
    DepthImage depthImage;
    DepthImage scaledDepthImage;
    while (mainWindow->isVisible()) {
        selectionChanged = false;
        for (int i = 0; i<listWidget->count(); i++) {
            item = 0;
            item = listWidget->item(i);
            DrawableFrame *drawableFrame = dynamic_cast<DrawableFrame*>(viewer->drawableList()[i]);
            if (item && item->isSelected()) {
                if(!drawableFrame->parameter()->show()) {
                    drawableFrame->parameter()->setShow(true);
                    selectionChanged = true;
                }
                if(pointClouds[i] == 0) {
                    pointClouds[i] = new Frame();
                    boss_map::ImageBLOB* fromDepthBlob = trackerFrames[i]->depthImage.get();
                    DepthImage depthImage;
                    depthImage.fromCvMat(fromDepthBlob->cvImage());
                    DepthImage::scale(scaledDepthImage, depthImage, scale);
                    converter->compute(*pointClouds[i], scaledDepthImage);
                    drawableFrame->setFrame(pointClouds[i]);
                    delete fromDepthBlob;
                }
            } else {
                drawableFrame->parameter()->setShow(false);
                selectionChanged = true;
            }
        }
        if (selectionChanged)
            viewer->updateGL();

        application.processEvents();
    }

    return 0;
}
Exemplo n.º 9
0
BlockFitter::Result BlockFitter::
go() {
  Result result;
  result.mSuccess = false;

  if (mCloud->size() < 100) return result;

  // voxelize
  LabeledCloud::Ptr cloud(new LabeledCloud());
  pcl::VoxelGrid<pcl::PointXYZL> voxelGrid;
  voxelGrid.setInputCloud(mCloud);
  voxelGrid.setLeafSize(mDownsampleResolution, mDownsampleResolution,
                        mDownsampleResolution);
  voxelGrid.filter(*cloud);
  for (int i = 0; i < (int)cloud->size(); ++i) cloud->points[i].label = i;

  if (mDebug) {
    std::cout << "Original cloud size " << mCloud->size() << std::endl;
    std::cout << "Voxelized cloud size " << cloud->size() << std::endl;
    pcl::io::savePCDFileBinary("cloud_full.pcd", *cloud);
  }

  if (cloud->size() < 100) return result;

  // pose
  cloud->sensor_origin_.head<3>() = mOrigin;
  cloud->sensor_origin_[3] = 1;
  Eigen::Vector3f rz = mLookDir;
  Eigen::Vector3f rx = rz.cross(Eigen::Vector3f::UnitZ());
  Eigen::Vector3f ry = rz.cross(rx);
  Eigen::Matrix3f rotation;
  rotation.col(0) = rx.normalized();
  rotation.col(1) = ry.normalized();
  rotation.col(2) = rz.normalized();
  Eigen::Isometry3f pose = Eigen::Isometry3f::Identity();
  pose.linear() = rotation;
  pose.translation() = mOrigin;

  // ground removal
  if (mRemoveGround) {
    Eigen::Vector4f groundPlane;

    // filter points
    float minZ = mMinGroundZ;
    float maxZ = mMaxGroundZ;
    if ((minZ > 10000) && (maxZ > 10000)) {
      std::vector<float> zVals(cloud->size());
      for (int i = 0; i < (int)cloud->size(); ++i) {
        zVals[i] = cloud->points[i].z;
      }
      std::sort(zVals.begin(), zVals.end());
      minZ = zVals[0]-0.1;
      maxZ = minZ + 0.5;
    }
    LabeledCloud::Ptr tempCloud(new LabeledCloud());
    for (int i = 0; i < (int)cloud->size(); ++i) {
      const Eigen::Vector3f& p = cloud->points[i].getVector3fMap();
      if ((p[2] < minZ) || (p[2] > maxZ)) continue;
      tempCloud->push_back(cloud->points[i]);
    }

    // downsample
    voxelGrid.setInputCloud(tempCloud);
    voxelGrid.setLeafSize(0.1, 0.1, 0.1);
    voxelGrid.filter(*tempCloud);

    if (tempCloud->size() < 100) return result;

    // find ground plane
    std::vector<Eigen::Vector3f> pts(tempCloud->size());
    for (int i = 0; i < (int)tempCloud->size(); ++i) {
      pts[i] = tempCloud->points[i].getVector3fMap();
    }
    const float kGroundPlaneDistanceThresh = 0.01; // TODO: param
    PlaneFitter planeFitter;
    planeFitter.setMaxDistance(kGroundPlaneDistanceThresh);
    planeFitter.setRefineUsingInliers(true);
    auto res = planeFitter.go(pts);
    groundPlane = res.mPlane;
    if (groundPlane[2] < 0) groundPlane = -groundPlane;
    if (mDebug) {
      std::cout << "dominant plane: " << groundPlane.transpose() << std::endl;
      std::cout << "  inliers: " << res.mInliers.size() << std::endl;
    }

    if (std::acos(groundPlane[2]) > 30*M_PI/180) {
      std::cout << "error: ground plane not found!" << std::endl;
      std::cout << "proceeding with full segmentation (may take a while)..." <<
        std::endl;
    }

