// Insert Defs and Uses of MI into the sets RegDefs and RegUses.
void Filler::insertDefsUses(MachineBasicBlock::iterator MI,
                            SmallSet<unsigned, 32>& RegDefs,
                            SmallSet<unsigned, 32>& RegUses) {
    unsigned I, E = MI->getDesc().getNumOperands();

    for (I = 0; I != E; ++I)
      insertDefUse(MI->getOperand(I), RegDefs, RegUses);

    // If MI is a call, add RA to RegDefs to prevent users of RA from going into
    // delay slot.
    if (MI->isCall()) {
      RegDefs.insert(CoffeeCL::LR);
      return;
    }

    // Return if MI is a return.
    if (MI->isReturn())
      return;

    // Examine the implicit operands. Exclude register AT which is in the list of
    // clobbered registers of branch instructions.
    E = MI->getNumOperands();
    for (; I != E; ++I)
      insertDefUse(MI->getOperand(I), RegDefs, RegUses);
}
Exemplo n.º 2
0
// Insert Defs and Uses of MI into the sets RegDefs and RegUses.
void Filler::insertDefsUses(MachineBasicBlock::iterator MI,
                            SmallSet<unsigned, 32>& RegDefs,
                            SmallSet<unsigned, 32>& RegUses) {
  // If MI is a call or return, just examine the explicit non-variadic operands.
  MCInstrDesc MCID = MI->getDesc();
  unsigned e = MI->isCall() || MI->isReturn() ? MCID.getNumOperands() :
                                                MI->getNumOperands();
  
  // Add RA to RegDefs to prevent users of RA from going into delay slot. 
  if (MI->isCall())
    RegDefs.insert(Mips::RA);

  for (unsigned i = 0; i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    unsigned Reg;

    if (!MO.isReg() || !(Reg = MO.getReg()))
      continue;

    if (MO.isDef())
      RegDefs.insert(Reg);
    else if (MO.isUse())
      RegUses.insert(Reg);
  }
}
Exemplo n.º 3
0
int PatmosInstrInfo::findPrevDelaySlotEnd(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator &II,
                                          int Cycles) const
{
  int cnt = 0;

  int maxDelaySlotSize = PST.getCFLDelaySlotCycles(false);

  while (II != MBB.begin()) {
    --II;
    if (isPseudo(&*II))
      continue;

    // This code assumes that delay slots can not be completely inside other
    // delay slots, i.e., we only need to scan up to the first CFL instruction.

    if (II->isInlineAsm()) {
      break;
    }
    if (II->isBranch() || II->isCall() || II->isReturn()) {
      cnt -= PST.getDelaySlotCycles(&*II);
      break;
    }
    if (Cycles >= 0 && cnt >= Cycles + maxDelaySlotSize)
      break;

    cnt++;
  }

  return Cycles >= 0 && cnt > Cycles ? Cycles : cnt;
}
Exemplo n.º 4
0
/// runOnMachineFunction - Loop over all of the basic blocks, inserting
/// NOOP instructions before early exits.
bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) {
  const AttributeSet &FnAttrs = MF.getFunction()->getAttributes();
  if (FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
                           Attribute::OptimizeForSize) ||
      FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
                           Attribute::MinSize)) {
    return false;
  }

  TM = &MF.getTarget();
  if (!TM->getSubtarget<X86Subtarget>().padShortFunctions())
    return false;

  TII = TM->getInstrInfo();

  // Search through basic blocks and mark the ones that have early returns
  ReturnBBs.clear();
  VisitedBBs.clear();
  findReturns(MF.begin());

  bool MadeChange = false;

  MachineBasicBlock *MBB;
  unsigned int Cycles = 0;

