Exemplo n.º 1
0
/*
 * Attitude rates controller.
 * Input: '_rates_sp' vector, '_thrust_sp'
 * Output: '_att_control' vector
 */
void
MulticopterAttitudeControl::control_attitude_rates(float dt)
{
	/* reset integral if disarmed */
	if (!_armed.armed || !_vehicle_status.is_rotary_wing) {
		_rates_int.zero();
	}

	/* current body angular rates */
	math::Vector<3> rates;
	rates(0) = _ctrl_state.roll_rate;
	rates(1) = _ctrl_state.pitch_rate;
	rates(2) = _ctrl_state.yaw_rate;

	/* angular rates error */
	math::Vector<3> rates_err = _rates_sp - rates;
	_att_control = _params.rate_p.emult(rates_err) + _params.rate_d.emult(_rates_prev - rates) / dt + _rates_int +
		       _params.rate_ff.emult(_rates_sp - _rates_sp_prev) / dt;
	_rates_sp_prev = _rates_sp;
	_rates_prev = rates;

	/* update integral only if not saturated on low limit and if motor commands are not saturated */
	if (_thrust_sp > MIN_TAKEOFF_THRUST && !_motor_limits.lower_limit && !_motor_limits.upper_limit) {
		for (int i = 0; i < 3; i++) {
			if (fabsf(_att_control(i)) < _thrust_sp) {
				float rate_i = _rates_int(i) + _params.rate_i(i) * rates_err(i) * dt;

				if (PX4_ISFINITE(rate_i) && rate_i > -RATES_I_LIMIT && rate_i < RATES_I_LIMIT &&
				    _att_control(i) > -RATES_I_LIMIT && _att_control(i) < RATES_I_LIMIT) {
					_rates_int(i) = rate_i;
				}
			}
		}
	}
}
Exemplo n.º 2
0
/*
 * Attitude rates controller.
 * Input: '_rates_sp' vector, '_thrust_sp'
 * Output: '_att_control' vector
 */
void
MulticopterAttitudeControl::control_attitude_rates(float dt)
{
	/* reset integral if disarmed */
	if (!_armed.armed) {
		_rates_int.zero();
	}

	/* current body angular rates */
	math::Vector<3> rates;
	rates(0) = _v_att.rollspeed;
	rates(1) = _v_att.pitchspeed;
	rates(2) = _v_att.yawspeed;

	/* angular rates error */
	math::Vector<3> rates_err = _rates_sp - rates;
	_att_control = _params.rate_p.emult(rates_err) + _params.rate_d.emult(_rates_prev - rates) / dt + _rates_int;
	_rates_prev = rates;

	/* update integral only if not saturated on low limit */
	if (_thrust_sp > MIN_TAKEOFF_THRUST) {
		for (int i = 0; i < 3; i++) {
			if (fabsf(_att_control(i)) < _thrust_sp) {
				float rate_i = _rates_int(i) + _params.rate_i(i) * rates_err(i) * dt;

				if (isfinite(rate_i) && rate_i > -RATES_I_LIMIT && rate_i < RATES_I_LIMIT &&
				    _att_control(i) > -RATES_I_LIMIT && _att_control(i) < RATES_I_LIMIT) {
					_rates_int(i) = rate_i;
				}
			}
		}
	}
}
Exemplo n.º 3
0
/*
 * Attitude rates controller.
 * Input: '_rates_sp' vector, '_thrust_sp'
 * Output: '_att_control' vector
 */
void
MulticopterAttitudeControl::control_attitude_rates(float dt)
{
	/* reset integral if disarmed */
	if (!_armed.armed || !_vehicle_status.is_rotary_wing) {
		_rates_int.zero();
	}

	/* current body angular rates */
	math::Vector<3> rates;
	rates(0) = _ctrl_state.roll_rate;
	rates(1) = _ctrl_state.pitch_rate;
	rates(2) = _ctrl_state.yaw_rate;

	/* throttle pid attenuation factor */
	float tpa =  fmaxf(0.0f, fminf(1.0f, 1.0f - _params.tpa_slope * (fabsf(_v_rates_sp.thrust) - _params.tpa_breakpoint)));

	/* angular rates error */
	math::Vector<3> rates_err = _rates_sp - rates;

	_att_control = _params.rate_p.emult(rates_err * tpa) + _params.rate_d.emult(_rates_prev - rates) / dt + _rates_int +
		       _params.rate_ff.emult(_rates_sp);

	_rates_sp_prev = _rates_sp;
	_rates_prev = rates;

	/* update integral only if not saturated on low limit and if motor commands are not saturated */
	if (_thrust_sp > MIN_TAKEOFF_THRUST && !_motor_limits.lower_limit && !_motor_limits.upper_limit) {
		for (int i = AXIS_INDEX_ROLL; i < AXIS_COUNT; i++) {
			if (fabsf(_att_control(i)) < _thrust_sp) {
				float rate_i = _rates_int(i) + _params.rate_i(i) * rates_err(i) * dt;

				if (PX4_ISFINITE(rate_i) && rate_i > -RATES_I_LIMIT && rate_i < RATES_I_LIMIT &&
				    _att_control(i) > -RATES_I_LIMIT && _att_control(i) < RATES_I_LIMIT &&
				    /* if the axis is the yaw axis, do not update the integral if the limit is hit */
				    !((i == AXIS_INDEX_YAW) && _motor_limits.yaw)) {
					_rates_int(i) = rate_i;
				}
			}
		}
	}
}
Exemplo n.º 4
0
void
MulticopterPositionControl::task_main()
{

	_mavlink_fd = open(MAVLINK_LOG_DEVICE, 0);

	/*
	 * do subscriptions
	 */
	_att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_arming_sub = orb_subscribe(ORB_ID(actuator_armed));
	_local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position));
	_pos_sp_triplet_sub = orb_subscribe(ORB_ID(position_setpoint_triplet));
	_local_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint));
	_global_vel_sp_sub = orb_subscribe(ORB_ID(vehicle_global_velocity_setpoint));


	parameters_update(true);

	/* initialize values of critical structs until first regular update */
	_arming.armed = false;

