Exemplo n.º 1
1
/**
 * @brief DiagonalMatrix creates a diagonal matrix.
 * @param D a vector of size 3.
 * @return It returns a diagonal matrix.
 */
Eigen::Matrix3d DiagonalMatrix(Eigen::Vector3d D)
{
    Eigen::Matrix3d ret;

    ret.setZero();
    ret(0, 0) = D[0];
    ret(1, 1) = D[1];
    ret(2, 2) = D[2];

    return ret;
}
Exemplo n.º 2
0
SRBASolver::SRBASolver()
{
  rba_.setVerbosityLevel( 2 );   // 0: None; 1:Important only; 2:Verbose
  
// =========== Topology parameters ===========
  rba_.parameters.srba.max_tree_depth       = 3;
  rba_.parameters.srba.max_optimize_depth   = 3; 
  rba_.parameters.ecp.min_obs_to_loop_closure = 1; // This is a VERY IMPORTANT PARAM, if it is set to 1 everything goes to shit

  rba_.parameters.srba.use_robust_kernel = false;
  rba_.parameters.srba.optimize_new_edges_alone = true;
  rba_.parameters.srba.dumpToConsole();

  first_keyframe_ = true;
  curr_kf_id_ = 0;

  marker_count_ = 0;

  relative_map_frame_ = "relative_map";
  global_map_frame_ = "global_map";
  loop_closed_ = false;

  // Information matrix for relative pose observations:
  {
    Eigen::Matrix3d ObsL;
  ObsL.setZero();
  ObsL(0,0) = 1/(STD_NOISE_XY*STD_NOISE_XY); // x
  ObsL(1,1) = 1/(STD_NOISE_XY*STD_NOISE_XY); // y
  ObsL(2,2) = 1/(STD_NOISE_YAW*STD_NOISE_YAW); // phi
  // Set:
  rba_.parameters.obs_noise.lambda = ObsL;
  }
}
Exemplo n.º 3
0
void mesh_core::Plane::leastSquaresGeneral(
      const EigenSTL::vector_Vector3d& points,
      Eigen::Vector3d* average)
{
  if (points.empty())
  {
    normal_ = Eigen::Vector3d(0,0,1);
    d_ = 0;
    if (average)
      *average = Eigen::Vector3d::Zero();
    return;
  }

  // find c, the average of the points
  Eigen::Vector3d c;
  c.setZero();

  EigenSTL::vector_Vector3d::const_iterator p = points.begin();
  EigenSTL::vector_Vector3d::const_iterator end = points.end();
  for ( ; p != end ; ++p)
    c += *p;

  c *= 1.0/double(points.size());

  // Find the matrix
  Eigen::Matrix3d m;
  m.setZero();

  p = points.begin();
  for ( ; p != end ; ++p)
  {
    Eigen::Vector3d cp = *p - c;
    m(0,0) += cp.x() * cp.x();
    m(1,0) += cp.x() * cp.y();
    m(2,0) += cp.x() * cp.z();
    m(1,1) += cp.y() * cp.y();
    m(2,1) += cp.y() * cp.z();
    m(2,2) += cp.z() * cp.z();
  }
  m(0,1) = m(1,0);
  m(0,2) = m(2,0);
  m(1,2) = m(2,1);

  Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigensolver(m);
  if (eigensolver.info() == Eigen::Success)
  {
    normal_ = eigensolver.eigenvectors().col(0);
    normal_.normalize();
  }
  else
  {
    normal_ = Eigen::Vector3d(0,0,1);
  }

  d_ = -c.dot(normal_);

  if (average)
    *average = c;
}
void LoadEstimator::getCrossMatrix(const Eigen::Vector3d& input_vector, Eigen::Matrix3d& crossed_matrix)
{
  crossed_matrix.setZero(3,3);

  crossed_matrix(0,1) = - input_vector(2);
  crossed_matrix(1,0) = input_vector(2);
  crossed_matrix(0,2) = input_vector(1);
  crossed_matrix(2,0) = - input_vector(1);
  crossed_matrix(1,2) = - input_vector(0);
  crossed_matrix(2,1) = input_vector(0);
}
void BoundingBox::computeOrientedBox(std::vector<Vertex>& vertices)
{
    type = "Oriented";
    orientedPoints.clear();
    