  // Pad the identified basic blocks with NOOPs
  for (DenseMap<MachineBasicBlock*, unsigned int>::iterator I = ReturnBBs.begin();
       I != ReturnBBs.end(); ++I) {
    MBB = I->first;
    Cycles = I->second;

    if (Cycles < Threshold) {
      // BB ends in a return. Skip over any DBG_VALUE instructions
      // trailing the terminator.
      assert(MBB->size() > 0 &&
             "Basic block should contain at least a RET but is empty");
      MachineBasicBlock::iterator ReturnLoc = --MBB->end();

      while (ReturnLoc->isDebugValue())
        --ReturnLoc;
      assert(ReturnLoc->isReturn() && !ReturnLoc->isCall() &&
             "Basic block does not end with RET");

      addPadding(MBB, ReturnLoc, Threshold - Cycles);
      NumBBsPadded++;
      MadeChange = true;
    }
  }

  return MadeChange;
}
Exemplo n.º 5
0
bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate,
                            bool &sawLoad,
                            bool &sawStore,
                            SmallSet<unsigned, 32> &RegDefs,
                            SmallSet<unsigned, 32> &RegUses) {
  if (candidate->isImplicitDef() || candidate->isKill())
    return true;

  // Loads or stores cannot be moved past a store to the delay slot
  // and stores cannot be moved past a load. 
  if (candidate->mayLoad()) {
    if (sawStore)
      return true;
    sawLoad = true;
  }

  if (candidate->mayStore()) {
    if (sawStore)
      return true;
    sawStore = true;
    if (sawLoad)
      return true;
  }

  assert((!candidate->isCall() && !candidate->isReturn()) &&
         "Cannot put calls or returns in delay slot.");

  for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) {
    const MachineOperand &MO = candidate->getOperand(i);
    unsigned Reg;

    if (!MO.isReg() || !(Reg = MO.getReg()))
      continue; // skip

    if (MO.isDef()) {
      // check whether Reg is defined or used before delay slot.
      if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg))
        return true;
    }
    if (MO.isUse()) {
      // check whether Reg is defined before delay slot.
      if (IsRegInSet(RegDefs, Reg))
        return true;
    }
  }
  return false;
}
Exemplo n.º 6
0
void SystemZFrameLowering::emitEpilogue(MachineFunction &MF,
                                        MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
  auto *ZII =
    static_cast<const SystemZInstrInfo*>(MF.getTarget().getInstrInfo());
  SystemZMachineFunctionInfo *ZFI = MF.getInfo<SystemZMachineFunctionInfo>();

  // Skip the return instruction.
  assert(MBBI->isReturn() && "Can only insert epilogue into returning blocks");

  uint64_t StackSize = getAllocatedStackSize(MF);
  if (ZFI->getLowSavedGPR()) {
    --MBBI;
    unsigned Opcode = MBBI->getOpcode();
    if (Opcode != SystemZ::LMG)
      llvm_unreachable("Expected to see callee-save register restore code");

    unsigned AddrOpNo = 2;
    DebugLoc DL = MBBI->getDebugLoc();
    uint64_t Offset = StackSize + MBBI->getOperand(AddrOpNo + 1).getImm();
    unsigned NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);

    // If the offset is too large, use the largest stack-aligned offset
    // and add the rest to the base register (the stack or frame pointer).
    if (!NewOpcode) {
      uint64_t NumBytes = Offset - 0x7fff8;
      emitIncrement(MBB, MBBI, DL, MBBI->getOperand(AddrOpNo).getReg(),
                    NumBytes, ZII);
      Offset -= NumBytes;
      NewOpcode = ZII->getOpcodeForOffset(Opcode, Offset);
      assert(NewOpcode && "No restore instruction available");
    }

    MBBI->setDesc(ZII->get(NewOpcode));
    MBBI->getOperand(AddrOpNo + 1).ChangeToImmediate(Offset);
  } else if (StackSize) {
    DebugLoc DL = MBBI->getDebugLoc();
    emitIncrement(MBB, MBBI, DL, SystemZ::R15D, StackSize, ZII);
  }
}
Exemplo n.º 7
0
/// shouldTailDuplicate - Determine if it is profitable to duplicate this block.
bool
TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF,
                                       bool IsSimple,
                                       MachineBasicBlock &TailBB) {
  // Only duplicate blocks that end with unconditional branches.
  if (TailBB.canFallThrough())
    return false;