    else {
      // compute convex hull
      result.mGroundPlane = groundPlane;
      {
        tempCloud.reset(new LabeledCloud());
        for (int i = 0; i < (int)cloud->size(); ++i) {
          Eigen::Vector3f p = cloud->points[i].getVector3fMap();
          float dist = groundPlane.head<3>().dot(p) + groundPlane[3];
          if (std::abs(dist) > kGroundPlaneDistanceThresh) continue;
          p -= (groundPlane.head<3>()*dist);
          pcl::PointXYZL cloudPt;
          cloudPt.getVector3fMap() = p;
          tempCloud->push_back(cloudPt);
        }
        pcl::ConvexHull<pcl::PointXYZL> chull;
        pcl::PointCloud<pcl::PointXYZL> hull;
        chull.setInputCloud(tempCloud);
        chull.reconstruct(hull);
        result.mGroundPolygon.resize(hull.size());
        for (int i = 0; i < (int)hull.size(); ++i) {
          result.mGroundPolygon[i] = hull[i].getVector3fMap();
        }
      }

      // remove points below or near ground
      tempCloud.reset(new LabeledCloud());
      for (int i = 0; i < (int)cloud->size(); ++i) {
        Eigen::Vector3f p = cloud->points[i].getVector3fMap();
        float dist = p.dot(groundPlane.head<3>()) + groundPlane[3];
        if ((dist < mMinHeightAboveGround) ||
            (dist > mMaxHeightAboveGround)) continue;
        float range = (p-mOrigin).norm();
        if (range > mMaxRange) continue;
        tempCloud->push_back(cloud->points[i]);
      }
      std::swap(tempCloud, cloud);
      if (mDebug) {
        std::cout << "Filtered cloud size " << cloud->size() << std::endl;
      }
    }
  }

  // normal estimation
  auto t0 = std::chrono::high_resolution_clock::now();
  if (mDebug) {
    std::cout << "computing normals..." << std::flush;
  }
  RobustNormalEstimator normalEstimator;
  normalEstimator.setMaxEstimationError(0.01);
  normalEstimator.setRadius(0.1);
  normalEstimator.setMaxCenterError(0.02);
  normalEstimator.setMaxIterations(100);
  NormalCloud::Ptr normals(new NormalCloud());
  normalEstimator.go(cloud, *normals);
  if (mDebug) {
    auto t1 = std::chrono::high_resolution_clock::now();
    auto dt = std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0);
    std::cout << "finished in " << dt.count()/1e3 << " sec" << std::endl;
  }

  // filter non-horizontal points
  const float maxNormalAngle = mMaxAngleFromHorizontal*M_PI/180;
  LabeledCloud::Ptr tempCloud(new LabeledCloud());
  NormalCloud::Ptr tempNormals(new NormalCloud());
  for (int i = 0; i < (int)normals->size(); ++i) {
    const auto& norm = normals->points[i];
    Eigen::Vector3f normal(norm.normal_x, norm.normal_y, norm.normal_z);
    float angle = std::acos(normal[2]);
    if (angle > maxNormalAngle) continue;
    tempCloud->push_back(cloud->points[i]);
    tempNormals->push_back(normals->points[i]);
  }
  std::swap(tempCloud, cloud);
  std::swap(tempNormals, normals);

  if (mDebug) {
    std::cout << "Horizontal points remaining " << cloud->size() << std::endl;
    pcl::io::savePCDFileBinary("cloud.pcd", *cloud);
    pcl::io::savePCDFileBinary("robust_normals.pcd", *normals);
  }

  // plane segmentation
  t0 = std::chrono::high_resolution_clock::now();
  if (mDebug) {
    std::cout << "segmenting planes..." << std::flush;
  }
  PlaneSegmenter segmenter;
  segmenter.setData(cloud, normals);
  segmenter.setMaxError(0.05);
  segmenter.setMaxAngle(5);
  segmenter.setMinPoints(100);
  PlaneSegmenter::Result segmenterResult = segmenter.go();
  if (mDebug) {
    auto t1 = std::chrono::high_resolution_clock::now();
    auto dt = std::chrono::duration_cast<std::chrono::milliseconds>(t1-t0);
    std::cout << "finished in " << dt.count()/1e3 << " sec" << std::endl;

    std::ofstream ofs("labels.txt");
    for (const int lab : segmenterResult.mLabels) {
      ofs << lab << std::endl;
    }
    ofs.close();

    ofs.open("planes.txt");
    for (auto it : segmenterResult.mPlanes) {
      auto& plane = it.second;
      ofs << it.first << " " << plane.transpose() << std::endl;
    }
    ofs.close();
  }

