Exemplo n.º 1
0
Halide::Func convolution_layer(Halide::Func input, Halide::Func weights,
    Halide::Func bias, int filter_size, int input_layers, int pool_size) {

    // Convolution
    Halide::Func convolution;
    Halide::Var x, y, z, w;
    Halide::RDom r(0, filter_size, 0, filter_size, 0, input_layers);

    convolution(x, y, z, w) = 0.0f;
    convolution(x, y, z, w) += weights(r.x, r.y, r.z, z) * 
        input(x + r.x, y + r.y, r.z, w);

    // Max pool
    Halide::Func subsample;
    Halide::RDom s(0, pool_size, 0, pool_size);
    subsample(x, y, z, w) = 0.0f;
    subsample(x, y, z, w) = Halide::max(convolution(pool_size * x + s.x,
        pool_size * y + s.y, z, w), subsample(x, y, z, w));

    // Non-linear bias
    Halide::Func biased;
    biased(x, y, z, w) = tanh(subsample(x, y, z, w) + bias(z, 0));

    Halide::Var x_inner, x_outer, y_inner, y_outer;
    biased.parallel(w);
    biased.tile(x, y, x_outer, y_outer, x_inner, y_inner, VECTORS, 2);
    biased.vectorize(x_inner);
    biased.unroll(y_inner);

    return biased;
}
Exemplo n.º 2
0
Halide::Func fully_connected_layer(Halide::Func input, Halide::Func weights,
    Halide::Func bias, int size) {

    Halide::Func product;
    Halide::Var x, y, z;
    Halide::RDom r(0, size);

    // Only y = 0 should be used
    product(x, y, z) = 0.0f;
    product(x, y, z) += weights(r.x, x) * input(r.x, y, z);
    product(x, y, z) = tanh(product(x, y, z) + bias(x, 0));

    product.vectorize(x, VECTORS);

    return product;
}
Exemplo n.º 3
0
void NamedWindow::showImage2D(Halide::Image<uint8_t> im)
{
	static Halide::Func convert("convertToMat2D");
	static Halide::ImageParam ip(Halide::UInt(8), 2);
	static Halide::Var x, y;

	if (!convert.defined())
	{
		convert(x, y) = ip(x, y);
		convert.vectorize(x, 4).parallel(y, 4);
	}

	ip.set(im);
	cv::Mat mat(im.height(), im.width(), CV_8UC1, cv::Scalar(0));
	convert.realize(Halide::Buffer(Halide::UInt(8), im.width(), im.height(), 0, 0, mat.data));
	cv::imshow(name, mat);
}
Exemplo n.º 4
0
void NamedWindow::showImage3D(Halide::Image<float> im)
{
	static Halide::Func convert("convertToMat3D");
	static Halide::ImageParam ip(Halide::Float(32), 3);
	static Halide::Var x, y, c;

	if (!convert.defined())
	{
		convert(c, x, y) = Halide::cast<uint8_t>(ip(x, y, 2 - c) * 255);
		convert.vectorize(x, 4).parallel(y, 4);
	}

	ip.set(im);
	cv::Mat mat(im.height(), im.width(), CV_8UC3, cv::Scalar(0));
	convert.realize(Halide::Buffer(Halide::UInt(8), im.channels(), im.width(), im.height(), 0, mat.data));
	cv::imshow(name, mat);
}