	/* get an initial update for all sensor and status data */
	poll_subscriptions();

	bool reset_int_z = true;
	bool reset_int_z_manual = false;
	bool reset_int_xy = true;
	bool reset_yaw_sp = true;
	bool was_armed = false;

	hrt_abstime t_prev = 0;
	_hover_time = 0.0; // miao:
	_mode_mission = 1;
	math::Vector<3> thrust_int;
	thrust_int.zero();
	math::Matrix<3, 3> R;
	R.identity();

	/* wakeup source */
	struct pollfd fds[1];

	fds[0].fd = _local_pos_sub;
	fds[0].events = POLLIN;

	while (!_task_should_exit) {
		/* wait for up to 500ms for data */
		int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 500);

		/* timed out - periodic check for _task_should_exit */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		poll_subscriptions();
		parameters_update(false);

		hrt_abstime t = hrt_absolute_time();
		float dt = t_prev != 0 ? (t - t_prev) * 0.000001f : 0.0f;
		t_prev = t;

		if (_control_mode.flag_armed && !was_armed) {
			/* reset setpoints and integrals on arming */
			_reset_pos_sp = true;
			_reset_alt_sp = true;
			reset_int_z = true;
			reset_int_xy = true;
			reset_yaw_sp = true;
			_reset_mission = true;//miao:
		}

		//Update previous arming state
		was_armed = _control_mode.flag_armed;

		update_ref();

		if (_control_mode.flag_control_altitude_enabled ||
		    _control_mode.flag_control_position_enabled ||
		    _control_mode.flag_control_climb_rate_enabled ||
		    _control_mode.flag_control_velocity_enabled) {

			_pos(0) = _local_pos.x;
			_pos(1) = _local_pos.y;
			_pos(2) = _local_pos.z;

			_vel(0) = _local_pos.vx;
			_vel(1) = _local_pos.vy;
			_vel(2) = _local_pos.vz;

			_vel_ff.zero();
			_sp_move_rate.zero();

			/* select control source */
			if (_control_mode.flag_control_manual_enabled) {
				/* manual control */
				control_manual(dt);
				_mode_auto = false;

			} else if (_control_mode.flag_control_offboard_enabled) {
				/* offboard control */
				control_offboard(dt);
				_mode_auto = false;

			} else {
				/* AUTO */
				control_auto(dt);
			}

			if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid && _pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_IDLE) {
				/* idle state, don't run controller and set zero thrust */
				R.identity();
				memcpy(&_att_sp.R_body[0], R.data, sizeof(_att_sp.R_body));
				_att_sp.R_valid = true;

				_att_sp.roll_body = 0.0f;
				_att_sp.pitch_body = 0.0f;
				_att_sp.yaw_body = _att.yaw;
				_att_sp.thrust = 0.0f;

				_att_sp.timestamp = hrt_absolute_time();

				/* publish attitude setpoint */
				if (_att_sp_pub > 0) {
					orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_att_sp);

				} else {
					_att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_att_sp);
				}

			} else {
				/* run position & altitude controllers, calculate velocity setpoint */
				math::Vector<3> pos_err = _pos_sp - _pos;

				_vel_sp = pos_err.emult(_params.pos_p) + _vel_ff;

				if (!_control_mode.flag_control_altitude_enabled) {
					_reset_alt_sp = true;
					_vel_sp(2) = 0.0f;
				}

				if (!_control_mode.flag_control_position_enabled) {
					_reset_pos_sp = true;
					_vel_sp(0) = 0.0f;
					_vel_sp(1) = 0.0f;
				}

				/* use constant descend rate when landing, ignore altitude setpoint */
				//if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid && _pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_LAND) {
				// miao: for auto landing test with manual mode
				if (_mode_mission==3) {
					_vel_sp(2) = _params.land_speed;
				}

				_global_vel_sp.vx = _vel_sp(0);
				_global_vel_sp.vy = _vel_sp(1);
				_global_vel_sp.vz = _vel_sp(2);

				/* publish velocity setpoint */
				if (_global_vel_sp_pub > 0) {
					orb_publish(ORB_ID(vehicle_global_velocity_setpoint), _global_vel_sp_pub, &_global_vel_sp);

				} else {
					_global_vel_sp_pub = orb_advertise(ORB_ID(vehicle_global_velocity_setpoint), &_global_vel_sp);
				}

				if (_control_mode.flag_control_climb_rate_enabled || _control_mode.flag_control_velocity_enabled) {
					/* reset integrals if needed */
					if (_control_mode.flag_control_climb_rate_enabled) {
						if (reset_int_z) {
							reset_int_z = false;
							float i = _params.thr_min;

							if (reset_int_z_manual) {
								i = _manual.z;

								if (i < _params.thr_min) {
									i = _params.thr_min;

								} else if (i > _params.thr_max) {
									i = _params.thr_max;
								}
							}

							thrust_int(2) = -i;
						}

					} else {
						reset_int_z = true;
					}

					if (_control_mode.flag_control_velocity_enabled) {
						if (reset_int_xy) {
							reset_int_xy = false;
							thrust_int(0) = 0.0f;
							thrust_int(1) = 0.0f;
						}

					} else {
						reset_int_xy = true;
					}

					/* velocity error */
					math::Vector<3> vel_err = _vel_sp - _vel;

					/* derivative of velocity error, not includes setpoint acceleration */
					math::Vector<3> vel_err_d = (_sp_move_rate - _vel).emult(_params.pos_p) - (_vel - _vel_prev) / dt;
					_vel_prev = _vel;

					/* thrust vector in NED frame */
					math::Vector<3> thrust_sp = vel_err.emult(_params.vel_p) + vel_err_d.emult(_params.vel_d) + thrust_int;

					if (!_control_mode.flag_control_velocity_enabled) {
						thrust_sp(0) = 0.0f;
						thrust_sp(1) = 0.0f;
					}

					if (!_control_mode.flag_control_climb_rate_enabled) {
						thrust_sp(2) = 0.0f;
					}

					/* limit thrust vector and check for saturation */
					bool saturation_xy = false;
					bool saturation_z = false;

					/* limit min lift */
					float thr_min = _params.thr_min;

					if (!_control_mode.flag_control_velocity_enabled && thr_min < 0.0f) {
						/* don't allow downside thrust direction in manual attitude mode */
						thr_min = 0.0f;
					}

					float tilt_max = _params.tilt_max_air;