  // Don't try to tail-duplicate single-block loops.
  if (TailBB.isSuccessor(&TailBB))
    return false;

  // Set the limit on the cost to duplicate. When optimizing for size,
  // duplicate only one, because one branch instruction can be eliminated to
  // compensate for the duplication.
  unsigned MaxDuplicateCount;
  if (TailDuplicateSize.getNumOccurrences() == 0 &&
      MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
    MaxDuplicateCount = 1;
  else
    MaxDuplicateCount = TailDuplicateSize;

  // If the target has hardware branch prediction that can handle indirect
  // branches, duplicating them can often make them predictable when there
  // are common paths through the code.  The limit needs to be high enough
  // to allow undoing the effects of tail merging and other optimizations
  // that rearrange the predecessors of the indirect branch.

  bool HasIndirectbr = false;
  if (!TailBB.empty())
    HasIndirectbr = TailBB.back().isIndirectBranch();

  if (HasIndirectbr && PreRegAlloc)
    MaxDuplicateCount = 20;

  // Check the instructions in the block to determine whether tail-duplication
  // is invalid or unlikely to be profitable.
  unsigned InstrCount = 0;
  for (MachineBasicBlock::iterator I = TailBB.begin(); I != TailBB.end(); ++I) {
    // Non-duplicable things shouldn't be tail-duplicated.
    if (I->isNotDuplicable())
      return false;

    // Do not duplicate 'return' instructions if this is a pre-regalloc run.
    // A return may expand into a lot more instructions (e.g. reload of callee
    // saved registers) after PEI.
    if (PreRegAlloc && I->isReturn())
      return false;

    // Avoid duplicating calls before register allocation. Calls presents a
    // barrier to register allocation so duplicating them may end up increasing
    // spills.
    if (PreRegAlloc && I->isCall())
      return false;

    if (!I->isPHI() && !I->isDebugValue())
      InstrCount += 1;

    if (InstrCount > MaxDuplicateCount)
      return false;
  }

  if (HasIndirectbr && PreRegAlloc)
    return true;

  if (IsSimple)
    return true;

  if (!PreRegAlloc)
    return true;

  return canCompletelyDuplicateBB(TailBB);
}
Exemplo n.º 8
0
void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
                                        MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
  assert(MBBI->isReturn() && "Can only insert epilog into returning blocks");
  MachineFrameInfo *MFI = MF.getFrameInfo();
  const AArch64InstrInfo *TII =
      static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
  const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
      MF.getSubtarget().getRegisterInfo());
  DebugLoc DL = MBBI->getDebugLoc();
  unsigned RetOpcode = MBBI->getOpcode();

  int NumBytes = MFI->getStackSize();
  const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();

  // Initial and residual are named for consitency with the prologue. Note that
  // in the epilogue, the residual adjustment is executed first.
  uint64_t ArgumentPopSize = 0;
  if (RetOpcode == AArch64::TCRETURNdi || RetOpcode == AArch64::TCRETURNri) {
    MachineOperand &StackAdjust = MBBI->getOperand(1);

    // For a tail-call in a callee-pops-arguments environment, some or all of
    // the stack may actually be in use for the call's arguments, this is
    // calculated during LowerCall and consumed here...
    ArgumentPopSize = StackAdjust.getImm();
  } else {
    // ... otherwise the amount to pop is *all* of the argument space,
    // conveniently stored in the MachineFunctionInfo by
    // LowerFormalArguments. This will, of course, be zero for the C calling
    // convention.
    ArgumentPopSize = AFI->getArgumentStackToRestore();
  }