    // compute mean
    Eigen::Vector3d center;
    center.setZero();
    for (VertexCIter v = vertices.begin(); v != vertices.end(); v++) {
        center += v->position;
    }
    center /= (double)vertices.size();
    
    // adjust for mean and compute covariance
    Eigen::Matrix3d covariance;
    covariance.setZero();
    for (VertexIter v = vertices.begin(); v != vertices.end(); v++) {
        Eigen::Vector3d pAdg = v->position - center;
        covariance += pAdg * pAdg.transpose();
    }
    covariance /= (double)vertices.size();

    // compute eigenvectors for the covariance matrix
    Eigen::EigenSolver<Eigen::Matrix3d> solver(covariance);
    Eigen::Matrix3d eigenVectors = solver.eigenvectors().real();

    // project min and max points on each principal axis
    double min1 = INFINITY, max1 = -INFINITY;
    double min2 = INFINITY, max2 = -INFINITY;
    double min3 = INFINITY, max3 = -INFINITY;
    double d = 0.0;
    eigenVectors.transpose();
    for (VertexIter v = vertices.begin(); v != vertices.end(); v++) {
        d = eigenVectors.row(0).dot(v->position);
        if (min1 > d) min1 = d;
        if (max1 < d) max1 = d;
        
        d = eigenVectors.row(1).dot(v->position);
        if (min2 > d) min2 = d;
        if (max2 < d) max2 = d;
        
        d = eigenVectors.row(2).dot(v->position);
        if (min3 > d) min3 = d;
        if (max3 < d) max3 = d;
    }
    
    // add points to vector
    orientedPoints.push_back(eigenVectors.row(0) * min1);
    orientedPoints.push_back(eigenVectors.row(0) * max1);
    orientedPoints.push_back(eigenVectors.row(1) * min2);
    orientedPoints.push_back(eigenVectors.row(1) * max2);
    orientedPoints.push_back(eigenVectors.row(2) * min3);
    orientedPoints.push_back(eigenVectors.row(2) * max3);
}
Exemplo n.º 6
0
void BoundingBox::computeOrientedBox(std::vector<Eigen::Vector3d>& positions)
{
    // compute mean
    Eigen::Vector3d cm;
    cm.setZero();
    for (size_t i = 0; i < positions.size(); i++) {
        cm += positions[i];
    }
    cm /= (double)positions.size();
    
    // adjust for mean and compute covariance matrix
    Eigen::Matrix3d covariance;
    covariance.setZero();
    for (size_t i = 0; i < positions.size(); i++) {
        Eigen::Vector3d pAdg = positions[i] - cm;
        covariance += pAdg * pAdg.transpose();
    }
    covariance /= (double)positions.size();
    
    // compute eigenvectors for covariance matrix
    Eigen::EigenSolver<Eigen::Matrix3d> solver(covariance);
    Eigen::Matrix3d eigenVectors = solver.eigenvectors().real();
    
    // set axes
    eigenVectors.transpose();
    xAxis = eigenVectors.row(0);
    yAxis = eigenVectors.row(1);
    zAxis = eigenVectors.row(2);
    
    // project min and max points on each principal axis
    double min1 = INF, max1 = -INF;
    double min2 = INF, max2 = -INF;
    double min3 = INF, max3 = -INF;
    double d = 0.0;
    for (size_t i = 0; i < positions.size(); i++) {
        d = xAxis.dot(positions[i]);
        if (min1 > d) min1 = d;
        if (max1 < d) max1 = d;
        
        d = yAxis.dot(positions[i]);
        if (min2 > d) min2 = d;
        if (max2 < d) max2 = d;
        
        d = zAxis.dot(positions[i]);
        if (min3 > d) min3 = d;
        if (max3 < d) max3 = d;
    }
    
    // set center and halflengths
    center = (xAxis*(min1 + max1) + yAxis*(min2 + max2) + zAxis*(min3 + max3)) /2;
    halfLx = (max1 - min1)/2; halfLy = (max2 - min2)/2; halfLz = (max3 - min3)/2;
}
Exemplo n.º 7
0
void mesh_core::Plane::leastSquaresFast(
      const EigenSTL::vector_Vector3d& points,
      Eigen::Vector3d* average)
{
  Eigen::Matrix3d m;
  Eigen::Vector3d b;
  Eigen::Vector3d c;

  m.setZero();
  b.setZero();
  c.setZero();

