Exemplo n.º 1
0
// ---------------------------------------------------------------------
// ---
// ---------------------------------------------------------------------
int main(int argc, char** argv)
{
    glutInit(&argc,argv);
    sofa::simulation::tree::init();
    sofa::helper::parse("This is a SOFA application.")
    (argc,argv);
    sofa::component::initComponentBase();
    sofa::component::initComponentCommon();
    sofa::component::initComponentGeneral();
    sofa::component::initComponentAdvanced();
    sofa::component::initComponentMisc();
    sofa::gui::initMain();
    sofa::gui::GUIManager::Init(argv[0]);

    // The graph root node : gravity already exists in a GNode by default
    sofa::simulation::setSimulation(new sofa::simulation::tree::TreeSimulation());
    sofa::simulation::Node::SPtr groot = sofa::simulation::getSimulation()->createNewGraph("root");
    groot->setGravity( Coord3(0,-10,0) );

    // One solver for all the graph
    EulerImplicitSolver::SPtr solver = sofa::core::objectmodel::New<EulerImplicitSolver>();
    solver->setName("solver");
    solver->f_printLog.setValue(false);
    groot->addObject(solver);

    CGLinearSolver::SPtr linearSolver = New<CGLinearSolver>();
    linearSolver->setName("linearSolver");
    groot->addObject(linearSolver);


    // Tetrahedron degrees of freedom
    MechanicalObject3::SPtr DOF = sofa::core::objectmodel::New<MechanicalObject3>();
    groot->addObject(DOF);
    DOF->resize(4);
    DOF->setName("DOF");
    //get write access to the position vector of mechanical object DOF
    WriteAccessor<Data<VecCoord3> > x = *DOF->write(VecId::position());
    x[0] = Coord3(0,10,0);
    x[1] = Coord3(10,0,0);
    x[2] = Coord3(-10*0.5,0,10*0.866);
    x[3] = Coord3(-10*0.5,0,-10*0.866);
    DOF->showObject.setValue(true);
    DOF->showObjectScale.setValue(10.);


    // Tetrahedron uniform mass
    UniformMass3::SPtr mass = sofa::core::objectmodel::New<UniformMass3>();
    groot->addObject(mass);
    mass->setMass(2);
    mass->setName("mass");

    // Tetrahedron topology
    MeshTopology::SPtr topology = sofa::core::objectmodel::New<MeshTopology>();
    topology->setName("mesh topology");
    groot->addObject( topology );
    topology->addTetra(0,1,2,3);

    // Tetrahedron constraints
    FixedConstraint3::SPtr constraints = sofa::core::objectmodel::New<FixedConstraint3>();
    constraints->setName("constraints");
    groot->addObject(constraints);
    constraints->addConstraint(0);

    // Tetrahedron force field
    TetrahedronFEMForceField3::SPtr fem = sofa::core::objectmodel::New<TetrahedronFEMForceField3>();
    fem->setName("FEM");
    groot->addObject(fem);
    fem->setMethod("polar");
    fem->setUpdateStiffnessMatrix(true);
    fem->setYoungModulus(6);

    // Tetrahedron skin
    Node::SPtr skin = groot.get()->createChild("skin");
    // The visual model
    OglModel::SPtr visual = sofa::core::objectmodel::New<OglModel>();
    visual->setName( "visual" );
    visual->load(sofa::helper::system::DataRepository.getFile("mesh/liver-smooth.obj"), "", "");
    visual->setColor("red");
    visual->applyScale(0.7, 0.7, 0.7);
    visual->applyTranslation(1.2, 0.8, 0);
    skin->addObject(visual);

    // The mapping between the tetrahedron (DOF) and the liver (visual)
    BarycentricMapping3_to_Ext3::SPtr mapping = sofa::core::objectmodel::New<BarycentricMapping3_to_Ext3>();
    mapping->setModels(DOF.get(), visual.get());
    mapping->setName( "mapping" );
    skin->addObject(mapping);