  // create point clouds
  std::unordered_map<int,std::vector<Eigen::Vector3f>> cloudMap;
  for (int i = 0; i < (int)segmenterResult.mLabels.size(); ++i) {
    int label = segmenterResult.mLabels[i];
    if (label <= 0) continue;
    cloudMap[label].push_back(cloud->points[i].getVector3fMap());
  }
  struct Plane {
    MatrixX3f mPoints;
    Eigen::Vector4f mPlane;
  };
  std::vector<Plane> planes;
  planes.reserve(cloudMap.size());
  for (auto it : cloudMap) {
    int n = it.second.size();
    Plane plane;
    plane.mPoints.resize(n,3);
    for (int i = 0; i < n; ++i) plane.mPoints.row(i) = it.second[i];
    plane.mPlane = segmenterResult.mPlanes[it.first];
    planes.push_back(plane);
  }

  std::vector<RectangleFitter::Result> results;
  for (auto& plane : planes) {
    RectangleFitter fitter;
    fitter.setDimensions(mBlockDimensions.head<2>());
    fitter.setAlgorithm((RectangleFitter::Algorithm)mRectangleFitAlgorithm);
    fitter.setData(plane.mPoints, plane.mPlane);
    auto result = fitter.go();
    results.push_back(result);
  }

  if (mDebug) {
    std::ofstream ofs("boxes.txt");
    for (int i = 0; i < (int)results.size(); ++i) {
      auto& res = results[i];
      for (auto& p : res.mPolygon) {
        ofs << i << " " << p.transpose() << std::endl;
      }
    }
    ofs.close();

    ofs.open("hulls.txt");
    for (int i = 0; i < (int)results.size(); ++i) {
      auto& res = results[i];
      for (auto& p : res.mConvexHull) {
        ofs << i << " " << p.transpose() << std::endl;
      }
    }
    ofs.close();

    ofs.open("poses.txt");
    for (int i = 0; i < (int)results.size(); ++i) {
      auto& res = results[i];
      auto transform = res.mPose;
      ofs << transform.matrix() << std::endl;
    }
    ofs.close();
  }

  for (int i = 0; i < (int)results.size(); ++i) {
    const auto& res = results[i];
    if (mBlockDimensions.head<2>().norm() > 1e-5) {
      float areaRatio = mBlockDimensions.head<2>().prod()/res.mConvexArea;
      if ((areaRatio < mAreaThreshMin) ||
          (areaRatio > mAreaThreshMax)) continue;
    }

    Block block;
    block.mSize << res.mSize[0], res.mSize[1], mBlockDimensions[2];
    block.mPose = res.mPose;
    block.mPose.translation() -=
      block.mPose.rotation().col(2)*mBlockDimensions[2]/2;
    block.mHull = res.mConvexHull;
    result.mBlocks.push_back(block);
  }
  if (mDebug) {
    std::cout << "Surviving blocks: " << result.mBlocks.size() << std::endl;
  }

  result.mSuccess = true;
  return result;
}
Exemplo n.º 10
0
Eigen::Matrix3f Homography::calcHomography( const Eigen::Isometry3f &trans, const Eigen::Vector3f &n, float dist ) const
{
    return calcHomography( trans.rotation(), trans.translation(), n, dist );
}
Exemplo n.º 11
0
gtsam::Pose3 Convert(const Eigen::Isometry3f& iso)
{
    gtsam::Matrix3 mat = iso.linear().cast<double>();
    Eigen::Vector3d trans = iso.translation().cast<double>();
    return gtsam::Pose3(mat, gtsam::Point3(trans));
}
Exemplo n.º 12
0
void RGBDOdometry::getIncrementalTransformation(Eigen::Vector3f & trans,
                                                Eigen::Matrix<float, 3, 3, Eigen::RowMajor> & rot,
                                                const bool & rgbOnly,
                                                const float & icpWeight,
                                                const bool & pyramid,
                                                const bool & fastOdom,
                                                const bool & so3)
{
    bool icp = !rgbOnly && icpWeight > 0;
    bool rgb = rgbOnly || icpWeight < 100;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rprev = rot;
    Eigen::Vector3f tprev = trans;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rcurr = Rprev;
    Eigen::Vector3f tcurr = tprev;

    if(rgb)
    {
        for(int i = 0; i < NUM_PYRS; i++)
        {
            computeDerivativeImages(nextImage[i], nextdIdx[i], nextdIdy[i]);
        }
    }

    Eigen::Matrix<double, 3, 3, Eigen::RowMajor> resultR = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Identity();

    if(so3)
    {
        int pyramidLevel = 2;

        Eigen::Matrix<float, 3, 3, Eigen::RowMajor> R_lr = Eigen::Matrix<float, 3, 3, Eigen::RowMajor>::Identity();

        Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Zero();

        K(0, 0) = intr(pyramidLevel).fx;
        K(1, 1) = intr(pyramidLevel).fy;
        K(0, 2) = intr(pyramidLevel).cx;
        K(1, 2) = intr(pyramidLevel).cy;
        K(2, 2) = 1;

        float lastError = std::numeric_limits<float>::max() / 2;
        float lastCount = std::numeric_limits<float>::max() / 2;

        Eigen::Matrix<double, 3, 3, Eigen::RowMajor> lastResultR = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Identity();

        for(int i = 0; i < 10; i++)
        {
            Eigen::Matrix<float, 3, 3, Eigen::RowMajor> jtj;
            Eigen::Matrix<float, 3, 1> jtr;

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> homography = K * resultR * K.inverse();

            mat33 imageBasis;
            memcpy(&imageBasis.data[0], homography.cast<float>().eval().data(), sizeof(mat33));

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K_inv = K.inverse();
            mat33 kinv;
            memcpy(&kinv.data[0], K_inv.cast<float>().eval().data(), sizeof(mat33));

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K_R_lr = K * resultR;
            mat33 krlr;
            memcpy(&krlr.data[0], K_R_lr.cast<float>().eval().data(), sizeof(mat33));

            float residual[2];