  EigenSTL::vector_Vector3d::const_iterator p = points.begin();
  EigenSTL::vector_Vector3d::const_iterator end = points.end();
  for ( ; p != end ; ++p)
  {
    m(0,0) += p->x() * p->x();
    m(1,0) += p->x() * p->y();
    m(2,0) += p->x();
    m(1,1) += p->y() * p->y();
    m(2,1) += p->y();
    b(0) += p->x() * p->z();
    b(1) += p->y() * p->z();
    b(2) += p->z();
    c += *p;
  }
  m(0,1) = m(1,0);
  m(0,2) = m(2,0);
  m(1,2) = m(2,1);
  m(2,2) = double(points.size());
  c *= 1.0/double(points.size());

  normal_ = m.colPivHouseholderQr().solve(b);
  if (normal_.squaredNorm() > std::numeric_limits<double>::epsilon())
    normal_.normalize();

  d_ = -c.dot(normal_);

  if (average)
    *average = c;
}
int main(int argc, char**argv)
{
	my_srba_t rba;     //  Create an empty RBA problem

	// --------------------------------------------------------------------------------
	// Set parameters
	// --------------------------------------------------------------------------------
	rba.setVerbosityLevel( 1 );   // 0: None; 1:Important only; 2:Verbose

	rba.parameters.srba.use_robust_kernel = false;
	//rba.parameters.srba.optimize_new_edges_alone  = false;  // skip optimizing new edges one by one? Relative graph-slam without landmarks should be robust enough, but just to make sure we can leave this to "true" (default)

	// Information matrix for relative pose observations:
	{
		Eigen::Matrix3d ObsL;
		ObsL.setZero();
		ObsL(0,0) = 1/square(STD_NOISE_XY); // x
		ObsL(1,1) = 1/square(STD_NOISE_XY); // y
		ObsL(2,2) = 1/square(STD_NOISE_YAW); // phi

		// Set:
		rba.parameters.obs_noise.lambda = ObsL;
	}

	// =========== Topology parameters ===========
	rba.parameters.srba.edge_creation_policy = mrpt::srba::ecpICRA2013;
	rba.parameters.srba.max_tree_depth       = 3;
	rba.parameters.srba.max_optimize_depth   = 3;
	rba.parameters.srba.submap_size          = 5;
	rba.parameters.srba.min_obs_to_loop_closure = 1;
	// ===========================================

	// --------------------------------------------------------------------------------
	// Dump parameters to console (for checking/debugging only)
	// --------------------------------------------------------------------------------
	cout << "RBA parameters:\n-----------------\n";
	rba.parameters.srba.dumpToConsole();

#if MRPT_HAS_WXWIDGETS
	mrpt::gui::CDisplayWindow3D win("RBA results",640,480);
#endif

	// --------------------------------------------------------------------------------
	// Process the dataset:
	// --------------------------------------------------------------------------------
	const size_t nObs = sizeof(dataset)/sizeof(dataset[0]);
	size_t cur_kf = 0; // Start at keyframe #0 in the dataset

	for (size_t obsIdx = 0; obsIdx<nObs;  cur_kf++ /* move to next KF */  )
	{
		// Create list of observations for keyframe: "cur_kf"
		my_srba_t::new_kf_observations_t  list_obs;

		// To emulate graph-SLAM, each keyframe MUST have exactly ONE fixed "fake landmark", representing its pose:
		// ------------------------------------------------------------------------------------------------------------
		{
			my_srba_t::new_kf_observation_t obs_field;
			obs_field.is_fixed = true;
			obs_field.obs.feat_id = cur_kf; // Feature ID == keyframe ID
			obs_field.obs.obs_data.x = 0;   // Landmark values are actually ignored.
			obs_field.obs.obs_data.y = 0;
			obs_field.obs.obs_data.yaw = 0;
			list_obs.push_back( obs_field );
		}

		// The rest "observations" are real observations of relative poses:
		// -----------------------------------------------------------------
		while ( dataset[obsIdx].current_kf == cur_kf && obsIdx<nObs )
		{
			my_srba_t::new_kf_observation_t obs_field;
			obs_field.is_fixed = false;   // "Landmarks" (relative poses) have unknown relative positions (i.e. treat them as unknowns to be estimated)
			obs_field.is_unknown_with_init_val = false; // Ignored, since all observed "fake landmarks" already have an initialized value.