    // Display Flags
    sofa::component::visualmodel::VisualStyle::SPtr style = sofa::core::objectmodel::New<sofa::component::visualmodel::VisualStyle>();
    groot->addObject(style);
    sofa::core::visual::DisplayFlags& flags = *style->displayFlags.beginEdit();
    flags.setShowNormals(false);
    flags.setShowInteractionForceFields(false);
    flags.setShowMechanicalMappings(false);
    flags.setShowCollisionModels(false);
    flags.setShowBoundingCollisionModels(false);
    flags.setShowMappings(false);
    flags.setShowForceFields(true);
    flags.setShowWireFrame(true);
    flags.setShowVisualModels(true);
    flags.setShowBehaviorModels(true);
    style->displayFlags.endEdit();

    // Init the scene
    sofa::simulation::tree::getSimulation()->init(groot.get());
    groot->setAnimate(false);


    //=======================================
    // Run the main loop
    sofa::gui::GUIManager::MainLoop(groot);

    sofa::simulation::tree::cleanup();
    return 0;
}
Exemplo n.º 2
0
    /// One compliant spring, initially extendes
    void testLinearOneFixedOneComplianceSpringX200( bool debug )
    {
        SReal dt=1;
        Node::SPtr root = clearScene();
        root->setGravity( Vec3(0,0,0) );
        root->setDt(dt);

        // The solver
        typedef odesolver::AssembledSolver OdeSolver;
        OdeSolver::SPtr odeSolver = addNew<OdeSolver>(root);
        odeSolver->debug.setValue(debug);
        odeSolver->alpha.setValue(1.0);
        odeSolver->beta.setValue(1.0);
        SReal precision = 1.0e-6;

        linearsolver::LDLTSolver::SPtr linearSolver = addNew<linearsolver::LDLTSolver>(root);
        linearSolver->debug.setValue(debug);

        // The string
        ParticleString  string1( root, Vec3(0,0,0), Vec3(1,0,0), 2, 1.0*2 ); // two particles
        string1.compliance->isCompliance.setValue(true);
        string1.compliance->compliance.setValue(1.0e-3);

        FixedConstraint3::SPtr fixed = modeling::addNew<FixedConstraint3>(string1.string_node,"fixedConstraint");
        fixed->addConstraint(0);      // attach first particle

        {
        MechanicalObject3::WriteVecCoord x = string1.DOF->writePositions();
        x[1] = Vec3(2,0,0);
        }


        //**************************************************
        sofa::simulation::getSimulation()->init(root.get());
        //**************************************************

        // initial state
        Vector x0 = modeling::getVector( core::VecId::position() );
        Vector v0 = modeling::getVector( core::VecId::velocity() );

        //**************************************************
        sofa::simulation::getSimulation()->animate(root.get(),dt);
        //**************************************************

        Vector x1 = modeling::getVector( core::VecId::position() );
        Vector v1 = modeling::getVector( core::VecId::velocity() );

        // We check the explicit step backward without a solver, because it would not accumulate compliance forces
        core::MechanicalParams mparams;
        mparams.setAccumulateComplianceForces(true);
        simulation::common::MechanicalOperations mop (&mparams,getRoot()->getContext());
        mop.computeForce( 0+dt, core::VecId::force(), core::VecId::position(), core::VecId::velocity() );
        Vector f1 = modeling::getVector( core::VecId::force() );

        // backward step
        Vector v2 = v1 - f1 * dt;
        Vector x2 = x1 - v1 * dt;

//        cerr<<"AssembledSolver_test, initial positions : " << x0.transpose() << endl;
//        cerr<<"AssembledSolver_test, initial velocities: " << v0.transpose() << endl;
//        cerr<<"AssembledSolver_test, new positions     : " << x1.transpose() << endl;
//        cerr<<"AssembledSolver_test, new velocities    : " << v1.transpose() << endl;
//        cerr<<"AssembledSolver_test, new forces        : " << f1.transpose() << endl;
//        cerr<<"AssembledSolver_test, new positions  after backward integration: " << x2.transpose() << endl;
//        cerr<<"AssembledSolver_test, new velocities after backward integration: " << v2.transpose() << endl;