					/* adjust limits for landing mode */
					if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid &&
					  	_pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_LAND) {
						/* limit max tilt and min lift when landing */
						tilt_max = _params.tilt_max_land;

						if (thr_min < 0.0f) {
							thr_min = 0.0f;
						}
					}

					/* limit min lift */
					if (-thrust_sp(2) < thr_min) {
						thrust_sp(2) = -thr_min;
						saturation_z = true;
					}

					if (_control_mode.flag_control_velocity_enabled) {
						/* limit max tilt */
						if (thr_min >= 0.0f && tilt_max < M_PI_F / 2 - 0.05f) {
							/* absolute horizontal thrust */
							float thrust_sp_xy_len = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length();

							if (thrust_sp_xy_len > 0.01f) {
								/* max horizontal thrust for given vertical thrust*/
								float thrust_xy_max = -thrust_sp(2) * tanf(tilt_max);

								if (thrust_sp_xy_len > thrust_xy_max) {
									float k = thrust_xy_max / thrust_sp_xy_len;
									thrust_sp(0) *= k;
									thrust_sp(1) *= k;
									saturation_xy = true;
								}
							}
						}

					} else {
						/* thrust compensation for altitude only control mode */
						float att_comp;

						if (PX4_R(_att.R, 2, 2) > TILT_COS_MAX) {
							att_comp = 1.0f / PX4_R(_att.R, 2, 2);

						} else if (PX4_R(_att.R, 2, 2) > 0.0f) {
							att_comp = ((1.0f / TILT_COS_MAX - 1.0f) / TILT_COS_MAX) * PX4_R(_att.R, 2, 2) + 1.0f;
							saturation_z = true;

						} else {
							att_comp = 1.0f;
							saturation_z = true;
						}

						thrust_sp(2) *= att_comp;
					}

					/* limit max thrust */
					float thrust_abs = thrust_sp.length();

					if (thrust_abs > _params.thr_max) {
						if (thrust_sp(2) < 0.0f) {
							if (-thrust_sp(2) > _params.thr_max) {
								/* thrust Z component is too large, limit it */
								thrust_sp(0) = 0.0f;
								thrust_sp(1) = 0.0f;
								thrust_sp(2) = -_params.thr_max;
								saturation_xy = true;
								saturation_z = true;

							} else {
								/* preserve thrust Z component and lower XY, keeping altitude is more important than position */
								float thrust_xy_max = sqrtf(_params.thr_max * _params.thr_max - thrust_sp(2) * thrust_sp(2));
								float thrust_xy_abs = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length();
								float k = thrust_xy_max / thrust_xy_abs;
								thrust_sp(0) *= k;
								thrust_sp(1) *= k;
								saturation_xy = true;
							}

						} else {
							/* Z component is negative, going down, simply limit thrust vector */
							float k = _params.thr_max / thrust_abs;
							thrust_sp *= k;
							saturation_xy = true;
							saturation_z = true;
						}

						thrust_abs = _params.thr_max;
					}

					/* update integrals */
					if (_control_mode.flag_control_velocity_enabled && !saturation_xy) {
						thrust_int(0) += vel_err(0) * _params.vel_i(0) * dt;
						thrust_int(1) += vel_err(1) * _params.vel_i(1) * dt;
					}

					if (_control_mode.flag_control_climb_rate_enabled && !saturation_z) {
						thrust_int(2) += vel_err(2) * _params.vel_i(2) * dt;

						/* protection against flipping on ground when landing */
						if (thrust_int(2) > 0.0f) {
							thrust_int(2) = 0.0f;
						}
					}

					/* calculate attitude setpoint from thrust vector */
					if (_control_mode.flag_control_velocity_enabled) {
						/* desired body_z axis = -normalize(thrust_vector) */
						math::Vector<3> body_x;
						math::Vector<3> body_y;
						math::Vector<3> body_z;

						if (thrust_abs > SIGMA) {
							body_z = -thrust_sp / thrust_abs;

						} else {
							/* no thrust, set Z axis to safe value */
							body_z.zero();
							body_z(2) = 1.0f;
						}

						/* vector of desired yaw direction in XY plane, rotated by PI/2 */
						math::Vector<3> y_C(-sinf(_att_sp.yaw_body), cosf(_att_sp.yaw_body), 0.0f);

						if (fabsf(body_z(2)) > SIGMA) {
							/* desired body_x axis, orthogonal to body_z */
							body_x = y_C % body_z;

							/* keep nose to front while inverted upside down */
							if (body_z(2) < 0.0f) {
								body_x = -body_x;
							}

							body_x.normalize();

						} else {
							/* desired thrust is in XY plane, set X downside to construct correct matrix,
							 * but yaw component will not be used actually */
							body_x.zero();
							body_x(2) = 1.0f;
						}

						/* desired body_y axis */
						body_y = body_z % body_x;

						/* fill rotation matrix */
						for (int i = 0; i < 3; i++) {
							R(i, 0) = body_x(i);
							R(i, 1) = body_y(i);
							R(i, 2) = body_z(i);
						}

						/* copy rotation matrix to attitude setpoint topic */
						memcpy(&_att_sp.R_body[0], R.data, sizeof(_att_sp.R_body));
						_att_sp.R_valid = true;

						/* calculate euler angles, for logging only, must not be used for control */
						math::Vector<3> euler = R.to_euler();
						_att_sp.roll_body = euler(0);
						_att_sp.pitch_body = euler(1);
						/* yaw already used to construct rot matrix, but actual rotation matrix can have different yaw near singularity */

					} else if (!_control_mode.flag_control_manual_enabled) {
						/* autonomous altitude control without position control (failsafe landing),
						 * force level attitude, don't change yaw */
						R.from_euler(0.0f, 0.0f, _att_sp.yaw_body);

						/* copy rotation matrix to attitude setpoint topic */
						memcpy(&_att_sp.R_body[0], R.data, sizeof(_att_sp.R_body));
						_att_sp.R_valid = true;

						_att_sp.roll_body = 0.0f;
						_att_sp.pitch_body = 0.0f;
					}

					_att_sp.thrust = thrust_abs;