            TICK("so3Step");
            so3Step(lastNextImage[pyramidLevel],
                    nextImage[pyramidLevel],
                    imageBasis,
                    kinv,
                    krlr,
                    sumDataSO3,
                    outDataSO3,
                    jtj.data(),
                    jtr.data(),
                    &residual[0],
                    GPUConfig::getInstance().so3StepThreads,
                    GPUConfig::getInstance().so3StepBlocks);
            TOCK("so3Step");

            lastSO3Error = sqrt(residual[0]) / residual[1];
            lastSO3Count = residual[1];

            //Converged
            if(lastSO3Error < lastError && lastCount == lastSO3Count)
            {
                break;
            }
            else if(lastSO3Error > lastError + 0.001) //Diverging
            {
                lastSO3Error = lastError;
                lastSO3Count = lastCount;
                resultR = lastResultR;
                break;
            }

            lastError = lastSO3Error;
            lastCount = lastSO3Count;
            lastResultR = resultR;

            Eigen::Vector3f delta = jtj.ldlt().solve(jtr);

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> rotUpdate = OdometryProvider::rodrigues(delta.cast<double>());

            R_lr = rotUpdate.cast<float>() * R_lr;

            for(int x = 0; x < 3; x++)
            {
                for(int y = 0; y < 3; y++)
                {
                    resultR(x, y) = R_lr(x, y);
                }
            }
        }
    }

    iterations[0] = fastOdom ? 3 : 10;
    iterations[1] = pyramid ? 5 : 0;
    iterations[2] = pyramid ? 4 : 0;

    Eigen::Matrix<float, 3, 3, Eigen::RowMajor> Rprev_inv = Rprev.inverse();
    mat33 device_Rprev_inv = Rprev_inv;
    float3 device_tprev = *reinterpret_cast<float3*>(tprev.data());

    Eigen::Matrix<double, 4, 4, Eigen::RowMajor> resultRt = Eigen::Matrix<double, 4, 4, Eigen::RowMajor>::Identity();

    if(so3)
    {
        for(int x = 0; x < 3; x++)
        {
            for(int y = 0; y < 3; y++)
            {
                resultRt(x, y) = resultR(x, y);
            }
        }
    }

    for(int i = NUM_PYRS - 1; i >= 0; i--)
    {
        if(rgb)
        {
            projectToPointCloud(lastDepth[i], pointClouds[i], intr, i);
        }

        Eigen::Matrix<double, 3, 3, Eigen::RowMajor> K = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>::Zero();

        K(0, 0) = intr(i).fx;
        K(1, 1) = intr(i).fy;
        K(0, 2) = intr(i).cx;
        K(1, 2) = intr(i).cy;
        K(2, 2) = 1;

        lastRGBError = std::numeric_limits<float>::max();

        for(int j = 0; j < iterations[i]; j++)
        {
            Eigen::Matrix<double, 4, 4, Eigen::RowMajor> Rt = resultRt.inverse();

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> R = Rt.topLeftCorner(3, 3);

            Eigen::Matrix<double, 3, 3, Eigen::RowMajor> KRK_inv = K * R * K.inverse();
            mat33 krkInv;
            memcpy(&krkInv.data[0], KRK_inv.cast<float>().eval().data(), sizeof(mat33));

            Eigen::Vector3d Kt = Rt.topRightCorner(3, 1);
            Kt = K * Kt;
            float3 kt = {(float)Kt(0), (float)Kt(1), (float)Kt(2)};

            int sigma = 0;
            int rgbSize = 0;

            if(rgb)
            {
                TICK("computeRgbResidual");
                computeRgbResidual(pow(minimumGradientMagnitudes[i], 2.0) / pow(sobelScale, 2.0),
                                   nextdIdx[i],
                                   nextdIdy[i],
                                   lastDepth[i],
                                   nextDepth[i],
                                   lastImage[i],
                                   nextImage[i],
                                   corresImg[i],
                                   sumResidualRGB,
                                   maxDepthDeltaRGB,
                                   kt,
                                   krkInv,
                                   sigma,
                                   rgbSize,
                                   GPUConfig::getInstance().rgbResThreads,
                                   GPUConfig::getInstance().rgbResBlocks);
                TOCK("computeRgbResidual");
            }

            float sigmaVal = std::sqrt((float)sigma / rgbSize == 0 ? 1 : rgbSize);
            float rgbError = std::sqrt(sigma) / (rgbSize == 0 ? 1 : rgbSize);

            if(rgbOnly && rgbError > lastRGBError)
            {
                break;
            }

            lastRGBError = rgbError;
            lastRGBCount = rgbSize;

            if(rgbOnly)
            {
                sigmaVal = -1; //Signals the internal optimisation to weight evenly
            }

            Eigen::Matrix<float, 6, 6, Eigen::RowMajor> A_icp;
            Eigen::Matrix<float, 6, 1> b_icp;

            mat33 device_Rcurr = Rcurr;
            float3 device_tcurr = *reinterpret_cast<float3*>(tcurr.data());

            DeviceArray2D<float>& vmap_curr = vmaps_curr_[i];
            DeviceArray2D<float>& nmap_curr = nmaps_curr_[i];