			obs_field.obs.feat_id      = dataset[obsIdx].observed_kf;
			obs_field.obs.obs_data.x   = dataset[obsIdx].x + mrpt::random::randomGenerator.drawGaussian1D(0,STD_NOISE_XY);
			obs_field.obs.obs_data.y   = dataset[obsIdx].y + mrpt::random::randomGenerator.drawGaussian1D(0,STD_NOISE_XY);
			obs_field.obs.obs_data.yaw = dataset[obsIdx].yaw  + mrpt::random::randomGenerator.drawGaussian1D(0,STD_NOISE_YAW);

			list_obs.push_back( obs_field );
			obsIdx++; // Next dataset entry
		}

		//  Here happens the main stuff: create Key-frames, build structures, run optimization, etc.
		//  ============================================================================================
		my_srba_t::TNewKeyFrameInfo new_kf_info;
		rba.define_new_keyframe(
			list_obs,      // Input observations for the new KF
			new_kf_info,   // Output info
			true           // Also run local optimization?
			);

		cout << "Created KF #" << new_kf_info.kf_id
			<< " | # kf-to-kf edges created:" <<  new_kf_info.created_edge_ids.size()  << endl
			<< "Optimization error: " << new_kf_info.optimize_results.total_sqr_error_init << " -> " << new_kf_info.optimize_results.total_sqr_error_final << endl
			<< "-------------------------------------------------------" << endl;

	// Display:
#if MRPT_HAS_WXWIDGETS
		// --------------------------------------------------------------------------------
		// Show 3D view of the resulting map:
		// --------------------------------------------------------------------------------
		my_srba_t::TOpenGLRepresentationOptions  opengl_options;
		mrpt::opengl::CSetOfObjectsPtr rba_3d = mrpt::opengl::CSetOfObjects::Create();

		rba.build_opengl_representation(
			new_kf_info.kf_id ,  // Root KF: the current (latest) KF
			opengl_options, // Rendering options
			rba_3d  // Output scene
			);

		{
			mrpt::opengl::COpenGLScenePtr &scene = win.get3DSceneAndLock();
			scene->clear();
			scene->insert(rba_3d);
			win.unlockAccess3DScene();
		}
		win.repaint();

		cout << "Press any key to continue.\n";
		win.waitForKey();
#endif

	} // end-for each dataset entry


	// --------------------------------------------------------------------------------
	// Saving RBA graph as a DOT file:
	// --------------------------------------------------------------------------------
	const string sFil = "graph.dot";
	cout << "Saving final graph of KFs and LMs to: " << sFil << endl;
	rba.save_graph_as_dot(sFil, true /* LMs=save */);
	cout << "Done.\n";


	return 0; // All ok
}
Exemplo n.º 9
0
/**
 * @brief estimateHomography estimates an homography matrix H between image 1 to image 2
 * @param points0 is an array of points computed from image 1.
 * @param points1 is an array of points computed from image 2.
 * @return It returns the homography matrix H.
 */
PIC_INLINE Eigen::Matrix3d estimateHomography(std::vector< Eigen::Vector2f > &points0,
                                   std::vector< Eigen::Vector2f > &points1)
{
    Eigen::Matrix3d  H;

    if((points0.size() != points1.size()) || (points0.size() < 4)) {
        H.setZero();
        return H;
    }

    Eigen::Vector3f transform_0 = ComputeNormalizationTransform(points0);
    Eigen::Vector3f transform_1 = ComputeNormalizationTransform(points1);

    Eigen::Matrix3d mat_0 = getShiftScaleMatrix(transform_0);
    Eigen::Matrix3d mat_1 = getShiftScaleMatrix(transform_1);

    int n = int(points0.size());
    Eigen::MatrixXd A(n * 2, 9);