					/* save thrust setpoint for logging */
					_local_pos_sp.acc_x = thrust_sp(0);
					_local_pos_sp.acc_x = thrust_sp(1);
					_local_pos_sp.acc_x = thrust_sp(2);

					_att_sp.timestamp = hrt_absolute_time();


				} else {
					reset_int_z = true;
				}
			}

			/* fill local position, velocity and thrust setpoint */
			_local_pos_sp.timestamp = hrt_absolute_time();
			_local_pos_sp.x = _pos_sp(0);
			_local_pos_sp.y = _pos_sp(1);
			_local_pos_sp.z = _pos_sp(2);
			_local_pos_sp.yaw = _att_sp.yaw_body;
			_local_pos_sp.vx = _vel_sp(0);
			_local_pos_sp.vy = _vel_sp(1);
			_local_pos_sp.vz = _vel_sp(2);

			/* publish local position setpoint */
			if (_local_pos_sp_pub > 0) {
				orb_publish(ORB_ID(vehicle_local_position_setpoint), _local_pos_sp_pub, &_local_pos_sp);
			} else {
				_local_pos_sp_pub = orb_advertise(ORB_ID(vehicle_local_position_setpoint), &_local_pos_sp);
			}

		} else {
			/* position controller disabled, reset setpoints */
			_reset_alt_sp = true;
			_reset_pos_sp = true;
			_mode_auto = false;
			reset_int_z = true;
			reset_int_xy = true;
		}

		// generate attitude setpoint from manual controls
		if(_control_mode.flag_control_manual_enabled && _control_mode.flag_control_attitude_enabled) {

			// reset yaw setpoint to current position if needed
			if (reset_yaw_sp) {
				reset_yaw_sp = false;
				_att_sp.yaw_body = _att.yaw;
			}

			// do not move yaw while arming
			else if (_manual.z > 0.1f)
			{
				const float YAW_OFFSET_MAX = _params.man_yaw_max / _params.mc_att_yaw_p;

				_att_sp.yaw_sp_move_rate = _manual.r * _params.man_yaw_max;
				_att_sp.yaw_body = _wrap_pi(_att_sp.yaw_body + _att_sp.yaw_sp_move_rate * dt);
				float yaw_offs = _wrap_pi(_att_sp.yaw_body - _att.yaw);
				if (yaw_offs < - YAW_OFFSET_MAX) {
					_att_sp.yaw_body = _wrap_pi(_att.yaw - YAW_OFFSET_MAX);

				} else if (yaw_offs > YAW_OFFSET_MAX) {
					_att_sp.yaw_body = _wrap_pi(_att.yaw + YAW_OFFSET_MAX);
				}
			}

			//Control roll and pitch directly if we no aiding velocity controller is active
			if(!_control_mode.flag_control_velocity_enabled) {
				_att_sp.roll_body = _manual.y * _params.man_roll_max;
				_att_sp.pitch_body = -_manual.x * _params.man_pitch_max;
			}

			//Control climb rate directly if no aiding altitude controller is active
			if(!_control_mode.flag_control_climb_rate_enabled) {
				_att_sp.thrust = _manual.z;
			}

			//Construct attitude setpoint rotation matrix
			math::Matrix<3,3> R_sp;
			R_sp.from_euler(_att_sp.roll_body,_att_sp.pitch_body,_att_sp.yaw_body);
			memcpy(&_att_sp.R_body[0], R_sp.data, sizeof(_att_sp.R_body));
			_att_sp.timestamp = hrt_absolute_time();
		}
		else {
			reset_yaw_sp = true;
		}

		/* publish attitude setpoint
		 * Do not publish if offboard is enabled but position/velocity control is disabled,
		 * in this case the attitude setpoint is published by the mavlink app
		 */
		if (!(_control_mode.flag_control_offboard_enabled &&
					!(_control_mode.flag_control_position_enabled ||
						_control_mode.flag_control_velocity_enabled))) {
			if (_att_sp_pub > 0) {
				orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_att_sp);

			} else {
				_att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_att_sp);
			}
		}

		/* reset altitude controller integral (hovering throttle) to manual throttle after manual throttle control */
		reset_int_z_manual = _control_mode.flag_armed && _control_mode.flag_control_manual_enabled && !_control_mode.flag_control_climb_rate_enabled;
	}

	warnx("stopped");
	mavlink_log_info(_mavlink_fd, "[mpc] stopped");

	_control_task = -1;
	_exit(0);
}
Exemplo n.º 5
0
void
MulticopterPositionControl::control_manual(float dt)
{
	_sp_move_rate.zero();

	if (_control_mode.flag_control_altitude_enabled) {
		if(_reset_mission)
		{
			_reset_mission = false;
			_mode_mission = 1 ;
			_hover_time = 0.0 ;
		}
		float height_hover_constant=-1.0;
		float hover_time_constant = 20.0;
		switch(_mode_mission)
		{	
			case 1:
				_sp_move_rate(2) = -0.8;
				if(_pos_sp(2)<=height_hover_constant)
					_mode_mission=2;
				break;
			case 2:
				_hover_time += dt;
				if(_hover_time>hover_time_constant)
				{
					_hover_time=0.0;
					_mode_mission=3;
				}
				break;
			case 3:
				_pos_sp_triplet.current.type =position_setpoint_s::SETPOINT_TYPE_LAND;
				break;
			default:
				/* move altitude setpoint with throttle stick */
				_sp_move_rate(2) = -scale_control(_manual.z - 0.5f, 0.5f, alt_ctl_dz);
				break;
		}
	}

	if (_control_mode.flag_control_position_enabled) {
		/* move position setpoint with roll/pitch stick */
		_sp_move_rate(0) = _manual.x;
		_sp_move_rate(1) = _manual.y;
	}