        // check that the implicit integration satisfies the implicit integration equation
        ASSERT_TRUE( (x2-x0).lpNorm<Eigen::Infinity>() < precision );
        ASSERT_TRUE( (v2-v0).lpNorm<Eigen::Infinity>() < precision );

        // The particle is initially in (2,0,0) and the closest rest configuration is (1,0,0)
        // The solution should therefore be inbetween.
        ASSERT_TRUE( x1(3)>1.0 ); // the spring should not get inversed


    }
Exemplo n.º 3
0
    /// Same as @testLinearOneFixedOneStiffnessSpringV100, with a compliant spring instead of a stiff spring
    void testLinearOneFixedOneComplianceSpringV100( bool debug )
    {
        SReal dt=0.1; // currently, this must be set in the root node AND passed to the animate function
        Node::SPtr root = clearScene();
        root->setGravity( Vec3(0,0,0) );
        root->setDt(dt);

        // The solver
        using odesolver::AssembledSolver;
        AssembledSolver::SPtr complianceSolver = addNew<AssembledSolver>(root);
        complianceSolver->debug.setValue( debug );
        complianceSolver->alpha.setValue(1.0);
        complianceSolver->beta.setValue(1.0);
        SReal precision = 1.0e-6;

        linearsolver::LDLTSolver::SPtr linearSolver = addNew<linearsolver::LDLTSolver>(root);
        linearSolver->debug.setValue(debug);

        // The string
        ParticleString  string1( root, Vec3(0,0,0), Vec3(1,0,0), 2, 1.0*2 ); // two particles
        string1.compliance->isCompliance.setValue(true);
        string1.compliance->compliance.setValue(1.0e-3);

        FixedConstraint3::SPtr fixed = modeling::addNew<FixedConstraint3>(string1.string_node,"fixedConstraint");
        fixed->addConstraint(0);      // attach first particle

        // velocity parallel to the spring
        {
        MechanicalObject3::WriteVecCoord v = string1.DOF->writeVelocities();
        v[1] = Vec3(1,0,0);
        }


        //**************************************************
        sofa::simulation::getSimulation()->init(root.get());
        //**************************************************

        // initial state
        Vector x0 = modeling::getVector( core::VecId::position() );
        Vector v0 = modeling::getVector( core::VecId::velocity() );

        //**************************************************
        sofa::simulation::getSimulation()->animate(root.get(),dt);
        //**************************************************

        Vector x1 = modeling::getVector( core::VecId::position() );
        Vector v1 = modeling::getVector( core::VecId::velocity() );

        // We check the explicit step backward without a solver, because it would not accumulate compliance forces
        core::MechanicalParams mparams;
        mparams.setAccumulateComplianceForces(true);
        simulation::common::MechanicalOperations mop (&mparams,getRoot()->getContext());
        mop.computeForce( 0+dt, core::VecId::force(), core::VecId::position(), core::VecId::velocity() );
        Vector f1 = modeling::getVector( core::VecId::force() );
//        cerr<<"test, f1 = " << f1.transpose() << endl;

        // backward step
        Vector v2 = v1 - f1 * dt;
        Vector x2 = x1 - v1 * dt;

//        cerr<<"AssembledSolver_test, initial positions : " << x0.transpose() << endl;
//        cerr<<"AssembledSolver_test, initial velocities: " << v0.transpose() << endl;
//        cerr<<"AssembledSolver_test, new positions : " << x1.transpose() << endl;
//        cerr<<"AssembledSolver_test, new velocities: " << v1.transpose() << endl;
//        cerr<<"AssembledSolver_test, new positions  after backward integration: " << x2.transpose() << endl;
//        cerr<<"AssembledSolver_test, new velocities after backward integration: " << v2.transpose() << endl;