            DeviceArray2D<float>& vmap_g_prev = vmaps_g_prev_[i];
            DeviceArray2D<float>& nmap_g_prev = nmaps_g_prev_[i];

            float residual[2];

            if(icp)
            {
                TICK("icpStep");
                icpStep(device_Rcurr,
                        device_tcurr,
                        vmap_curr,
                        nmap_curr,
                        device_Rprev_inv,
                        device_tprev,
                        intr(i),
                        vmap_g_prev,
                        nmap_g_prev,
                        distThres_,
                        angleThres_,
                        sumDataSE3,
                        outDataSE3,
                        A_icp.data(),
                        b_icp.data(),
                        &residual[0],
                        GPUConfig::getInstance().icpStepThreads,
                        GPUConfig::getInstance().icpStepBlocks);
                TOCK("icpStep");
            }

            lastICPError = sqrt(residual[0]) / residual[1];
            lastICPCount = residual[1];

            Eigen::Matrix<float, 6, 6, Eigen::RowMajor> A_rgbd;
            Eigen::Matrix<float, 6, 1> b_rgbd;

            if(rgb)
            {
                TICK("rgbStep");
                rgbStep(corresImg[i],
                        sigmaVal,
                        pointClouds[i],
                        intr(i).fx,
                        intr(i).fy,
                        nextdIdx[i],
                        nextdIdy[i],
                        sobelScale,
                        sumDataSE3,
                        outDataSE3,
                        A_rgbd.data(),
                        b_rgbd.data(),
                        GPUConfig::getInstance().rgbStepThreads,
                        GPUConfig::getInstance().rgbStepBlocks);
                TOCK("rgbStep");
            }

            Eigen::Matrix<double, 6, 1> result;
            Eigen::Matrix<double, 6, 6, Eigen::RowMajor> dA_rgbd = A_rgbd.cast<double>();
            Eigen::Matrix<double, 6, 6, Eigen::RowMajor> dA_icp = A_icp.cast<double>();
            Eigen::Matrix<double, 6, 1> db_rgbd = b_rgbd.cast<double>();
            Eigen::Matrix<double, 6, 1> db_icp = b_icp.cast<double>();

            if(icp && rgb)
            {
                double w = icpWeight;
                lastA = dA_rgbd + w * w * dA_icp;
                lastb = db_rgbd + w * db_icp;
                result = lastA.ldlt().solve(lastb);
            }
            else if(icp)
            {
                lastA = dA_icp;
                lastb = db_icp;
                result = lastA.ldlt().solve(lastb);
            }
            else if(rgb)
            {
                lastA = dA_rgbd;
                lastb = db_rgbd;
                result = lastA.ldlt().solve(lastb);
            }
            else
            {
                assert(false && "Control shouldn't reach here");
            }

            Eigen::Isometry3f rgbOdom;

            OdometryProvider::computeUpdateSE3(resultRt, result, rgbOdom);

            Eigen::Isometry3f currentT;
            currentT.setIdentity();
            currentT.rotate(Rprev);
            currentT.translation() = tprev;

            currentT = currentT * rgbOdom.inverse();

            tcurr = currentT.translation();
            Rcurr = currentT.rotation();
        }
    }

    if(rgb && (tcurr - tprev).norm() > 0.3)
    {
        Rcurr = Rprev;
        tcurr = tprev;
    }

    if(so3)
    {
        for(int i = 0; i < NUM_PYRS; i++)
        {
            std::swap(lastNextImage[i], nextImage[i]);
        }
    }

    trans = tcurr;
    rot = Rcurr;
}
Exemplo n.º 13
0
  void Merger::merge(Cloud *cloud, Eigen::Isometry3f transform) {
    assert(_indexImage.rows > 0 && _indexImage.cols > 0 && "Merger: _indexImage has zero size");  
    assert(_depthImageConverter  && "Merger: missing _depthImageConverter");  
    assert(_depthImageConverter->projector()  && "Merger: missing projector in _depthImageConverter");  

    PointProjector *pointProjector = _depthImageConverter->projector();
    Eigen::Isometry3f oldTransform = pointProjector->transform();
    
    pointProjector->setTransform(transform);
    pointProjector->project(_indexImage, 
			    _depthImage, 
			    cloud->points());

    int target = 0;
    int distance = 0;
    _collapsedIndices.resize(cloud->points().size());
    std::fill(_collapsedIndices.begin(), _collapsedIndices.end(), -1);

    int killed = 0;
    int currentIndex = 0;
    for(size_t i = 0; i < cloud->points().size(); currentIndex++ ,i++) {
      const Point currentPoint = cloud->points()[i];
      // const Normal currentNormal = cloud->normals()[i];

      int r = -1, c = -1;
      float depth = 0.0f;
      pointProjector->project(c, r, depth, currentPoint);
      if(depth < 0 || depth > _maxPointDepth || 
	 r < 0 || r >= _depthImage.rows || 
	 c < 0 || c >= _depthImage.cols) {
	distance++;
	continue;
      }
        
      float &targetZ = _depthImage(r, c);
      int targetIndex = _indexImage(r, c);
      if(targetIndex < 0) {
	target++;
	continue;
      }
      // const Normal &targetNormal = cloud->normals().at(targetIndex);