	/* limit setpoint move rate */
	float sp_move_norm = _sp_move_rate.length();

	if (sp_move_norm > 1.0f) {
		_sp_move_rate /= sp_move_norm;
	}

	/* _sp_move_rate scaled to 0..1, scale it to max speed and rotate around yaw */
	math::Matrix<3, 3> R_yaw_sp;
	R_yaw_sp.from_euler(0.0f, 0.0f, _att_sp.yaw_body);
	_sp_move_rate = R_yaw_sp * _sp_move_rate.emult(_params.vel_max);

	if (_control_mode.flag_control_altitude_enabled) {
		/* reset alt setpoint to current altitude if needed */
		reset_alt_sp();
	}

	if (_control_mode.flag_control_position_enabled) {
		/* reset position setpoint to current position if needed */
		reset_pos_sp();
	}

	/* feed forward setpoint move rate with weight vel_ff */
	_vel_ff = _sp_move_rate.emult(_params.vel_ff);

	/* move position setpoint */
	_pos_sp += _sp_move_rate * dt;

	/* check if position setpoint is too far from actual position */
	math::Vector<3> pos_sp_offs;
	pos_sp_offs.zero();

	if (_control_mode.flag_control_position_enabled) {
		pos_sp_offs(0) = (_pos_sp(0) - _pos(0)) / _params.sp_offs_max(0);
		pos_sp_offs(1) = (_pos_sp(1) - _pos(1)) / _params.sp_offs_max(1);
	}

	if (_control_mode.flag_control_altitude_enabled) {
		pos_sp_offs(2) = (_pos_sp(2) - _pos(2)) / _params.sp_offs_max(2);
	}

	float pos_sp_offs_norm = pos_sp_offs.length();

	if (pos_sp_offs_norm > 1.0f) {
		pos_sp_offs /= pos_sp_offs_norm;
		_pos_sp = _pos + pos_sp_offs.emult(_params.sp_offs_max);
	}
}
Exemplo n.º 6
0
void
MulticopterPositionControl::control_manual(float dt)
{
	_sp_move_rate.zero();

	if (_control_mode.flag_control_altitude_enabled) {
		/* move altitude setpoint with throttle stick */
		_sp_move_rate(2) = -scale_control(_manual.z - 0.5f, 0.5f, alt_ctl_dz);
	}

	if (_control_mode.flag_control_position_enabled) {
		/* move position setpoint with roll/pitch stick */
		_sp_move_rate(0) = _manual.x;
		_sp_move_rate(1) = _manual.y;
	}

	/* limit setpoint move rate */
	float sp_move_norm = _sp_move_rate.length();

	if (sp_move_norm > 1.0f) {
		_sp_move_rate /= sp_move_norm;
	}

	/* _sp_move_rate scaled to 0..1, scale it to max speed and rotate around yaw */
	math::Matrix<3, 3> R_yaw_sp;
	R_yaw_sp.from_euler(0.0f, 0.0f, _att_sp.yaw_body);
	_sp_move_rate = R_yaw_sp * _sp_move_rate.emult(_params.vel_max);

	if (_control_mode.flag_control_altitude_enabled) {
		/* reset alt setpoint to current altitude if needed */
		reset_alt_sp();
	}

	if (_control_mode.flag_control_position_enabled) {
		/* reset position setpoint to current position if needed */
		reset_pos_sp();
	}

	/* feed forward setpoint move rate with weight vel_ff */
	_vel_ff = _sp_move_rate.emult(_params.vel_ff);

	/* move position setpoint */
	_pos_sp += _sp_move_rate * dt;

	/* check if position setpoint is too far from actual position */
	math::Vector<3> pos_sp_offs;
	pos_sp_offs.zero();

	if (_control_mode.flag_control_position_enabled) {
		pos_sp_offs(0) = (_pos_sp(0) - _pos(0)) / _params.sp_offs_max(0);
		pos_sp_offs(1) = (_pos_sp(1) - _pos(1)) / _params.sp_offs_max(1);
	}

	if (_control_mode.flag_control_altitude_enabled) {
		pos_sp_offs(2) = (_pos_sp(2) - _pos(2)) / _params.sp_offs_max(2);
	}

	float pos_sp_offs_norm = pos_sp_offs.length();

	if (pos_sp_offs_norm > 1.0f) {
		pos_sp_offs /= pos_sp_offs_norm;
		_pos_sp = _pos + pos_sp_offs.emult(_params.sp_offs_max);
	}
}
Exemplo n.º 7
0
void run () 
{

  Image::Header H (argument[0]);

  Image::Info info (H);
  info.set_ndim (3);
  Image::BufferScratch<bool> mask (info);
  auto v_mask = mask.voxel();

  std::string mask_path;
  Options opt = get_options ("mask");
  if (opt.size()) {
    mask_path = std::string(opt[0][0]);
    Image::Buffer<bool> in (mask_path);
    if (!Image::dimensions_match (H, in, 0, 3))
      throw Exception ("Input mask image does not match DWI");
    if (!(in.ndim() == 3 || (in.ndim() == 4 && in.dim(3) == 1)))
      throw Exception ("Input mask image must be a 3D image");
    auto v_in = in.voxel();
    Image::copy (v_in, v_mask, 0, 3);
  } else {
    for (auto l = Image::LoopInOrder (v_mask) (v_mask); l; ++l) 
      v_mask.value() = true;
  }

  DWI::CSDeconv<float>::Shared shared (H);

  const size_t lmax = DWI::lmax_for_directions (shared.DW_dirs);
  if (lmax < 4)
    throw Exception ("Cannot run dwi2response with lmax less than 4");
  shared.lmax = lmax;

  Image::BufferPreload<float> dwi (H, Image::Stride::contiguous_along_axis (3));
  DWI::Directions::Set directions (1281);

  Math::Vector<float> response (lmax/2+1);
  response.zero();

  {
    // Initialise response function
    // Use lmax = 2, get the DWI intensity mean and standard deviation within the mask and
    //   use these as the first two coefficients
    auto v_dwi = dwi.voxel();
    double sum = 0.0, sq_sum = 0.0;
    size_t count = 0;
    Image::LoopInOrder loop (dwi, "initialising response function... ", 0, 3);
    for (auto l = loop (v_dwi, v_mask); l; ++l) {
      if (v_mask.value()) {
        for (size_t volume_index = 0; volume_index != shared.dwis.size(); ++volume_index) {
          v_dwi[3] = shared.dwis[volume_index];
          const float value = v_dwi.value();
          sum += value;
          sq_sum += Math::pow2 (value);
          ++count;
        }
      }
    }
    response[0] = sum / double (count);
    response[1] = - 0.5 * std::sqrt ((sq_sum / double(count)) - Math::pow2 (response[0]));
    // Account for scaling in SH basis
    response *= std::sqrt (4.0 * Math::pi);
  }
  INFO ("Initial response function is [" + str(response, 2) + "]");

