Exemplo n.º 1
0
void starsInEdge(StarSet& stars, HyperGraph::Edge* e, EdgeStarMap& esmap, HyperGraph::VertexSet& gauge){
  for (size_t i=0; i<e->vertices().size(); i++){
    OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)e->vertices()[i];
    if (gauge.find(v)==gauge.end())
      starsInVertex(stars, v, esmap);
  }
}
Exemplo n.º 2
0
 void HyperDijkstra::connectedSubset(HyperGraph::VertexSet& connected, HyperGraph::VertexSet& visited, 
     HyperGraph::VertexSet& startingSet, 
     HyperGraph* g, HyperGraph::Vertex* v,
     HyperDijkstra::CostFunction* cost, double distance, 
     double comparisonConditioner, double maxEdgeCost)
 {
   typedef std::queue<HyperGraph::Vertex*> VertexDeque;
   visited.clear();
   connected.clear();
   VertexDeque frontier;
   HyperDijkstra dv(g);
   connected.insert(v);
   frontier.push(v);
   while (! frontier.empty()){
     HyperGraph::Vertex* v0=frontier.front();
     frontier.pop();
     dv.shortestPaths(v0, cost, distance, comparisonConditioner, false, maxEdgeCost);
     for (HyperGraph::VertexSet::iterator it=dv.visited().begin(); it!=dv.visited().end(); ++it){
       visited.insert(*it);
       if (startingSet.find(*it)==startingSet.end())
         continue;
       std::pair<HyperGraph::VertexSet::iterator, bool> insertOutcome=connected.insert(*it);
       if (insertOutcome.second){ // the node was not in the connectedSet;
         frontier.push(dynamic_cast<HyperGraph::Vertex*>(*it));
       }
     }
   }
 }
Exemplo n.º 3
0
  void computeSimpleStars(StarSet& stars,
			  SparseOptimizer* optimizer,
			  EdgeLabeler* labeler,
			  EdgeCreator* creator,
			  OptimizableGraph::Vertex* gauge_,
			  std::string edgeTag,
			  std::string vertexTag,
			  int level,
			  int step,
			  int backboneIterations,
			  int starIterations,
			  double rejectionThreshold,
			  bool debug){

    cerr << "preforming the tree actions" << endl;
    HyperDijkstra d(optimizer);
    // compute a spanning tree based on the types of edges and vertices in the pool
    EdgeTypesCostFunction f(edgeTag, vertexTag, level);
    d.shortestPaths(gauge_,
        &f,
        std::numeric_limits< double >::max(),
        1e-6,
        false,
        std::numeric_limits< double >::max()/2);

    HyperDijkstra::computeTree(d.adjacencyMap());
    // constructs the stars on the backbone

    BackBoneTreeAction bact(optimizer, vertexTag, level, step);
    bact.init();

    cerr << "free edges size " << bact.freeEdges().size() << endl;

    // perform breadth-first visit of the visit tree and create the stars on the backbone
    d.visitAdjacencyMap(d.adjacencyMap(),&bact,true);
    stars.clear();

    for (VertexStarMultimap::iterator it=bact.vertexStarMultiMap().begin();
        it!=bact.vertexStarMultiMap().end(); it++){
      stars.insert(it->second);
    }
    cerr << "stars.size: " << stars.size() << endl;
    cerr << "size: " << bact.vertexStarMultiMap().size() << endl;


    //  for each star

    //    for all vertices in the backbone, select all edges leading/leaving from that vertex
    //    that are contained in freeEdges.

    //      mark the corresponding "open" vertices and add them to a multimap (vertex->star)

    //    select a gauge in the backbone

    //    push all vertices on the backbone

    //    compute an initial guess on the backbone

    //    one round of optimization backbone

    //    lock all vertices in the backbone

    //    push all "open" vertices

    //    for each open vertex,
    //      compute an initial guess given the backbone
    //      do some rounds of solveDirect
    //      if (fail)
    //        - remove the vertex and the edges in that vertex from the star
    //   - make the structures consistent

    //    pop all "open" vertices
    //    pop all "vertices" in the backbone
    //    unfix the vertices in the backbone

    int starNum=0;
    for (StarSet::iterator it=stars.begin(); it!=stars.end(); it++){
      Star* s =*it;
      HyperGraph::VertexSet backboneVertices = s->_lowLevelVertices;
      HyperGraph::EdgeSet backboneEdges = s->_lowLevelEdges;
      if (backboneEdges.empty())
	continue;