      Eigen::Vector4f viewPointDirection = transform.matrix().col(3)-currentPoint;
      viewPointDirection(3)=0;
      if(targetIndex == currentIndex) {
	_collapsedIndices[currentIndex] = currentIndex;
      } 
      else if(fabs(depth - targetZ) < _distanceThreshold /*&& 
	      currentNormal.dot(targetNormal) > _normalThreshold &&
	      (viewPointDirection.dot(targetNormal)>cos(0))*/ ) {
	Gaussian3f &targetGaussian = cloud->gaussians()[targetIndex];
	Gaussian3f &currentGaussian = cloud->gaussians()[currentIndex];
	targetGaussian.addInformation(currentGaussian);
	_collapsedIndices[currentIndex] = targetIndex;
	killed++;
      }
    }

    int murdered = 0;
    int k = 0;  
    for(size_t i = 0; i < _collapsedIndices.size(); i++) {
      int collapsedIndex = _collapsedIndices[i];
      if(collapsedIndex == (int)i) {
	cloud->points()[i].head<3>() = cloud->gaussians()[i].mean();
      }
      if(collapsedIndex < 0 || collapsedIndex == (int)i) {
	cloud->points()[k] = cloud->points()[i];
	cloud->normals()[k] = cloud->normals()[i];
	cloud->stats()[k] = cloud->stats()[i];
	cloud->pointInformationMatrix()[k] = cloud->pointInformationMatrix()[i];
	cloud->normalInformationMatrix()[k] = cloud->normalInformationMatrix()[i];
	cloud->gaussians()[k] = cloud->gaussians()[i];
	if(cloud->rgbs().size())
	  cloud->rgbs()[k]=cloud->rgbs()[i];
	k++;
      } 
      else {
	murdered ++;
      }
    }    
    int originalSize = cloud->points().size();
    
    // Kill the leftover points
    cloud->points().resize(k);
    cloud->normals().resize(k);
    cloud->stats().resize(k);
    cloud->pointInformationMatrix().resize(k);
    cloud->normalInformationMatrix().resize(k);
    if(cloud->rgbs().size())
      cloud->rgbs().resize(k);
    std::cout << "[INFO]: number of suppressed points " << murdered << std::endl;
    std::cout << "[INFO]: resized cloud from " << originalSize << " to " << k << " points" <<std::endl;
    
    pointProjector->setTransform(oldTransform);
  }
Exemplo n.º 14
0
  void Aligner::align() {
    assert(_projector && "Aligner: missing _projector");
    assert(_linearizer && "Aligner: missing _linearizer");
    assert(_correspondenceFinder && "Aligner: missing _correspondenceFinder");
    assert(_referenceCloud && "Aligner: missing _referenceCloud");
    assert(_currentCloud && "Aligner: missing _currentCloud");

    struct timeval tvStart, tvEnd;
    gettimeofday(&tvStart, 0);

    // The current points are seen from the frame of the sensor
    _projector->setTransform(_currentSensorOffset);
    _projector->project(_correspondenceFinder->currentIndexImage(),
			_correspondenceFinder->currentDepthImage(),
			_currentCloud->points());
    _T = _initialGuess;
        
    for(int i = 0; i < _outerIterations; i++) {
      /************************************************************************
       *                         Correspondence Computation                   *
       ************************************************************************/

      // Compute the indices of the current scene from the point of view of the sensor
      _T.matrix().row(3) << 0.0f, 0.0f, 0.0f, 1.0f;
      _projector->setTransform(_T * _referenceSensorOffset);
      _projector->project(_correspondenceFinder->referenceIndexImage(),
			  _correspondenceFinder->referenceDepthImage(),
			  _referenceCloud->points());
    
      // Correspondences computation.  
      _correspondenceFinder->compute(*_referenceCloud, *_currentCloud, _T.inverse());
 
      /************************************************************************
       *                            Alignment                                 *
       ************************************************************************/
      Eigen::Isometry3f invT = _T.inverse();
      for(int k = 0; k < _innerIterations; k++) {      
	invT.matrix().block<1, 4>(3, 0) << 0.0f, 0.0f, 0.0f, 1.0f;
	Matrix6f H;
	Vector6f b;

	_linearizer->setT(invT);
	_linearizer->update();
	H = _linearizer->H() + Matrix6f::Identity();
	b = _linearizer->b();
	H += Matrix6f::Identity() * 1000.0f;

	// Add the priors
	for(size_t j = 0; j < _priors.size(); j++) {
	  const SE3Prior *prior = _priors[j];
	  Vector6f priorError = prior->error(invT);
	  Matrix6f priorJacobian = prior->jacobian(invT);
	  Matrix6f priorInformationRemapped = prior->errorInformation(invT);

	  Matrix6f Hp = priorJacobian.transpose() * priorInformationRemapped * priorJacobian;
	  Vector6f bp = priorJacobian.transpose() * priorInformationRemapped * priorError;

	  H += Hp;
	  b += bp;
	}
      
	Vector6f dx = H.ldlt().solve(-b);
	Eigen::Isometry3f dT = v2t(dx);
	invT = dT * invT;
      }
      