  // The stack frame should be like below,
  //
  //      ----------------------                     ---
  //      |                    |                      |
  //      | BytesInStackArgArea|              CalleeArgStackSize
  //      | (NumReusableBytes) |                (of tail call)
  //      |                    |                     ---
  //      |                    |                      |
  //      ---------------------|        ---           |
  //      |                    |         |            |
  //      |   CalleeSavedReg   |         |            |
  //      | (NumRestores * 16) |         |            |
  //      |                    |         |            |
  //      ---------------------|         |         NumBytes
  //      |                    |     StackSize  (StackAdjustUp)
  //      |   LocalStackSize   |         |            |
  //      | (covering callee   |         |            |
  //      |       args)        |         |            |
  //      |                    |         |            |
  //      ----------------------        ---          ---
  //
  // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
  //             = StackSize + ArgumentPopSize
  //
  // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
  // it as the 2nd argument of AArch64ISD::TC_RETURN.
  NumBytes += ArgumentPopSize;

  unsigned NumRestores = 0;
  // Move past the restores of the callee-saved registers.
  MachineBasicBlock::iterator LastPopI = MBBI;
  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
  if (LastPopI != MBB.begin()) {
    do {
      ++NumRestores;
      --LastPopI;
    } while (LastPopI != MBB.begin() && isCSRestore(LastPopI, CSRegs));
    if (!isCSRestore(LastPopI, CSRegs)) {
      ++LastPopI;
      --NumRestores;
    }
  }
  NumBytes -= NumRestores * 16;
  assert(NumBytes >= 0 && "Negative stack allocation size!?");

  if (!hasFP(MF)) {
    // If this was a redzone leaf function, we don't need to restore the
    // stack pointer.
    if (!canUseRedZone(MF))
      emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes,
                      TII);
    return;
  }

  // Restore the original stack pointer.
  // FIXME: Rather than doing the math here, we should instead just use
  // non-post-indexed loads for the restores if we aren't actually going to
  // be able to save any instructions.
  if (NumBytes || MFI->hasVarSizedObjects())
    emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
                    -(NumRestores - 1) * 16, TII, MachineInstr::NoFlags);
}
bool PatmosDelaySlotKiller::killDelaySlots(MachineBasicBlock &MBB) {
  bool Changed = false;

  DEBUG( dbgs() << "Killing slots in BB#" << MBB.getNumber()
                << " (" << MBB.getFullName() << ")\n" );

  // consider the basic block from top to bottom
  for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
    // Control-flow instructions ("proper" delay slots)
    if (I->hasDelaySlot()) {
      assert( ( I->isCall() || I->isReturn() || I->isBranch() )
              && "Unexpected instruction with delay slot.");

      MachineBasicBlock::instr_iterator MI = *I;
      if (I->isBundle()) { ++MI; }

      unsigned Opcode = MI->getOpcode();

      if (Opcode == Patmos::BR ||
          Opcode == Patmos::BRu ||
          Opcode == Patmos::BRR ||
          Opcode == Patmos::BRRu ||
          Opcode == Patmos::BRT ||
          Opcode == Patmos::BRTu ||
          Opcode == Patmos::BRCF ||
          Opcode == Patmos::BRCFu ||
          Opcode == Patmos::BRCFR ||
          Opcode == Patmos::BRCFRu ||
          Opcode == Patmos::BRCFT ||
          Opcode == Patmos::BRCFTu ||
          Opcode == Patmos::CALL ||
          Opcode == Patmos::CALLR ||
          Opcode == Patmos::RET ||
          Opcode == Patmos::XRET) {