    //set up the linear system
    for(int i = 0; i < n; i++) {
        //transform coordinates for increasing stability of the system
        Eigen::Vector2f p0 = points0[i];
        Eigen::Vector2f p1 = points1[i];

        p0[0] = (p0[0] - transform_0[0]) / transform_0[2];
        p0[1] = (p0[1] - transform_0[1]) / transform_0[2];

        p1[0] = (p1[0] - transform_1[0]) / transform_1[2];
        p1[1] = (p1[1] - transform_1[1]) / transform_1[2];

        int j = i * 2;
        A(j, 0) = 0.0;
        A(j, 1) = 0.0;
        A(j, 2) = 0.0;
        A(j, 3) = p0[0];
        A(j, 4) = p0[1];
        A(j, 5) = 1.0;
        A(j, 6) = -p1[1] * p0[0];
        A(j, 7) = -p1[1] * p0[1];
        A(j, 8) = -p1[1];

        j++;

        A(j, 0) = p0[0];
        A(j, 1) = p0[1];
        A(j, 2) = 1.0;
        A(j, 3) = 0.0;
        A(j, 4) = 0.0;
        A(j, 5) = 0.0;
        A(j, 6) = -p1[0] * p0[0];
        A(j, 7) = -p1[0] * p0[1];
        A(j, 8) = -p1[0];
    }

    //solve the linear system
    Eigen::JacobiSVD< Eigen::MatrixXd > svd(A, Eigen::ComputeFullV);
    Eigen::MatrixXd V = svd.matrixV();

    n = int(V.cols()) - 1;

    //assign and transpose
    H(0, 0) = V(0, n);
    H(0, 1) = V(1, n);
    H(0, 2) = V(2, n);

    H(1, 0) = V(3, n);
    H(1, 1) = V(4, n);
    H(1, 2) = V(5, n);

    H(2, 0) = V(6, n);
    H(2, 1) = V(7, n);
    H(2, 2) = V(8, n);

    H = mat_1.inverse() * H * mat_0;
    return H / H(2, 2);
}
Exemplo n.º 10
0
void init(){

    //find the path of config files
    std::string selfpath = get_selfpath();
    //select using normal control mode or psudogravity control mode
    right_rmt = NormalMode;
    //initialize FT sensor ptr
    ft_gama = new gamaFT;
    ft.setZero(6);
    tool_vec_g.setZero();
    axis_end_vec.setZero();
    
    //show toolname
    tn = hingedtool;
    StopFlag = false;
    //initialize the axis vec
    local_hinged_axis_vec.setZero();
    local_hinged_axis_vec(0) = -0.9472;
    local_hinged_axis_vec(1) = 0.0494;
    local_hinged_axis_vec(2) = -0.3166;
    
    des_tm.setZero();
    des_vec.setZero();
    
    //declare the cb function

    boost::function<void(boost::shared_ptr<std::string>)> button_sdh_moveto(sdh_moveto_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhaxisvec_moveto(sdhaxisvec_moveto_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhmaintainF(sdhmaintainF_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhslideX(sdhslideX_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhslideY(sdhslideY_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdhfoldtool(sdhfoldtool_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_gamaftcalib(gamaftcalib_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdh_grav_comp_ctrl(sdh_grav_comp_ctrl_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_sdh_normal_ctrl(sdh_normal_ctrl_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_brake(brake_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_nobrake(nobrake_cb);
    boost::function<void(boost::shared_ptr<std::string>)> button_closeprog(closeprog_cb);

    //specify controller configure file in order to load it(right kuka + shadow hand)
    std::string config_filename = selfpath + "/etc/right_arm_param.xml";
    std::cout<<"right arm config file name is: "<<config_filename<<std::endl;
    //load controller parameters
    right_pm = new ParameterManager(config_filename);
    //initialize ptr to right kuka com okc
    com_okc_right = new ComOkc(kuka_right,OKC_HOST,OKC_PORT);

    //connect kuka right
    com_okc_right->connect();

    //initialize the kuka robot and let it stay in the init pose
    kuka_right_arm = new KukaLwr(kuka_right,*com_okc_right,tn);

    //initialize the robot state
    right_rs = new RobotState(kuka_right_arm);

    //get the initialize state of kuka right
    kuka_right_arm->get_joint_position_act();
    kuka_right_arm->update_robot_state();
    right_rs->updated(kuka_right_arm);
    right_ac_vec.push_back(new ProActController(*right_pm));
    right_task_vec.push_back(new KukaSelfCtrlTask(RP_NOCONTROL));
    right_task_vec.back()->mt = JOINTS;
    right_task_vec.back()->mft = GLOBAL;