      // cerr << "optimizing backbone" << endl;
      // one of these  should be the gauge, to be simple we select the fisrt one in the backbone
      OptimizableGraph::VertexSet gauge;
      gauge.insert(*backboneVertices.begin());
      s->gauge()=gauge;
      s->optimizer()->push(backboneVertices);
      s->optimizer()->setFixed(gauge,true);
      s->optimizer()->initializeOptimization(backboneEdges);
      s->optimizer()->computeInitialGuess();
      s->optimizer()->optimize(backboneIterations);
      s->optimizer()->setFixed(backboneVertices, true);

      // cerr << "assignind edges.vertices not in bbone" << endl;
      HyperGraph::EdgeSet otherEdges;
      HyperGraph::VertexSet otherVertices;
      std::multimap<HyperGraph::Vertex*, HyperGraph::Edge*> vemap;
      for (HyperGraph::VertexSet::iterator bit=backboneVertices.begin(); bit!=backboneVertices.end(); bit++){
	HyperGraph::Vertex* v=*bit;
	for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
	  OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
	  HyperGraph::EdgeSet::iterator feit=bact.freeEdges().find(e);
	  if (feit!=bact.freeEdges().end()){ // edge is admissible
	    otherEdges.insert(e);
	    bact.freeEdges().erase(feit);
	    for (size_t i=0; i<e->vertices().size(); i++){
	      OptimizableGraph::Vertex* ve= (OptimizableGraph::Vertex*)e->vertices()[i];
	      if (backboneVertices.find(ve)==backboneVertices.end()){
		otherVertices.insert(ve);
		vemap.insert(make_pair(ve,e));
	      }
	    }
	  }
	}
      }

      // RAINER TODO maybe need a better solution than dynamic casting here??
      OptimizationAlgorithmWithHessian* solverWithHessian = dynamic_cast<OptimizationAlgorithmWithHessian*>(s->optimizer()->solver());
      if (solverWithHessian) {
        s->optimizer()->push(otherVertices);
        // cerr << "optimizing vertices out of bbone" << endl;
        // cerr << "push" << endl;
        // cerr << "init" << endl;
        s->optimizer()->initializeOptimization(otherEdges);
        // cerr << "guess" << endl;
        s->optimizer()->computeInitialGuess();
        // cerr << "solver init" << endl;
        s->optimizer()->solver()->init();
        // cerr << "structure" << endl;
        if (!solverWithHessian->buildLinearStructure())
          cerr << "FATAL: failure while building linear structure" << endl;
        // cerr << "errors" << endl;
        s->optimizer()->computeActiveErrors();
        // cerr << "system" << endl;
        solverWithHessian->updateLinearSystem();
        // cerr << "directSolove" << endl;
      } else {
        cerr << "FATAL: hierarchical thing cannot be used with a solver that does not support the system structure construction" << endl;
      }


      // // then optimize the vertices one at a time to check if a solution is good
      for (HyperGraph::VertexSet::iterator vit=otherVertices.begin(); vit!=otherVertices.end(); vit++){
        OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)(*vit);
        v->solveDirect();
        // cerr << " " << d;
        // if  a solution is found, add a vertex and all the edges in
        //othervertices that are pointing to that edge to the star
        s->_lowLevelVertices.insert(v);
        for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
          OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
          if (otherEdges.find(e)!=otherEdges.end())
            s->_lowLevelEdges.insert(e);
        }
      }
      //cerr <<  endl;

      // relax the backbone and optimize it all
      // cerr << "relax bbone" << endl;
      s->optimizer()->setFixed(backboneVertices, false);
      //cerr << "fox gauge bbone" << endl;
      s->optimizer()->setFixed(s->gauge(),true);

      //cerr << "opt init" << endl;
      s->optimizer()->initializeOptimization(s->_lowLevelEdges);
      optimizer->computeActiveErrors();
      double initialChi = optimizer->activeChi2();
      int starOptResult = s->optimizer()->optimize(starIterations);
      //cerr << starOptResult << "(" << starIterations << ")  " << endl;
      double finalchi=-1.;

      cerr <<  "computing star: " << starNum << endl;

      int vKept=0, vDropped=0;
      if (!starIterations || starOptResult > 0  ){
	optimizer->computeActiveErrors();
	finalchi = optimizer->activeChi2();

#if 1

        s->optimizer()->computeActiveErrors();
        // cerr << "system" << endl;
        if (solverWithHessian)
          solverWithHessian->updateLinearSystem();
        HyperGraph::EdgeSet prunedStarEdges = backboneEdges;
        HyperGraph::VertexSet prunedStarVertices = backboneVertices;
        for (HyperGraph::VertexSet::iterator vit=otherVertices.begin(); vit!=otherVertices.end(); vit++){