      _T = invT.inverse();
      _T = v2t(t2v(_T));
      _T.matrix().block<1, 4>(3, 0) << 0.0f, 0.0f, 0.0f, 1.0f;
    }

    gettimeofday(&tvEnd, 0);
    double tStart = tvStart.tv_sec * 1000.0f + tvStart.tv_usec * 0.001f;
    double tEnd = tvEnd.tv_sec * 1000.0f + tvEnd.tv_usec * 0.001f;
    _totalTime = tEnd - tStart;
    _error = _linearizer->error();
    _inliers = _linearizer->inliers();

    _computeStatistics(_mean, _omega, _translationalEigenRatio, _rotationalEigenRatio);
    if (_rotationalEigenRatio > _rotationalMinEigenRatio || 
	_translationalEigenRatio > _translationalMinEigenRatio) {
      if (_debug) {
	cerr << endl;
	cerr << "************** WARNING SOLUTION MIGHT BE INVALID (eigenratio failure) **************" << endl;
	cerr << "tr: " << _translationalEigenRatio << " rr: " << _rotationalEigenRatio << endl;
	cerr << "************************************************************************************" << endl;
      }
    } 
    else {
      if (_debug) {
	cerr << "************** I FOUND SOLUTION VALID SOLUTION   (eigenratio ok) *******************" << endl;
	cerr << "tr: " << _translationalEigenRatio << " rr: " << _rotationalEigenRatio << endl;
	cerr << "************************************************************************************" << endl;
      }
    }
    if (_debug) {
      cout << "Solution statistics in (t, mq): " << endl;
      cout << "mean: " << _mean.transpose() << endl;
      cout << "Omega: " << endl;
      cout << _omega << endl;
    }
  }
  void TwoDepthImageAlignerNode::processNode(MapNode* node_){
   cerr << "START ITERATION" << endl;
   std::vector<Serializable*> crearedObjects;
    SensingFrameNode* sensingFrame = dynamic_cast<SensingFrameNode*>(node_);
    if (! sensingFrame)
      return;
    
    PinholeImageData* image = dynamic_cast<PinholeImageData*>(sensingFrame->sensorData(_topic));
    if (! image)
      return;
    cerr << "got image"  << endl;
    
    Eigen::Isometry3d _sensorOffset = _config->sensorOffset(image->baseSensor());
    
    // cerr << "sensorOffset: " << endl;
    // cerr << _sensorOffset.matrix() << endl;

    Eigen::Isometry3f sensorOffset;
    convertScalar(sensorOffset,_sensorOffset);
    sensorOffset.matrix().row(3) << 0,0,0,1;

    Eigen::Matrix3d _cameraMatrix = image->cameraMatrix();
    
    ImageBLOB* blob = image->imageBlob().get();
    
    DepthImage depthImage;
    depthImage.fromCvMat(blob->cvImage());
    int r=depthImage.rows();
    int c=depthImage.cols();
    
    DepthImage scaledImage;
    Eigen::Matrix3f cameraMatrix;
    convertScalar(cameraMatrix,_cameraMatrix);
    
    //computeScaledParameters(r,c,cameraMatrix,_scale);
    PinholePointProjector* projector=dynamic_cast<PinholePointProjector*>(_converter->projector());
    cameraMatrix(2,2)=1;
    projector->setCameraMatrix(cameraMatrix);
    projector->setImageSize(depthImage.rows(), depthImage.cols());
    projector->scale(1.0/_scale);

    DepthImage::scale(scaledImage,depthImage,_scale);
    pwn::Frame* frame = new pwn::Frame;
    _converter->compute(*frame,scaledImage, sensorOffset);
  
    MapNodeBinaryRelation* odom=0;

    std::vector<MapNode*> oneNode(1);
    oneNode[0]=sensingFrame;
    MapNodeUnaryRelation* imu = extractRelation<MapNodeUnaryRelation>(oneNode);
    
    if (_previousFrame){
      _aligner->setReferenceSensorOffset(_aligner->currentSensorOffset());
      _aligner->setCurrentSensorOffset(sensorOffset);
      _aligner->setReferenceFrame(_previousFrame);
      _aligner->setCurrentFrame(frame);
      
      PinholePointProjector* projector=(PinholePointProjector*)(_aligner->projector());
      projector->setCameraMatrix(cameraMatrix);
      projector->setImageSize(depthImage.rows(), depthImage.cols());
      projector->scale(1.0/_scale);
      _aligner->correspondenceFinder()->setImageSize(projector->imageRows(), projector->imageCols());

      /*
	cerr << "correspondenceFinder: "  << r << " " << c << endl; 
	cerr << "sensorOffset" << endl;
	cerr <<_aligner->currentSensorOffset().matrix() << endl;
	cerr <<_aligner->referenceSensorOffset().matrix() << endl;
	cerr << "cameraMatrix" << endl;
	cerr << projector->cameraMatrix() << endl;
      */

      std::vector<MapNode*> twoNodes(2);
      twoNodes[0]=_previousSensingFrameNode;
      twoNodes[1]=sensingFrame;
      odom = extractRelation<MapNodeBinaryRelation>(twoNodes);
      cerr << "odom:" << odom << " imu:" << imu << endl;

