Exemplo n.º 1
0
/// Constructor
/// @param M :: A matrix to copy.
GSLMatrix::GSLMatrix(const Kernel::Matrix<double> &M) {
  m_matrix = gsl_matrix_alloc(M.numRows(), M.numCols());
  for (size_t i = 0; i < size1(); ++i)
    for (size_t j = 0; j < size2(); ++j) {
      set(i, j, M[i][j]);
    }
}
Exemplo n.º 2
0
std::vector<Kernel::V3D> PeakShapeEllipsoid::getDirectionInSpecificFrame(
    Kernel::Matrix<double> &invertedGoniometerMatrix) const {
  std::vector<Kernel::V3D> directionsInFrame;

  if ((invertedGoniometerMatrix.numCols() != m_directions.size()) ||
      (invertedGoniometerMatrix.numRows() != m_directions.size())) {
    throw std::invalid_argument("The inverted goniometer matrix is not "
                                "compatible with the direction vector");
  }

  for (const auto &direction : m_directions) {
    directionsInFrame.push_back(invertedGoniometerMatrix * direction);
  }

  return directionsInFrame;
}
Exemplo n.º 3
0
/**
 * Checks the normalization workspace against the indices of the original
 * dimensions.
 * If not found, the corresponding dimension is integrated
 * @param otherDimValues Values from non-HKL dimensions
 * @param skipNormalization [InOut] Sets the flag true if normalization values
 * are outside of original inputs
 * @return Affine trasform matrix
 */
Kernel::Matrix<coord_t> MDNormDirectSC::findIntergratedDimensions(
    const std::vector<coord_t> &otherDimValues, bool &skipNormalization) {
  // Get indices of the original dimensions in the output workspace,
  // and if not found, the corresponding dimension is integrated
  Kernel::Matrix<coord_t> affineMat =
      m_normWS->getTransformFromOriginal(0)->makeAffineMatrix();

  const size_t nrm1 = affineMat.numRows() - 1;
  const size_t ncm1 = affineMat.numCols() - 1;
  for (size_t row = 0; row < nrm1; row++) // affine matrix, ignore last row
  {
    const auto dimen = m_normWS->getDimension(row);
    const auto dimMin(dimen->getMinimum()), dimMax(dimen->getMaximum());
    if (affineMat[row][0] == 1.) {
      m_hIntegrated = false;
      m_hIdx = row;
      m_hmin = std::max(m_hmin, dimMin);
      m_hmax = std::min(m_hmax, dimMax);
      if (m_hmin > dimMax || m_hmax < dimMin) {
        skipNormalization = true;
      }
    }
    if (affineMat[row][1] == 1.) {
      m_kIntegrated = false;
      m_kIdx = row;
      m_kmin = std::max(m_kmin, dimMin);
      m_kmax = std::min(m_kmax, dimMax);
      if (m_kmin > dimMax || m_kmax < dimMin) {
        skipNormalization = true;
      }
    }
    if (affineMat[row][2] == 1.) {
      m_lIntegrated = false;
      m_lIdx = row;
      m_lmin = std::max(m_lmin, dimMin);
      m_lmax = std::min(m_lmax, dimMax);
      if (m_lmin > dimMax || m_lmax < dimMin) {
        skipNormalization = true;
      }
    }

    if (affineMat[row][3] == 1.) {
      m_dEIntegrated = false;
      m_eIdx = row;
      m_dEmin = std::max(m_dEmin, dimMin);
      m_dEmax = std::min(m_dEmax, dimMax);
      if (m_dEmin > dimMax || m_dEmax < dimMin) {
        skipNormalization = true;
      }
    }
    for (size_t col = 4; col < ncm1; col++) // affine matrix, ignore last column
    {
      if (affineMat[row][col] == 1.) {
        double val = otherDimValues.at(col - 3);
        if (val > dimMax || val < dimMin) {
          skipNormalization = true;
        }
      }
    }
  }

  return affineMat;
}
Exemplo n.º 4
0
/// Constructor
/// @param M :: A matrix to copy.
GSLMatrix::GSLMatrix(const Kernel::Matrix<double> &M)
    : m_data(M.getVector()),
      m_view(gsl_matrix_view_array(m_data.data(), M.numRows(), M.numCols())) {}
/**
 * This function will create the skew matrix and basis for a non-orthogonal
 * representation.
 *
 * @param ol : The oriented lattice containing B matrix and crystal basis
 *vectors
 * @param w : The tranform requested when MDworkspace was created
 * @param aff : The affine matrix taking care of coordinate transformations
 */
void vtkDataSetToNonOrthogonalDataSet::createSkewInformation(
    Geometry::OrientedLattice &ol, Kernel::DblMatrix &w,
    Kernel::Matrix<coord_t> &aff) {
  // Get the B matrix
  Kernel::DblMatrix bMat = ol.getB();
  // Apply the W tranform matrix
  bMat *= w;
  // Create G*
  Kernel::DblMatrix gStar = bMat.Tprime() * bMat;
  Geometry::UnitCell uc(ol);
  uc.recalculateFromGstar(gStar);
  m_skewMat = uc.getB();
  // Calculate the column normalisation
  std::vector<double> bNorm;
  for (std::size_t i = 0; i < m_skewMat.numCols(); i++) {
    double sum = 0.0;
    for (std::size_t j = 0; j < m_skewMat.numRows(); j++) {
      sum += m_skewMat[j][i] * m_skewMat[j][i];
    }
    bNorm.push_back(std::sqrt(sum));
  }
  // Apply column normalisation to skew matrix
  Kernel::DblMatrix scaleMat(3, 3, true);
  scaleMat[0][0] /= bNorm[0];
  scaleMat[1][1] /= bNorm[1];
  scaleMat[2][2] /= bNorm[2];
  m_skewMat *= scaleMat;

  // Setup basis normalisation array
  // Intel and MSBuild can't handle this
  // m_basisNorm = {ol.astar(), ol.bstar(), ol.cstar()};
  m_basisNorm.push_back(ol.astar());
  m_basisNorm.push_back(ol.bstar());
  m_basisNorm.push_back(ol.cstar());

  // Expand matrix to 4 dimensions if necessary
  if (4 == m_numDims) {
    m_basisNorm.push_back(1.0);
    Kernel::DblMatrix temp(4, 4, true);
    for (std::size_t i = 0; i < 3; i++) {
      for (std::size_t j = 0; j < 3; j++) {
        temp[i][j] = m_skewMat[i][j];
      }
    }
    m_skewMat = temp;
  }

  // Convert affine matrix to similar type as others
  Kernel::DblMatrix affMat(aff.numRows(), aff.numCols());
  for (std::size_t i = 0; i < aff.numRows(); i++) {
    for (std::size_t j = 0; j < aff.numCols(); j++) {
      affMat[i][j] = aff[i][j];
    }
  }
  // Strip affine matrix down to correct dimensions
  this->stripMatrix(affMat);

  // Perform similarity transform to get coordinate orientation correct
  m_skewMat = affMat.Tprime() * (m_skewMat * affMat);
  m_basisNorm = affMat * m_basisNorm;
  if (4 == m_numDims) {
    this->stripMatrix(m_skewMat);
  }

  this->findSkewBasis(m_basisX, m_basisNorm[0]);
  this->findSkewBasis(m_basisY, m_basisNorm[1]);
  this->findSkewBasis(m_basisZ, m_basisNorm[2]);
}