Exemplo n.º 1
0
IGL_INLINE void igl::exterior_edges(
  const Eigen::MatrixXi & F,
  Eigen::MatrixXi & E)
{
  using namespace Eigen;
  using namespace std;
  assert(F.cols() == 3);
  const size_t m = F.rows();
  MatrixXi all_E,sall_E,sort_order;
  // Sort each edge by index
  all_edges(F,all_E);
  sort(all_E,2,true,sall_E,sort_order);
  // Find unique edges
  MatrixXi uE;
  VectorXi IA,EMAP;
  unique_rows(sall_E,uE,IA,EMAP);
  VectorXi counts = VectorXi::Zero(uE.rows());
  for(size_t a = 0;a<3*m;a++)
  {
    counts(EMAP(a)) += (sort_order(a)==0?1:-1);
  }

  E.resize(all_E.rows(),2);
  {
    int e = 0;
    const size_t nue = uE.rows();
    // Append each unique edge with a non-zero amount of signed occurances
    for(size_t ue = 0; ue<nue; ue++)
    {
      const int count = counts(ue);
      size_t i,j;
      if(count == 0)
      {
        continue;
      }else if(count < 0)
      {
        i = uE(ue,1);
        j = uE(ue,0);
      }else if(count > 0)
      {
        i = uE(ue,0);
        j = uE(ue,1);
      }
      // Append edge for every repeated entry
      const int abs_count = abs(count);
      for(size_t k = 0;k<abs_count;k++)
      {
        E(e,0) = i;
        E(e,1) = j;
        e++;
      }
    }
    E.conservativeResize(e,2);
  }
}
void igl::collapse_small_triangles(
  const Eigen::MatrixXd & V,
  const Eigen::MatrixXi & F,
  const double eps,
  Eigen::MatrixXi & FF)
{
  using namespace Eigen;
  using namespace std;

  // Compute bounding box diagonal length
  double bbd = bounding_box_diagonal(V);
  MatrixXd l;
  edge_lengths(V,F,l);
  VectorXd dblA;
  doublearea(l,dblA);

  // Minimum area tolerance
  const double min_dblarea = 2.0*eps*bbd*bbd;

  Eigen::VectorXi FIM = colon<int>(0,V.rows()-1);
  int num_edge_collapses = 0;
  // Loop over triangles
  for(int f = 0;f<F.rows();f++)
  {
    if(dblA(f) < min_dblarea)
    {
      double minl = 0;
      int minli = -1;
      // Find shortest edge
      for(int e = 0;e<3;e++)
      {
        if(minli==-1 || l(f,e)<minl)
        {
          minli = e;
          minl = l(f,e);
        }
      }
      double maxl = 0;
      int maxli = -1;
      // Find longest edge
      for(int e = 0;e<3;e++)
      {
        if(maxli==-1 || l(f,e)>maxl)
        {
          maxli = e;
          maxl = l(f,e);
        }
      }
      // Be sure that min and max aren't the same
      maxli = (minli==maxli?(minli+1)%3:maxli);

      // Collapse min edge maintaining max edge: i-->j
      // Q: Why this direction?
      int i = maxli;
      int j = ((minli+1)%3 == maxli ? (minli+2)%3: (minli+1)%3);
      assert(i != minli);
      assert(j != minli);
      assert(i != j);
      FIM(F(f,i)) = FIM(F(f,j));
      num_edge_collapses++;
    }
  }

  // Reindex faces
  MatrixXi rF = F;
  // Loop over triangles
  for(int f = 0;f<rF.rows();f++)
  {
    for(int i = 0;i<rF.cols();i++)
    {
      rF(f,i) = FIM(rF(f,i));
    }
  }

  FF.resize(rF.rows(),rF.cols());
  int num_face_collapses=0;
  // Only keep uncollapsed faces
  {
    int ff = 0;
    // Loop over triangles
    for(int f = 0;f<rF.rows();f++)
    {
      bool collapsed = false;
      // Check if any indices are the same
      for(int i = 0;i<rF.cols();i++)
      {
        for(int j = i+1;j<rF.cols();j++)
        {
          if(rF(f,i)==rF(f,j))
          {
            collapsed = true;
            num_face_collapses++;
            break;
          }
        }
      }
      if(!collapsed)
      {
        FF.row(ff++) = rF.row(f);
      }
    }
    // Use conservative resize
    FF.conservativeResize(ff,FF.cols());
  }
  //cout<<"num_edge_collapses: "<<num_edge_collapses<<endl;
  //cout<<"num_face_collapses: "<<num_face_collapses<<endl;
  if(num_edge_collapses == 0)
  {
    // There must have been a "collapsed edge" in the input
    assert(num_face_collapses==0);
    // Base case
    return;
  }

  //// force base case
  //return;

  MatrixXi recFF = FF;
  return collapse_small_triangles(V,recFF,eps,FF);
}