    Eigen::Vector3d p,o;
    p.setZero();
    o.setZero();
    //get start point position in cartesian space
    p(0) = initP_x = right_rs->robot_position["eef"](0);
    p(1) = initP_y= right_rs->robot_position["eef"](1);
    p(2) = initP_z= right_rs->robot_position["eef"](2);

    o = tm2axisangle(right_rs->robot_orien["eef"]);
    initO_x = o(0);
    initO_y = o(1);
    initO_z = o(2);
    right_task_vec.back()->set_desired_p_eigen(p);
    right_task_vec.back()->set_desired_o_ax(o);

    kuka_right_arm->setAxisStiffnessDamping(right_ac_vec.back()->pm.stiff_ctrlpara.axis_stiffness, \
                                           right_ac_vec.back()->pm.stiff_ctrlpara.axis_damping);

    com_rsb = new ComRSB();
    rdtschunkjs = SchunkJS;
    com_rsb->add_msg(rdtschunkjs);
    gama_f_filter = new TemporalSmoothingFilter<Eigen::Vector3d>(10,Average,Eigen::Vector3d(0,0,0));
    gama_t_filter = new TemporalSmoothingFilter<Eigen::Vector3d>(10,Average,Eigen::Vector3d(0,0,0));

    //register cb function
    com_rsb->register_external("/foo/sdhmoveto",button_sdh_moveto);
    com_rsb->register_external("/foo/sdhaxisvecmoveto",button_sdhaxisvec_moveto);
    com_rsb->register_external("/foo/sdhmaintainF",button_sdhmaintainF);
    com_rsb->register_external("/foo/sdhslideX",button_sdhslideX);
    com_rsb->register_external("/foo/sdhslideY",button_sdhslideY);
    com_rsb->register_external("/foo/sdhfoldtool",button_sdhfoldtool);
    com_rsb->register_external("/foo/gamaftcalib",button_gamaftcalib);
    com_rsb->register_external("/foo/sdh_grav_comp_ctrl",button_sdh_grav_comp_ctrl);
    com_rsb->register_external("/foo/sdh_normal_ctrl",button_sdh_normal_ctrl);
    com_rsb->register_external("/foo/closeprog",button_closeprog);

#ifdef HAVE_ROS
    std::string left_kuka_arm_name="la";
    std::string right_kuka_arm_name="ra";
    std::string left_schunk_hand_name ="lh";
    js_la.name.push_back(left_kuka_arm_name+"_arm_0_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_1_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_2_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_3_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_4_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_5_joint");
    js_la.name.push_back(left_kuka_arm_name+"_arm_6_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_0_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_1_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_2_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_3_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_4_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_5_joint");
    js_ra.name.push_back(right_kuka_arm_name+"_arm_6_joint");
    
    //for schunk
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_knuckle_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_22_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_23_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_thumb_2_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_thumb_3_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_12_joint");
    js_schunk.name.push_back(left_schunk_hand_name+"_sdh_finger_13_joint");

    js_la.position.resize(7);
    js_la.velocity.resize(7);
    js_la.effort.resize(7);

    js_ra.position.resize(7);
    js_ra.velocity.resize(7);
    js_ra.effort.resize(7);
    
    js_schunk.position.resize(7);
    js_schunk.velocity.resize(7);
    js_schunk.effort.resize(7);

    js_la.header.frame_id="frame_la";
    js_ra.header.frame_id="frame_ra";
    js_ra.header.frame_id="frame_lh";

    gamma_force_marker_pub = nh->advertise<visualization_msgs::Marker>("gamma_force_marker", 2);
    hingedtool_axis_marker_pub = nh->advertise<visualization_msgs::Marker>("hingedtool_axis_marker", 2);

    jsPub_la = nh->advertise<sensor_msgs::JointState> ("/la/joint_states", 2);
    jsPub_ra = nh->advertise<sensor_msgs::JointState> ("/ra/joint_states", 2);
    jsPub_schunk = nh->advertise<sensor_msgs::JointState> ("/lh/joint_states", 2);
    ros::spinOnce();

    br = new tf::TransformBroadcaster();

    std::cout<<"ros init finished"<<std::endl;
#endif
}