Exemplo n.º 1
0
  void HeatTransfer::element_time_derivative( bool compute_jacobian,
					      libMesh::FEMContext& context,
					      CachedValues& /*cache*/ )
  {
#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->BeginTimer("HeatTransfer::element_time_derivative");
#endif

    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.dof_indices_var[_T_var].size();
    const unsigned int n_u_dofs = context.dof_indices_var[_u_var].size();

    //TODO: check n_T_dofs is same as n_u_dofs, n_v_dofs, n_w_dofs

    // We get some references to cell-specific data that
    // will be used to assemble the linear system.

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.element_fe_var[_T_var]->get_JxW();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.element_fe_var[_T_var]->get_phi();

    // The velocity shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& vel_phi =
      context.element_fe_var[_u_var]->get_phi();

    // The temperature shape function gradients (in global coords.)
    // at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
      context.element_fe_var[_T_var]->get_dphi();

    const std::vector<libMesh::Point>& u_qpoint = 
      context.element_fe_var[this->_u_var]->get_xyz();

    // We do this in the incompressible Navier-Stokes class and need to do it here too
    // since _w_var won't have been defined in the global map.
    if (_dim != 3)
      _w_var = _u_var; // for convenience

    libMesh::DenseSubMatrix<libMesh::Number> &KTT = *context.elem_subjacobians[_T_var][_T_var]; // R_{T},{T}

    libMesh::DenseSubMatrix<libMesh::Number> &KTu = *context.elem_subjacobians[_T_var][_u_var]; // R_{T},{u}
    libMesh::DenseSubMatrix<libMesh::Number> &KTv = *context.elem_subjacobians[_T_var][_v_var]; // R_{T},{v}
    libMesh::DenseSubMatrix<libMesh::Number> &KTw = *context.elem_subjacobians[_T_var][_w_var]; // R_{T},{w}

    libMesh::DenseSubVector<libMesh::Number> &FT = *context.elem_subresiduals[_T_var]; // R_{T}

    // Now we will build the element Jacobian and residual.
    // Constructing the residual requires the solution and its
    // gradient from the previous timestep.  This must be
    // calculated at each quadrature point by summing the
    // solution degree-of-freedom values by the appropriate
    // weight functions.
    unsigned int n_qpoints = context.element_qrule->n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	// Compute the solution & its gradient at the old Newton iterate.
	libMesh::Number u, v, w;
	u = context.interior_value(_u_var, qp);
	v = context.interior_value(_v_var, qp);
	if (_dim == 3)
	  w = context.interior_value(_w_var, qp);

	libMesh::Gradient grad_T;
	grad_T = context.interior_gradient(_T_var, qp);

	libMesh::NumberVectorValue U (u,v);
	if (_dim == 3)
	  U(2) = w;

        const libMesh::Number r = u_qpoint[qp](0);

        libMesh::Real jac = JxW[qp];

        if( _is_axisymmetric )
          {
            jac *= r;
          }

	// First, an i-loop over the  degrees of freedom.
	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    FT(i) += jac *
	      (-_rho*_Cp*T_phi[i][qp]*(U*grad_T)    // convection term
	       -_k*(T_gradphi[i][qp]*grad_T) );  // diffusion term

	    if (compute_jacobian)
	      {
		for (unsigned int j=0; j != n_T_dofs; j++)
		  {
		    // TODO: precompute some terms like:
		    //   _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])

		    KTT(i,j) += jac *
		      (-_rho*_Cp*T_phi[i][qp]*(U*T_gradphi[j][qp])  // convection term
		       -_k*(T_gradphi[i][qp]*T_gradphi[j][qp])); // diffusion term
		  } // end of the inner dof (j) loop

		// Matrix contributions for the Tu, Tv and Tw couplings (n_T_dofs same as n_u_dofs, n_v_dofs and n_w_dofs)
		for (unsigned int j=0; j != n_u_dofs; j++)
		  {
		    KTu(i,j) += jac*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(0)));
		    KTv(i,j) += jac*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(1)));
		    if (_dim == 3)
		      KTw(i,j) += jac*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(2)));
		  } // end of the inner dof (j) loop

	      } // end - if (compute_jacobian && context.elem_solution_derivative)

	  } // end of the outer dof (i) loop
      } // end of the quadrature point (qp) loop

#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->EndTimer("HeatTransfer::element_time_derivative");
#endif

    return;
  }
Exemplo n.º 2
0
  void HeatTransfer::mass_residual( bool compute_jacobian,
				    libMesh::FEMContext& context,
				    CachedValues& /*cache*/ )
  {
#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->BeginTimer("HeatTransfer::mass_residual");
#endif

    // First we get some references to cell-specific data that
    // will be used to assemble the linear system.

    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.element_fe_var[_T_var]->get_JxW();

    // The shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& phi = 
      context.element_fe_var[_T_var]->get_phi();

    const std::vector<libMesh::Point>& u_qpoint = 
      context.element_fe_var[this->_u_var]->get_xyz();

    // The number of local degrees of freedom in each variable
    const unsigned int n_T_dofs = context.dof_indices_var[_T_var].size();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F = *context.elem_subresiduals[_T_var];

    libMesh::DenseSubMatrix<libMesh::Real> &M = *context.elem_subjacobians[_T_var][_T_var];

    unsigned int n_qpoints = context.element_qrule->n_points();

    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	// For the mass residual, we need to be a little careful.
	// The time integrator is handling the time-discretization
	// for us so we need to supply M(u_fixed)*u for the residual.
	// u_fixed will be given by the fixed_interior_* functions
	// while u will be given by the interior_* functions.
	libMesh::Real T_dot = context.interior_value(_T_var, qp);

        const libMesh::Number r = u_qpoint[qp](0);

        libMesh::Real jac = JxW[qp];

        if( _is_axisymmetric )
          {
            jac *= r;
          }

	for (unsigned int i = 0; i != n_T_dofs; ++i)
	  {
	    F(i) += _rho*_Cp*T_dot*phi[i][qp]*jac;

	    if( compute_jacobian )
              {
                for (unsigned int j=0; j != n_T_dofs; j++)
                  {
		    // We're assuming rho, cp are constant w.r.t. T here.
                    M(i,j) += _rho*_Cp*phi[j][qp]*phi[i][qp]*jac;
                  }
              }// End of check on Jacobian
          
	  } // End of element dof loop
      
      } // End of the quadrature point loop

#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->EndTimer("HeatTransfer::mass_residual");
#endif

    return;
  }