        bool onlyNops = true;
        unsigned maxCount = TM.getSubtargetImpl()->getDelaySlotCycles(&*I);
        unsigned count = 0;
        for (MachineBasicBlock::iterator K = llvm::next(I), E = MBB.end();
             K != E && count < maxCount; ++K, ++count) {
          TII->skipPseudos(MBB, K);
          if (K->getOpcode() != Patmos::NOP) {
            onlyNops = false;
          }
        }
        if (onlyNops) {
          unsigned NewOpcode = 0;
          switch(Opcode) {
          case Patmos::BR:     NewOpcode = Patmos::BRND; break;
          case Patmos::BRu:    NewOpcode = Patmos::BRNDu; break;
          case Patmos::BRR:    NewOpcode = Patmos::BRRND; break;
          case Patmos::BRRu:   NewOpcode = Patmos::BRRNDu; break;
          case Patmos::BRT:    NewOpcode = Patmos::BRTND; break;
          case Patmos::BRTu:   NewOpcode = Patmos::BRTNDu; break;
          case Patmos::BRCF:   NewOpcode = Patmos::BRCFND; break;
          case Patmos::BRCFu:  NewOpcode = Patmos::BRCFNDu; break;
          case Patmos::BRCFR:  NewOpcode = Patmos::BRCFRND; break;
          case Patmos::BRCFRu: NewOpcode = Patmos::BRCFRNDu; break;
          case Patmos::BRCFT:  NewOpcode = Patmos::BRCFTND; break;
          case Patmos::BRCFTu: NewOpcode = Patmos::BRCFTNDu; break;
          case Patmos::CALL:   NewOpcode = Patmos::CALLND; break;
          case Patmos::CALLR:  NewOpcode = Patmos::CALLRND; break;
          case Patmos::RET:    NewOpcode = Patmos::RETND; break;
          case Patmos::XRET:   NewOpcode = Patmos::XRETND; break;
          }
          const MCInstrDesc &nonDelayed = TII->get(NewOpcode);
          MI->setDesc(nonDelayed);

          unsigned killCount = 0;
          MachineBasicBlock::iterator K = llvm::next(I);
          for (MachineBasicBlock::iterator E = MBB.end();
               K != E && killCount < count; ++K, ++killCount) {
            TII->skipPseudos(MBB, K);
            KilledSlots++;
          }
          MBB.erase(llvm::next(I), K);
        }
      }
      Changed = true; // pass result
    }
  }
  return Changed;
}
Exemplo n.º 10
0
unsigned PatmosInstrInfo::moveUp(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator &II,
                                 unsigned Cycles) const
{
  // TODO We assume here that we do not have instructions which must be scheduled
  // *within* a certain amount of cycles, except for branches (i.e., we
  // do not emit overlapping pipelined MULs). Otherwise we would need to
  // check if we violate any latency constraints when inserting an instruction

  // Note: We assume that the instruction has no dependencies on previous
  // instructions within the given number of cycles. If we would check for this,
  // this would become a complete scheduler.

  // We might move an instruction
  // 1) outside of delay slots -> always possible
  // 2) into a delay slot -> optional, must add predicate and replace NOP or
  //    be bundled; we do not move other instructions around
  // 3) over a branch -> always possible if not predicated, but only until next
  //    delay slot and if not moved into a delay slot

  if (II->isBundled()) {
    // TODO moving bundled instructions is not yet supported.
    return Cycles;
  }

  MachineBasicBlock::iterator J = II;

  // determine start of first delay slot above the instruction
  int nonDelayed = findPrevDelaySlotEnd(MBB, J, Cycles);

  // Check if the instruction is inside a delay slot
  if (nonDelayed < 0) {
    // do not move it out of the delay slot
    // TODO we could move it, and insert a NOP instead..
    return Cycles;
  }

  bool isBranch = II->isBranch();
  bool isCFLInstr = isBranch || II->isCall() || II->isReturn();

  if (nonDelayed < (int)Cycles && J->isBranch() &&
      !isPredicated(&*II) && isPredicated(&*J) &&
      (!isCFLInstr || (isBranch && PST.allowBranchInsideCFLDelaySots()) ))
  {
    // J points to the branch instruction
    unsigned delayed = nonDelayed + PST.getDelaySlotCycles(&*J) + 1;

    // Load the predicate of the branch
    // We assume here that a bundle only contains at most one branch,
    // that this instruction is the first instruction in the bundle, and
    // that the branch is actually predicated.
    // TODO add a check for this!
    SmallVector<MachineOperand,4> Pred;

    const MachineInstr *BR = getFirstMI(&*J);
    assert(BR->isBranch() && "Branch is not in the first slot");

    getPredicateOperands(BR, Pred);
    assert(Pred.size() >= 2 && "Branch instruction not predicated");