  // Algorithm termination options
  opt = get_options ("max_iters");
  const size_t max_iters = opt.size() ? int(opt[0][0]) : DWI2RESPONSE_DEFAULT_MAX_ITERS;
  opt = get_options ("max_change");
  const float max_change = 0.01 * (opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_MAX_CHANGE);

  // Should all voxels (potentially within a user-specified mask) be tested at every iteration?
  opt = get_options ("test_all");
  const bool reset_mask = opt.size();

  // Single-fibre voxel selection options
  opt = get_options ("volume_ratio");
  const float volume_ratio = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_VOLUME_RATIO;
  opt = get_options ("dispersion_multiplier");
  const float dispersion_multiplier = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_DISPERSION_MULTIPLIER;
  opt = get_options ("integral_multiplier");
  const float integral_multiplier = opt.size() ? float(opt[0][0]) : DWI2RESPONSE_DEFAULT_INTEGRAL_STDEV_MULTIPLIER;

  SFThresholds thresholds (volume_ratio); // Only threshold the lobe volume ratio for now; other two are not yet used

  size_t total_iter = 0;
  bool first_pass = true;
  size_t prev_sf_count = 0;
  {
    bool iterate = true;
    size_t iter = 0;
    ProgressBar progress ("optimising response function... ");
    do {

      ++iter;

      {
        MR::LogLevelLatch latch (0);
        shared.set_response (response);
        shared.init();
      }

      ++progress;

      if (reset_mask) {
        if (mask_path.size()) {
          Image::Buffer<bool> in (mask_path);
          auto v_in = in.voxel();
          Image::copy (v_in, v_mask, 0, 3);
        } else {
          for (auto l = Image::LoopInOrder(v_mask) (v_mask); l; ++l)
            v_mask.value() = true;
        }
        ++progress;
      }

      std::vector<FODSegResult> seg_results;
      {
        FODCalcAndSeg processor (dwi, mask, shared, directions, lmax, seg_results);
        Image::ThreadedLoop loop (mask, 0, 3);
        loop.run (processor);
      }

      ++progress;

      if (!first_pass)
        thresholds.update (seg_results, dispersion_multiplier, integral_multiplier, iter);

      ++progress;

      Response output (lmax);
      mask.zero();
      {
        SFSelector selector (seg_results, thresholds, mask);
        ResponseEstimator estimator (dwi, shared, lmax, output);
        Thread::run_queue (selector, FODSegResult(), Thread::multi (estimator));
      }
      if (!output.get_count())
        throw Exception ("Cannot estimate response function; all voxels have been excluded from selection");
      const Math::Vector<float> new_response = output.result();
      const size_t sf_count = output.get_count();

      ++progress;

      if (App::log_level >= 2)
        std::cerr << "\n";
      INFO ("Iteration " + str(iter) + ", " + str(sf_count) + " SF voxels, new response function: [" + str(new_response, 2) + "]");

      if (sf_count == prev_sf_count) {
        INFO ("terminating due to convergence of single-fibre voxel selection");
        iterate = false;
      }
      if (iter == max_iters) {
        INFO ("terminating due to completing maximum number of iterations");
        iterate = false;
      }
      bool rf_changed = false;
      for (size_t i = 0; i != response.size(); ++i) {
        if (std::abs ((new_response[i] - response[i]) / new_response[i]) > max_change)
          rf_changed = true;
      }
      if (!rf_changed) {
        INFO ("terminating due to negligible changes in the response function coefficients");
        iterate = false;
      }

      if (!iterate && first_pass) {
        iterate = true;
        first_pass = false;
        INFO ("commencing second-pass of response function estimation");
        total_iter = iter;
        iter = 0;
      }

      response = new_response;
      prev_sf_count = sf_count;

      //v_mask.save ("mask_pass_" + str(first_pass?1:2) + "_iter_" + str(iter) + ".mif");

    } while (iterate);

    total_iter += iter;

  }

  CONSOLE ("final response function: [" + str(response, 2) + "] (reached after " + str(total_iter) + " iterations using " + str(prev_sf_count) + " voxels)");
  response.save (argument[1]);

  opt = get_options ("sf");
  if (opt.size())
    v_mask.save (std::string (opt[0][0]));

}
Exemplo n.º 8
0
/*
 * Attitude rates controller.
 * Input: '_rates_sp' vector, '_thrust_sp'
 * Output: '_att_control' vector
 */
void
MulticopterAttitudeControl::control_attitude_rates(float dt)
{
	/* reset integral if disarmed */
	if (!_armed.armed || !_vehicle_status.is_rotary_wing) {
		_rates_int.zero();
	}

	/* get transformation matrix from sensor/board to body frame */
	get_rot_matrix((enum Rotation)_params.board_rotation, &_board_rotation);

	/* fine tune the rotation */
	math::Matrix<3, 3> board_rotation_offset;
	board_rotation_offset.from_euler(M_DEG_TO_RAD_F * _params.board_offset[0],
					 M_DEG_TO_RAD_F * _params.board_offset[1],
					 M_DEG_TO_RAD_F * _params.board_offset[2]);
	_board_rotation = board_rotation_offset * _board_rotation;

	// get the raw gyro data and correct for thermal errors
	math::Vector<3> rates(_sensor_gyro.x * _sensor_correction.gyro_scale[0] + _sensor_correction.gyro_offset[0],
			      _sensor_gyro.y * _sensor_correction.gyro_scale[1] + _sensor_correction.gyro_offset[1],
			      _sensor_gyro.z * _sensor_correction.gyro_scale[2] + _sensor_correction.gyro_offset[2]);

	// rotate corrected measurements from sensor to body frame
	rates = _board_rotation * rates;