        ASSERT_TRUE( (x2-x0).lpNorm<Eigen::Infinity>() < precision );
        ASSERT_TRUE( (v2-v0).lpNorm<Eigen::Infinity>() < precision );
    }
Exemplo n.º 4
0
    /** Test in the linear case, with velocity parallel to the spring.
      Convergence should occur in one iteration.
      Integrate using backward Euler (alpha=1, beta=1).
      Post-condition: an explicit Euler step with step -dt brings the system back to the original state.
      */
    void testLinearOneFixedOneStiffnessSpringV100(bool debug)
    {
        SReal dt=0.1; // currently, this must be set in the root node AND passed to the animate function
        Node::SPtr root = clearScene();
        root->setGravity( Vec3(0,0,0) );
        root->setDt(dt);

        // The solver
        using odesolver::AssembledSolver;
        AssembledSolver::SPtr complianceSolver = addNew<AssembledSolver>(getRoot());
        complianceSolver->debug.setValue(debug);
        complianceSolver->alpha.setValue(1.0);
        complianceSolver->beta.setValue(1.0);
        SReal precision = 1.0e-6;

        linearsolver::LDLTSolver::SPtr linearSolver = addNew<linearsolver::LDLTSolver>(getRoot());
        linearSolver->debug.setValue(debug);

        // The string
        ParticleString  string1( root, Vec3(0,0,0), Vec3(1,0,0), 2, 1.0*2 ); // two particles
        string1.compliance->isCompliance.setValue(false); // handle it as a stiffness
        string1.compliance->compliance.setValue(1.0e-3);

        FixedConstraint3::SPtr fixed = addNew<FixedConstraint3>(string1.string_node,"fixedConstraint");
        fixed->addConstraint(0);      // attach first particle

        // velocity parallel to the spring
        {
        MechanicalObject3::WriteVecCoord v = string1.DOF->writeVelocities();
        v[1] = Vec3(1,0,0);
        }


        //**************************************************
        sofa::simulation::getSimulation()->init(root.get());
        //**************************************************

        // initial state
        Vector x0 = getVector( core::VecId::position() );
        Vector v0 = getVector( core::VecId::velocity() );

        //**************************************************
        sofa::simulation::getSimulation()->animate(root.get(),dt);
        //**************************************************

        Vector x1 = getVector( core::VecId::position() );
        Vector v1 = getVector( core::VecId::velocity() );

        // Replace the backward (i.e. implicit) Euler solver with a forward (i.e. explicit) Euler solver.
        // An integration step using the opposite dt should bring us back to the initial state
        getRoot()->removeObject(complianceSolver);
        odesolver::EulerSolver::SPtr eulerSolver = New<odesolver::EulerSolver>();
        getRoot()->addObject(eulerSolver);
        eulerSolver->symplectic.setValue(false);
        sofa::simulation::getSimulation()->animate(root.get(),-dt);

        Vector x2 = getVector( core::VecId::position() );
        Vector v2 = getVector( core::VecId::velocity() );

//        cerr<<"AssembledSolver_test, initial positions : " << x0.transpose() << endl;
//        cerr<<"AssembledSolver_test, initial velocities: " << v0.transpose() << endl;
//        cerr<<"AssembledSolver_test, new positions : " << x1.transpose() << endl;
//        cerr<<"AssembledSolver_test, new velocities: " << v1.transpose() << endl;
//        cerr<<"AssembledSolver_test, new positions  after backward integration: " << x2.transpose() << endl;
//        cerr<<"AssembledSolver_test, new velocities after backward integration: " << v2.transpose() << endl;

        ASSERT_TRUE( (x2-x0).lpNorm<Eigen::Infinity>() < precision );
        ASSERT_TRUE( (v2-v0).lpNorm<Eigen::Infinity>() < precision );
    }