	  //discard the vertices whose error is too big


          OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)(*vit);
          MatrixXd h(v->dimension(), v->dimension());
          for (int i=0; i<v->dimension(); i++){
            for (int j=0; j<v->dimension(); j++)
              h(i,j)=v->hessian(i,j);
          }
          EigenSolver<Eigen::MatrixXd> esolver;
          esolver.compute(h);
          VectorXcd ev= esolver.eigenvalues();
          double emin = std::numeric_limits<double>::max();
          double emax = -std::numeric_limits<double>::max();
          for (int i=0; i<ev.size(); i++){
            emin = ev(i).real()>emin ? emin : ev(i).real();
            emax = ev(i).real()<emax ? emax : ev(i).real();
          }

          double d=emin/emax;


          // cerr << " " << d;
          if (d>rejectionThreshold){
	  // if  a solution is found, add a vertex and all the edges in
	  //othervertices that are pointing to that edge to the star
            prunedStarVertices.insert(v);
            for (HyperGraph::EdgeSet::iterator eit=v->edges().begin(); eit!=v->edges().end(); eit++){
              OptimizableGraph::Edge* e = (OptimizableGraph::Edge*) *eit;
              if (otherEdges.find(e)!=otherEdges.end())
                prunedStarEdges.insert(e);
            }
            //cerr << "K( " << v->id() << "," << d << ")" ;
            vKept ++;
          } else {
            vDropped++;
            //cerr << "R( " << v->id() << "," << d << ")" ;
          }
        }
        s->_lowLevelEdges=prunedStarEdges;
        s->_lowLevelVertices=prunedStarVertices;

#endif
	//cerr << "addHedges" << endl;
	//now add to the star the hierarchical edges
	std::vector<OptimizableGraph::Vertex*> vertices(2);
	vertices[0]= (OptimizableGraph::Vertex*) *s->_gauge.begin();

	for (HyperGraph::VertexSet::iterator vit=s->_lowLevelVertices.begin(); vit!=s->_lowLevelVertices.end(); vit++){
	  OptimizableGraph::Vertex* v=(OptimizableGraph::Vertex*)*vit;
	  vertices[1]=v;
	  if (v==vertices[0])
	    continue;
	  OptimizableGraph::Edge* e=creator->createEdge(vertices);
	  //rr << "creating edge" << e <<  Factory::instance()->tag(vertices[0]) << "->" <<  Factory::instance()->tag(v) <endl;
	  if (e) {
	    e->setLevel(level+1);
	    optimizer->addEdge(e);
	    s->_starEdges.insert(e);
	  } else {
            cerr << "HERE" << endl;
	    cerr << "FATAL, cannot create edge" << endl;
	  }
	}
      }

      cerr << " gauge: " << (*s->_gauge.begin())->id()
           << " kept: " << vKept
           << " dropped: " << vDropped
	   << " edges:" << s->_lowLevelEdges.size()
	   << " hedges" << s->_starEdges.size()
	   << " initial chi " << initialChi
	   << " final chi " << finalchi << endl;

      if (debug) {
	char starLowName[100];
	sprintf(starLowName, "star-%04d-low.g2o", starNum);
	ofstream starLowStream(starLowName);
	optimizer->saveSubset(starLowStream, s->_lowLevelEdges);
      }
      bool labelOk=false;
      if (!starIterations || starOptResult > 0)
        labelOk = s->labelStarEdges(0, labeler);
      if (labelOk) {
        if (debug) {
          char starHighName[100];
          sprintf(starHighName, "star-%04d-high.g2o", starNum);
          ofstream starHighStream(starHighName);
          optimizer->saveSubset(starHighStream, s->_starEdges);
        }
      } else {

        cerr << "FAILURE: " << starOptResult << endl;
      }
      starNum++;

      //label each hierarchical edge
      s->optimizer()->pop(otherVertices);
      s->optimizer()->pop(backboneVertices);
      s->optimizer()->setFixed(s->gauge(),false);
    }


    StarSet stars2;
    // now erase the stars that have 0 edges. They r useless
    for (StarSet::iterator it=stars.begin(); it!=stars.end(); it++){
      Star* s=*it;
      if (s->lowLevelEdges().size()==0) {
        delete s;
      } else
        stars2.insert(s);
    }
    stars=stars2;
  }
  bool SparseOptimizer::initializeOptimization
     (HyperGraph::VertexSet& vset, int level)
  {

    // Recorre todos los vertices introducidos en el optimizador.
    // Para cada vertice 'V' obtiene los edges de los que forma parte.
    // Para cada uno de esos edges, se mira si todos sus vertices estan en el
    // optimizador. Si lo estan, el edge se aniade a _activeEdges.
    // Si el vertice 'V' tiene algun edge con todos los demas vertices en el
    // optimizador, se aniade 'V' a _activeVertices