	// correct for in-run bias errors
	rates(0) -= _ctrl_state.roll_rate_bias;
	rates(1) -= _ctrl_state.pitch_rate_bias;
	rates(2) -= _ctrl_state.yaw_rate_bias;

	math::Vector<3> rates_p_scaled = _params.rate_p.emult(pid_attenuations(_params.tpa_breakpoint_p, _params.tpa_rate_p));
	math::Vector<3> rates_i_scaled = _params.rate_i.emult(pid_attenuations(_params.tpa_breakpoint_i, _params.tpa_rate_i));
	math::Vector<3> rates_d_scaled = _params.rate_d.emult(pid_attenuations(_params.tpa_breakpoint_d, _params.tpa_rate_d));

	/* angular rates error */
	math::Vector<3> rates_err = _rates_sp - rates;

	_att_control = rates_p_scaled.emult(rates_err) +
		       _rates_int +
		       rates_d_scaled.emult(_rates_prev - rates) / dt +
		       _params.rate_ff.emult(_rates_sp);

	_rates_sp_prev = _rates_sp;
	_rates_prev = rates;

	/* update integral only if motors are providing enough thrust to be effective */
	if (_thrust_sp > MIN_TAKEOFF_THRUST) {
		for (int i = AXIS_INDEX_ROLL; i < AXIS_COUNT; i++) {
			// Check for positive control saturation
			bool positive_saturation =
				((i == AXIS_INDEX_ROLL) && _saturation_status.flags.roll_pos) ||
				((i == AXIS_INDEX_PITCH) && _saturation_status.flags.pitch_pos) ||
				((i == AXIS_INDEX_YAW) && _saturation_status.flags.yaw_pos);

			// Check for negative control saturation
			bool negative_saturation =
				((i == AXIS_INDEX_ROLL) && _saturation_status.flags.roll_neg) ||
				((i == AXIS_INDEX_PITCH) && _saturation_status.flags.pitch_neg) ||
				((i == AXIS_INDEX_YAW) && _saturation_status.flags.yaw_neg);

			// prevent further positive control saturation
			if (positive_saturation) {
				rates_err(i) = math::min(rates_err(i), 0.0f);

			}

			// prevent further negative control saturation
			if (negative_saturation) {
				rates_err(i) = math::max(rates_err(i), 0.0f);

			}

			// Perform the integration using a first order method and do not propaate the result if out of range or invalid
			float rate_i = _rates_int(i) + _params.rate_i(i) * rates_err(i) * dt;

			if (PX4_ISFINITE(rate_i) && rate_i > -_params.rate_int_lim(i) && rate_i < _params.rate_int_lim(i)) {
				_rates_int(i) = rate_i;

			}
		}
	}

	/* explicitly limit the integrator state */
	for (int i = AXIS_INDEX_ROLL; i < AXIS_COUNT; i++) {
		_rates_int(i) = math::constrain(_rates_int(i), -_params.rate_int_lim(i), _params.rate_int_lim(i));

	}
}
Exemplo n.º 9
0
void
MulticopterAttitudeControl::task_main()
{

	/*
	 * do subscriptions
	 */
	_v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_v_rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
	_ctrl_state_sub = orb_subscribe(ORB_ID(control_state));
	_v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_armed_sub = orb_subscribe(ORB_ID(actuator_armed));
	_vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status));
	_motor_limits_sub = orb_subscribe(ORB_ID(multirotor_motor_limits));
	_battery_status_sub = orb_subscribe(ORB_ID(battery_status));

	_gyro_count = math::min(orb_group_count(ORB_ID(sensor_gyro)), MAX_GYRO_COUNT);

	for (unsigned s = 0; s < _gyro_count; s++) {
		_sensor_gyro_sub[s] = orb_subscribe_multi(ORB_ID(sensor_gyro), s);
	}

	_sensor_correction_sub = orb_subscribe(ORB_ID(sensor_correction));

	/* initialize parameters cache */
	parameters_update();

	/* wakeup source: gyro data from sensor selected by the sensor app */
	px4_pollfd_struct_t poll_fds = {};
	poll_fds.fd = _sensor_gyro_sub[_selected_gyro];
	poll_fds.events = POLLIN;

	while (!_task_should_exit) {

		/* wait for up to 100ms for data */
		int pret = px4_poll(&poll_fds, 1, 100);

		/* timed out - periodic check for _task_should_exit */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("mc att ctrl: poll error %d, %d", pret, errno);
			/* sleep a bit before next try */
			usleep(100000);
			continue;
		}

		perf_begin(_loop_perf);

		/* run controller on gyro changes */
		if (poll_fds.revents & POLLIN) {
			static uint64_t last_run = 0;
			float dt = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too small (< 2ms) and too large (> 20ms) dt's */
			if (dt < 0.002f) {
				dt = 0.002f;

			} else if (dt > 0.02f) {
				dt = 0.02f;
			}

			/* copy gyro data */
			orb_copy(ORB_ID(sensor_gyro), _sensor_gyro_sub[_selected_gyro], &_sensor_gyro);

			/* check for updates in other topics */
			parameter_update_poll();
			vehicle_control_mode_poll();
			arming_status_poll();
			vehicle_manual_poll();
			vehicle_status_poll();
			vehicle_motor_limits_poll();
			battery_status_poll();
			control_state_poll();
			sensor_correction_poll();

			/* Check if we are in rattitude mode and the pilot is above the threshold on pitch
			 * or roll (yaw can rotate 360 in normal att control).  If both are true don't
			 * even bother running the attitude controllers */
			if (_v_control_mode.flag_control_rattitude_enabled) {
				if (fabsf(_manual_control_sp.y) > _params.rattitude_thres ||
				    fabsf(_manual_control_sp.x) > _params.rattitude_thres) {
					_v_control_mode.flag_control_attitude_enabled = false;
				}
			}

			if (_v_control_mode.flag_control_attitude_enabled) {

				if (_ts_opt_recovery == nullptr) {
					// the  tailsitter recovery instance has not been created, thus, the vehicle
					// is not a tailsitter, do normal attitude control
					control_attitude(dt);

				} else {
					vehicle_attitude_setpoint_poll();
					_thrust_sp = _v_att_sp.thrust;
					math::Quaternion q(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
					math::Quaternion q_sp(&_v_att_sp.q_d[0]);
					_ts_opt_recovery->setAttGains(_params.att_p, _params.yaw_ff);
					_ts_opt_recovery->calcOptimalRates(q, q_sp, _v_att_sp.yaw_sp_move_rate, _rates_sp);