    // determine if instruction might be moved over the delay slot
    if (delayed <= Cycles) {

      // TODO We only move the instruction at most one cycle above the branch.
      //      We could move it further up, but then we need to check where the
      //      predicate is defined.
      MachineBasicBlock::iterator JJ = J;
      if (findPrevDelaySlotEnd(MBB, JJ, 0) >= 0) {

        // Move the instruction up and predicate it
        II = MBB.insert(J, MBB.remove(II));

        PredicateInstruction(&*II, Pred);
        NegatePredicate(&*II);

        return Cycles - delayed;
      }
    }

    // if not, check if we can move it into the delay slot
    MachineBasicBlock::iterator dst = J;

    // Going down from the branch until the first possible slot, checking
    // that the predicate is not redefined.
    // Note that we are not inserting the instruction, but replacing an
    // instruction, i.e., we move one instruction less over II than in the
    // other cases.
    while ((int)delayed > nonDelayed) {
      delayed--;

      if (delayed <= Cycles && moveTo(MBB, dst, II, &Pred, true)) {
        return Cycles - delayed;
      }

      // TODO check if this also finds a MTS $S0 !!
      if (dst->definesRegister(Pred[0].getReg(), &getRegisterInfo())) {
        break;
      }

      dst = nextNonPseudo(MBB, dst);
    }
  }

  if (nonDelayed > 0) {
    // we are staying below a delay slot, just move the instruction up
    J = II;
    recedeCycles(MBB, J, nonDelayed);

    II = MBB.insert(J, MBB.remove(II));

    return Cycles - nonDelayed;
  }

  return Cycles;
}
Exemplo n.º 11
0
bool ARCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 bool AllowModify) const {
  TBB = FBB = nullptr;
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin())
    return false;
  --I;

  while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
    // Flag to be raised on unanalyzeable instructions. This is useful in cases
    // where we want to clean up on the end of the basic block before we bail
    // out.
    bool CantAnalyze = false;

    // Skip over DEBUG values and predicated nonterminators.
    while (I->isDebugValue() || !I->isTerminator()) {
      if (I == MBB.begin())
        return false;
      --I;
    }

    if (isJumpOpcode(I->getOpcode())) {
      // Indirect branches and jump tables can't be analyzed, but we still want
      // to clean up any instructions at the tail of the basic block.
      CantAnalyze = true;
    } else if (isUncondBranchOpcode(I->getOpcode())) {
      TBB = I->getOperand(0).getMBB();
    } else if (isCondBranchOpcode(I->getOpcode())) {
      // Bail out if we encounter multiple conditional branches.
      if (!Cond.empty())
        return true;

      assert(!FBB && "FBB should have been null.");
      FBB = TBB;
      TBB = I->getOperand(0).getMBB();
      Cond.push_back(I->getOperand(1));
      Cond.push_back(I->getOperand(2));
      Cond.push_back(I->getOperand(3));
    } else if (I->isReturn()) {
      // Returns can't be analyzed, but we should run cleanup.
      CantAnalyze = !isPredicated(*I);
    } else {
      // We encountered other unrecognized terminator. Bail out immediately.
      return true;
    }

    // Cleanup code - to be run for unpredicated unconditional branches and
    //                returns.
    if (!isPredicated(*I) && (isUncondBranchOpcode(I->getOpcode()) ||
                              isJumpOpcode(I->getOpcode()) || I->isReturn())) {
      // Forget any previous condition branch information - it no longer
      // applies.
      Cond.clear();
      FBB = nullptr;

      // If we can modify the function, delete everything below this
      // unconditional branch.
      if (AllowModify) {
        MachineBasicBlock::iterator DI = std::next(I);
        while (DI != MBB.end()) {
          MachineInstr &InstToDelete = *DI;
          ++DI;
          InstToDelete.eraseFromParent();
        }
      }
    }

    if (CantAnalyze)
      return true;

    if (I == MBB.begin())
      return false;

    --I;
  }

  // We made it past the terminators without bailing out - we must have
  // analyzed this branch successfully.
  return false;
}