    // Al final se asignan unos indices internos para los vertices:
    // -1: vertices fijos
    // 0..n: vertices no fijos y NO marginalizables
    // n+1..m: vertices no fijos y marginalizables
    clearIndexMapping();
    _activeVertices.clear();
    _activeVertices.reserve(vset.size());
    _activeEdges.clear();

    set<Edge*> auxEdgeSet; // temporary structure to avoid duplicates

    for (HyperGraph::VertexSet::iterator
         it  = vset.begin();
         it != vset.end();
         it++)
    {
      OptimizableGraph::Vertex* v= (OptimizableGraph::Vertex*) *it;
      const OptimizableGraph::EdgeSet& vEdges=v->edges();
      // count if there are edges in that level. If not remove from the pool
      int levelEdges=0;
      for (OptimizableGraph::EdgeSet::const_iterator
           it  = vEdges.begin();
           it != vEdges.end();
           it++)
      {
        OptimizableGraph::Edge* e =
           reinterpret_cast<OptimizableGraph::Edge*>(*it);
        if (level < 0 || e->level() == level)
        {
          bool allVerticesOK = true;
          for (vector<HyperGraph::Vertex*>::const_iterator
               vit  = e->vertices().begin();
               vit != e->vertices().end();
               ++vit)
          {
            if (vset.find(*vit) == vset.end())
            {
              allVerticesOK = false;
              break;
            }
          }

          if (allVerticesOK)
          {
            auxEdgeSet.insert(reinterpret_cast<OptimizableGraph::Edge*>(*it));
            levelEdges++;
          }
        }
      }
      if (levelEdges)   _activeVertices.push_back(v);
    }

    _activeEdges.reserve(auxEdgeSet.size());
    for (set<Edge*>::iterator
         it = auxEdgeSet.begin();
         it != auxEdgeSet.end();
         ++it)
       _activeEdges.push_back(*it);

    sortVectorContainers();
    return buildIndexMapping(_activeVertices);
  }
Exemplo n.º 5
0
  bool SparseOptimizer::initializeOptimization(HyperGraph::VertexSet& vset, int level){
    if (edges().size() == 0) {
      cerr << __PRETTY_FUNCTION__ << ": Attempt to initialize an empty graph" << endl;
      return false;
    }
    bool workspaceAllocated = _jacobianWorkspace.allocate(); (void) workspaceAllocated;
    assert(workspaceAllocated && "Error while allocating memory for the Jacobians");
    clearIndexMapping();
    _activeVertices.clear();
    _activeVertices.reserve(vset.size());
    _activeEdges.clear();
    set<Edge*> auxEdgeSet; // temporary structure to avoid duplicates
    for (HyperGraph::VertexSet::iterator it=vset.begin(); it!=vset.end(); ++it){
      OptimizableGraph::Vertex* v= (OptimizableGraph::Vertex*) *it;
      const OptimizableGraph::EdgeSet& vEdges=v->edges();
      // count if there are edges in that level. If not remove from the pool
      int levelEdges=0;
      for (OptimizableGraph::EdgeSet::const_iterator it=vEdges.begin(); it!=vEdges.end(); ++it){
        OptimizableGraph::Edge* e=reinterpret_cast<OptimizableGraph::Edge*>(*it);
        if (level < 0 || e->level() == level) {

          bool allVerticesOK = true;
          for (vector<HyperGraph::Vertex*>::const_iterator vit = e->vertices().begin(); vit != e->vertices().end(); ++vit) {
            if (vset.find(*vit) == vset.end()) {
              allVerticesOK = false;
              break;
            }
          }
          if (allVerticesOK && !e->allVerticesFixed()) {
            auxEdgeSet.insert(e);
            levelEdges++;
          }

        }
      }
      if (levelEdges){
        _activeVertices.push_back(v);

        // test for NANs in the current estimate if we are debugging
#      ifndef NDEBUG
        int estimateDim = v->estimateDimension();
        if (estimateDim > 0) {
          Eigen::VectorXd estimateData(estimateDim);
          if (v->getEstimateData(estimateData.data()) == true) {
            int k;
            bool hasNan = arrayHasNaN(estimateData.data(), estimateDim, &k);
            if (hasNan)
              cerr << __PRETTY_FUNCTION__ << ": Vertex " << v->id() << " contains a nan entry at index " << k << endl;
          }
        }
#      endif

      }
    }

    _activeEdges.reserve(auxEdgeSet.size());
    for (set<Edge*>::iterator it = auxEdgeSet.begin(); it != auxEdgeSet.end(); ++it)
      _activeEdges.push_back(*it);

    sortVectorContainers();
    return buildIndexMapping(_activeVertices);
  }