					/* limit rates */
					for (int i = 0; i < 3; i++) {
						_rates_sp(i) = math::constrain(_rates_sp(i), -_params.mc_rate_max(i), _params.mc_rate_max(i));
					}
				}

				/* publish attitude rates setpoint */
				_v_rates_sp.roll = _rates_sp(0);
				_v_rates_sp.pitch = _rates_sp(1);
				_v_rates_sp.yaw = _rates_sp(2);
				_v_rates_sp.thrust = _thrust_sp;
				_v_rates_sp.timestamp = hrt_absolute_time();

				if (_v_rates_sp_pub != nullptr) {
					orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

				} else if (_rates_sp_id) {
					_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
				}

				//}

			} else {
				/* attitude controller disabled, poll rates setpoint topic */
				if (_v_control_mode.flag_control_manual_enabled) {
					/* manual rates control - ACRO mode */
					_rates_sp = math::Vector<3>(_manual_control_sp.y, -_manual_control_sp.x,
								    _manual_control_sp.r).emult(_params.acro_rate_max);
					_thrust_sp = math::min(_manual_control_sp.z, MANUAL_THROTTLE_MAX_MULTICOPTER);

					/* publish attitude rates setpoint */
					_v_rates_sp.roll = _rates_sp(0);
					_v_rates_sp.pitch = _rates_sp(1);
					_v_rates_sp.yaw = _rates_sp(2);
					_v_rates_sp.thrust = _thrust_sp;
					_v_rates_sp.timestamp = hrt_absolute_time();

					if (_v_rates_sp_pub != nullptr) {
						orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

					} else if (_rates_sp_id) {
						_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
					}

				} else {
					/* attitude controller disabled, poll rates setpoint topic */
					vehicle_rates_setpoint_poll();
					_rates_sp(0) = _v_rates_sp.roll;
					_rates_sp(1) = _v_rates_sp.pitch;
					_rates_sp(2) = _v_rates_sp.yaw;
					_thrust_sp = _v_rates_sp.thrust;
				}
			}

			if (_v_control_mode.flag_control_rates_enabled) {
				control_attitude_rates(dt);

				/* publish actuator controls */
				_actuators.control[0] = (PX4_ISFINITE(_att_control(0))) ? _att_control(0) : 0.0f;
				_actuators.control[1] = (PX4_ISFINITE(_att_control(1))) ? _att_control(1) : 0.0f;
				_actuators.control[2] = (PX4_ISFINITE(_att_control(2))) ? _att_control(2) : 0.0f;
				_actuators.control[3] = (PX4_ISFINITE(_thrust_sp)) ? _thrust_sp : 0.0f;
				_actuators.control[7] = _v_att_sp.landing_gear;
				_actuators.timestamp = hrt_absolute_time();
				_actuators.timestamp_sample = _ctrl_state.timestamp;

				/* scale effort by battery status */
				if (_params.bat_scale_en && _battery_status.scale > 0.0f) {
					for (int i = 0; i < 4; i++) {
						_actuators.control[i] *= _battery_status.scale;
					}
				}

				_controller_status.roll_rate_integ = _rates_int(0);
				_controller_status.pitch_rate_integ = _rates_int(1);
				_controller_status.yaw_rate_integ = _rates_int(2);
				_controller_status.timestamp = hrt_absolute_time();

				if (!_actuators_0_circuit_breaker_enabled) {
					if (_actuators_0_pub != nullptr) {

						orb_publish(_actuators_id, _actuators_0_pub, &_actuators);
						perf_end(_controller_latency_perf);

					} else if (_actuators_id) {
						_actuators_0_pub = orb_advertise(_actuators_id, &_actuators);
					}

				}

				/* publish controller status */
				if (_controller_status_pub != nullptr) {
					orb_publish(ORB_ID(mc_att_ctrl_status), _controller_status_pub, &_controller_status);

				} else {
					_controller_status_pub = orb_advertise(ORB_ID(mc_att_ctrl_status), &_controller_status);
				}
			}

			if (_v_control_mode.flag_control_termination_enabled) {
				if (!_vehicle_status.is_vtol) {

					_rates_sp.zero();
					_rates_int.zero();
					_thrust_sp = 0.0f;
					_att_control.zero();


					/* publish actuator controls */
					_actuators.control[0] = 0.0f;
					_actuators.control[1] = 0.0f;
					_actuators.control[2] = 0.0f;
					_actuators.control[3] = 0.0f;
					_actuators.timestamp = hrt_absolute_time();
					_actuators.timestamp_sample = _ctrl_state.timestamp;

					if (!_actuators_0_circuit_breaker_enabled) {
						if (_actuators_0_pub != nullptr) {

							orb_publish(_actuators_id, _actuators_0_pub, &_actuators);
							perf_end(_controller_latency_perf);

						} else if (_actuators_id) {
							_actuators_0_pub = orb_advertise(_actuators_id, &_actuators);
						}
					}

					_controller_status.roll_rate_integ = _rates_int(0);
					_controller_status.pitch_rate_integ = _rates_int(1);
					_controller_status.yaw_rate_integ = _rates_int(2);
					_controller_status.timestamp = hrt_absolute_time();

					/* publish controller status */
					if (_controller_status_pub != nullptr) {
						orb_publish(ORB_ID(mc_att_ctrl_status), _controller_status_pub, &_controller_status);

					} else {
						_controller_status_pub = orb_advertise(ORB_ID(mc_att_ctrl_status), &_controller_status);
					}

					/* publish attitude rates setpoint */
					_v_rates_sp.roll = _rates_sp(0);
					_v_rates_sp.pitch = _rates_sp(1);
					_v_rates_sp.yaw = _rates_sp(2);
					_v_rates_sp.thrust = _thrust_sp;
					_v_rates_sp.timestamp = hrt_absolute_time();

					if (_v_rates_sp_pub != nullptr) {
						orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

					} else if (_rates_sp_id) {
						_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
					}
				}
			}
		}

		perf_end(_loop_perf);
	}

	_control_task = -1;
	return;
}