Exemplo n.º 1
0
    Mesh::MeshObject* run(const std::vector<Mesh::MeshObjectConstRef>& meshdata)
    {
        std::vector<Mesh::MeshObjectConstRef> meshes = meshdata;
        if (meshes.empty())
            return 0; // nothing todo
        Mesh::MeshObjectConstRef myMesh = 0;
        std::sort(meshes.begin(), meshes.end(), MeshObject_greater());
        myMesh = meshes.front();

        if (meshes.size() > 1) {
            MeshCore::MeshKernel kernel;

            // copy the data of the first mesh, this will be the new model then
            kernel = myMesh->getKernel();
            for (std::vector<Mesh::MeshObjectConstRef>::iterator it = meshes.begin(); it != meshes.end(); ++it) {
                if (*it != myMesh) {
                    Base::Console().Message("MeshTestJob::run() in thread: %p\n", QThread::currentThreadId());
                }
            }

            // avoid to copy the data
            Mesh::MeshObject* mesh = new Mesh::MeshObject();
            mesh->swap(kernel);
            return mesh;
        }
        else {
            Mesh::MeshObject* mesh = new Mesh::MeshObject();
            mesh->setKernel(myMesh->getKernel());
            return mesh;
        }
    }
Exemplo n.º 2
0
    Py::Object wireFromSegment(const Py::Tuple& args)
    {
        PyObject *o, *m;
        if (!PyArg_ParseTuple(args.ptr(), "O!O!", &(Mesh::MeshPy::Type), &m,&PyList_Type,&o))
            throw Py::Exception();

        Py::List list(o);
        Mesh::MeshObject* mesh = static_cast<Mesh::MeshPy*>(m)->getMeshObjectPtr();
        std::vector<unsigned long> segm;
        segm.reserve(list.size());
        for (unsigned int i=0; i<list.size(); i++) {
            segm.push_back((int)Py::Int(list[i]));
        }

        std::list<std::vector<Base::Vector3f> > bounds;
        MeshCore::MeshAlgorithm algo(mesh->getKernel());
        algo.GetFacetBorders(segm, bounds);

        Py::List wires;
        std::list<std::vector<Base::Vector3f> >::iterator bt;

        for (bt = bounds.begin(); bt != bounds.end(); ++bt) {
            BRepBuilderAPI_MakePolygon mkPoly;
            for (std::vector<Base::Vector3f>::reverse_iterator it = bt->rbegin(); it != bt->rend(); ++it) {
                mkPoly.Add(gp_Pnt(it->x,it->y,it->z));
            }
            if (mkPoly.IsDone()) {
                PyObject* wire = new Part::TopoShapeWirePy(new Part::TopoShape(mkPoly.Wire()));
                wires.append(Py::Object(wire, true));
            }
        }

        return wires;
    }
void DlgEvaluateMeshImp::on_repairSelfIntersectionButton_clicked()
{
    if (d->meshFeature) {
        const char* docName = App::GetApplication().getDocumentName(d->meshFeature->getDocument());
#if 0
        const char* objName = d->meshFeature->getNameInDocument();
#endif
        Gui::Document* doc = Gui::Application::Instance->getDocument(docName);
        doc->openCommand("Fix self-intersections");
#if 0
        try {
            Gui::Application::Instance->runCommand(
                true, "App.getDocument(\"%s\").getObject(\"%s\").fixSelfIntersections()"
                    , docName, objName);
        }
        catch (const Base::Exception& e) {
            QMessageBox::warning(this, tr("Self-intersections"), QString::fromLatin1(e.what()));
        }
#else
        Mesh::MeshObject* mesh = d->meshFeature->Mesh.startEditing();
        mesh->removeSelfIntersections(d->self_intersections);
        d->meshFeature->Mesh.finishEditing();
#endif

        doc->commitCommand();
        doc->getDocument()->recompute();
    
        repairSelfIntersectionButton->setEnabled(false);
        checkSelfIntersectionButton->setChecked(false);
        removeViewProvider("MeshGui::ViewProviderMeshSelfIntersections");
    }
}
Exemplo n.º 4
0
void Segmentation::accept()
{
    const Mesh::MeshObject* mesh = myMesh->Mesh.getValuePtr();
    // make a copy because we might smooth the mesh before
    MeshCore::MeshKernel kernel = mesh->getKernel();

    if (ui->checkBoxSmooth->isChecked()) {
        MeshCore::LaplaceSmoothing smoother(kernel);
        smoother.Smooth(ui->smoothSteps->value());
    }

    MeshCore::MeshSegmentAlgorithm finder(kernel);
    MeshCore::MeshCurvature meshCurv(kernel);
    meshCurv.ComputePerVertex();

    std::vector<MeshCore::MeshSurfaceSegment*> segm;
    if (ui->groupBoxCyl->isChecked()) {
        segm.push_back(new MeshCore::MeshCurvatureCylindricalSegment
            (meshCurv.GetCurvature(), ui->numCyl->value(), ui->tol1Cyl->value(), ui->tol2Cyl->value(), ui->radCyl->value().getValue()));
    }
    if (ui->groupBoxSph->isChecked()) {
        segm.push_back(new MeshCore::MeshCurvatureSphericalSegment
            (meshCurv.GetCurvature(), ui->numSph->value(), ui->tolSph->value(), ui->radSph->value().getValue()));
    }
    if (ui->groupBoxPln->isChecked()) {
        segm.push_back(new MeshCore::MeshCurvaturePlanarSegment
            (meshCurv.GetCurvature(), ui->numPln->value(), ui->tolPln->value()));
    }
    finder.FindSegments(segm);