      Eigen::Isometry3f guess= Eigen::Isometry3f::Identity();
      _aligner->clearPriors();
      if (odom){
      	Eigen::Isometry3f mean;
      	Eigen::Matrix<float,6,6> info;
      	convertScalar(mean,odom->transform());
	mean.matrix().row(3) << 0,0,0,1;
	convertScalar(info,odom->informationMatrix());
	//cerr << "odom: " << t2v(mean).transpose() << endl;
	_aligner->addRelativePrior(mean,info);
 	//guess = mean;
      } 

      if (imu){
      	Eigen::Isometry3f mean;
      	Eigen::Matrix<float,6,6> info;
      	convertScalar(mean,imu->transform());
      	convertScalar(info,imu->informationMatrix());
	mean.matrix().row(3) << 0,0,0,1;
	//cerr << "imu: " << t2v(mean).transpose() << endl;
	_aligner->addAbsolutePrior(_globalT,mean,info);
      }
      _aligner->setInitialGuess(guess);
      cerr << "Frames: " << _previousFrame << " " << frame << endl;

      
      // projector->setCameraMatrix(cameraMatrix);
      // projector->setTransform(Eigen::Isometry3f::Identity());
      // Eigen::MatrixXi debugIndices(r,c);
      // DepthImage debugImage(r,c);
      // projector->project(debugIndices, debugImage, frame->points());

      _aligner->align();
      
      // sprintf(buf, "img-dbg-%05d.pgm",j);
      // debugImage.save(buf);
      //sprintf(buf, "img-ref-%05d.pgm",j);
      //_aligner->correspondenceFinder()->referenceDepthImage().save(buf);
      //sprintf(buf, "img-cur-%05d.pgm",j);
      //_aligner->correspondenceFinder()->currentDepthImage().save(buf);

      cerr << "inliers: " << _aligner->inliers() << endl;
      cerr << "chi2: " << _aligner->error() << endl;
      cerr << "chi2/inliers: " << _aligner->error()/_aligner->inliers() << endl;
      cerr << "initialGuess: " << t2v(guess).transpose() << endl;
      cerr << "transform   : " << t2v(_aligner->T()).transpose() << endl;
      if (_aligner->inliers()>-1){
 	_globalT = _globalT*_aligner->T();
	cerr << "TRANSFORM FOUND" <<  endl;
      } else {
	cerr << "FAILURE" <<  endl;
	_globalT = _globalT*guess;
      }
      if (! (_counter%50) ) {
	Eigen::Matrix3f R = _globalT.linear();
	Eigen::Matrix3f E = R.transpose() * R;
	E.diagonal().array() -= 1;
	_globalT.linear() -= 0.5 * R * E;
      }
      _globalT.matrix().row(3) << 0,0,0,1;
      cerr << "globalTransform   : " << t2v(_globalT).transpose() << endl;

      // char buf[1024];
      // sprintf(buf, "frame-%05d.pwn",_counter);
      // frame->save(buf, 1, true, _globalT);


      cerr << "creating alias" << endl;
      // create an alias for the previous node
      MapNodeAlias* newRoot = new MapNodeAlias(_previousSensingFrameNode,_previousSensingFrameNode->manager());
      _previousSensingFrameNode->manager()->addNode(newRoot);
      
      cerr << "creating alias relation" << endl;
      MapNodeAliasRelation* aliasRel = new MapNodeAliasRelation(newRoot,_previousSensingFrameNode->manager());
      aliasRel->nodes()[0] = newRoot;
      aliasRel->nodes()[1] = _previousSensingFrameNode;
      _previousSensingFrameNode->manager()->addRelation(aliasRel);
      
      cerr << "reparenting old elements" << endl;
      // assign all the used relations to the alias node
      if (imu){
	imu->setOwner(newRoot);
	imu->manager()->addRelation(imu);
      }

      if (odom){
	odom->setOwner(newRoot);
	odom->manager()->addRelation(imu);
      }
      
      cerr << "adding result" << endl;
      
      Relation* newRel = new Relation(_aligner, _converter, 
	       _previousSensingFrameNode, sensingFrame,
	       _topic, _aligner->inliers(), _aligner->error(), _manager);
      newRel->setOwner(newRoot);
      newRel->nodes()[0] = newRoot;
      newRel->nodes()[1] = _previousSensingFrameNode;
      Eigen::Isometry3d iso;
      convertScalar(iso,_aligner->T());
      newRel->setTransform(iso);
      newRel->setInformationMatrix(Eigen::Matrix<double, 6,6>::Identity());
      newRel->manager()->addRelation(newRel);
      

      *os << _globalT.translation().transpose() << endl;

      // create a new alias node for the prior element
      // bind the alias with the prior node

      // add to the alias the relations that have been used to
      // determine the transformation

      // add the alias to the map
      // add the new transformation to the map
      
    } else {
      _aligner->setCurrentSensorOffset(sensorOffset);
      _globalT = Eigen::Isometry3f::Identity();
      if (imu){
      	Eigen::Isometry3f mean;
      	convertScalar(mean,imu->transform());
	_globalT = mean;
      }
    }
    
    cerr << "deleting previous frame" << endl;
    if (_previousFrame)
      delete _previousFrame;
    
    cerr << "deleting blob frame" << endl;
    delete blob;

    cerr << "bookkeeping update" << endl;
    _previousSensingFrameNode = sensingFrame;
    _previousFrame = frame;
    _counter++;
    
    cerr << "END ITERATION" << endl;
  }