    App::Document* document = App::GetApplication().getActiveDocument();
    document->openTransaction("Segmentation");

    std::string internalname = "Segments_";
    internalname += myMesh->getNameInDocument();
    App::DocumentObjectGroup* group = static_cast<App::DocumentObjectGroup*>(document->addObject
        ("App::DocumentObjectGroup", internalname.c_str()));
    std::string labelname = "Segments ";
    labelname += myMesh->Label.getValue();
    group->Label.setValue(labelname);
    for (std::vector<MeshCore::MeshSurfaceSegment*>::iterator it = segm.begin(); it != segm.end(); ++it) {
        const std::vector<MeshCore::MeshSegment>& data = (*it)->GetSegments();
        for (std::vector<MeshCore::MeshSegment>::const_iterator jt = data.begin(); jt != data.end(); ++jt) {
            Mesh::MeshObject* segment = mesh->meshFromSegment(*jt);
            Mesh::Feature* feaSegm = static_cast<Mesh::Feature*>(group->addObject("Mesh::Feature", "Segment"));
            Mesh::MeshObject* feaMesh = feaSegm->Mesh.startEditing();
            feaMesh->swap(*segment);
            feaSegm->Mesh.finishEditing();
            delete segment;

            std::stringstream label;
            label << feaSegm->Label.getValue() << " (" << (*it)->GetType() << ")";
            feaSegm->Label.setValue(label.str());
        }
        delete (*it);
    }
    document->commitTransaction();
}
Exemplo n.º 5
0
void MeshConversion::convert(const pcl::PolygonMesh& pclMesh, Mesh::MeshObject& meshObject)
{
    // number of points
    size_t nr_points  = pclMesh.cloud.width * pclMesh.cloud.height;
    size_t point_size = pclMesh.cloud.data.size () / nr_points;
    // number of faces for header
    size_t nr_faces = pclMesh.polygons.size ();

    MeshCore::MeshPointArray points;
    points.reserve(nr_points);
    MeshCore::MeshFacetArray facets;
    facets.reserve(nr_faces);

    // get vertices
    MeshCore::MeshPoint vertex;
    for (size_t i = 0; i < nr_points; ++i) {
        int xyz = 0;
        for (size_t d = 0; d < pclMesh.cloud.fields.size(); ++d) {
            int c = 0;
            // adding vertex
            if ((pclMesh.cloud.fields[d].datatype ==
#if PCL_VERSION_COMPARE(>,1,6,0)
                 pcl::PCLPointField::FLOAT32) &&
#else
                 sensor_msgs::PointField::FLOAT32) &&
#endif
                (pclMesh.cloud.fields[d].name == "x" ||
                 pclMesh.cloud.fields[d].name == "y" ||
                 pclMesh.cloud.fields[d].name == "z"))
            {
                float value;
                memcpy (&value, &pclMesh.cloud.data[i * point_size + pclMesh.cloud.fields[d].offset + c * sizeof (float)], sizeof (float));
                vertex[xyz] = value;
                if (++xyz == 3) {
                    points.push_back(vertex);
                    break;
                }
            }
        }
    }
    // get faces
    MeshCore::MeshFacet face;
    for (size_t i = 0; i < nr_faces; i++) {
        face._aulPoints[0] = pclMesh.polygons[i].vertices[0];
        face._aulPoints[1] = pclMesh.polygons[i].vertices[1];
        face._aulPoints[2] = pclMesh.polygons[i].vertices[2];
        facets.push_back(face);
    }

    MeshCore::MeshKernel kernel;
    kernel.Adopt(points, facets, true);
    meshObject.swap(kernel);
    meshObject.harmonizeNormals();
}
PyObject*  MeshFeaturePy::harmonizeNormals(PyObject *args)
{
    if (!PyArg_ParseTuple(args, ""))
        return NULL;

    PY_TRY {
        Mesh::MeshObject *mesh = getFeaturePtr()->Mesh.startEditing();
        mesh->harmonizeNormals();
        getFeaturePtr()->Mesh.finishEditing();
    } PY_CATCH;

    Py_Return; 
}
Exemplo n.º 7
0
void MeshFaceAddition::addFace()
{
    Mesh::Feature* mf = static_cast<Mesh::Feature*>(faceView->mesh->getObject());
    App::Document* doc = mf->getDocument();
    doc->openTransaction("Add triangle");
    Mesh::MeshObject* mesh = mf->Mesh.startEditing();
    MeshCore::MeshFacet f;
    f._aulPoints[0] = faceView->index[0];
    f._aulPoints[1] = faceView->index[1];
    f._aulPoints[2] = faceView->index[2];
    std::vector<MeshCore::MeshFacet> faces;
    faces.push_back(f);
    mesh->addFacets(faces);
    mf->Mesh.finishEditing();
    doc->commitTransaction();

    clearPoints();
}
Exemplo n.º 8
0
static PyObject *
wireFromSegment(PyObject *self, PyObject *args)
{
    PyObject *o, *m;
    if (!PyArg_ParseTuple(args, "O!O!", &(Mesh::MeshPy::Type), &m,&PyList_Type,&o))
        return 0;
    Py::List list(o);
    Mesh::MeshObject* mesh = static_cast<Mesh::MeshPy*>(m)->getMeshObjectPtr();
    std::vector<unsigned long> segm;
    segm.reserve(list.size());
    for (unsigned int i=0; i<list.size(); i++) {
        segm.push_back((int)Py::Int(list[i]));
    }

    std::list<std::vector<Base::Vector3f> > bounds;
    MeshCore::MeshAlgorithm algo(mesh->getKernel());
    algo.GetFacetBorders(segm, bounds);

    Py::List wires;
    std::list<std::vector<Base::Vector3f> >::iterator bt;

    try {
        for (bt = bounds.begin(); bt != bounds.end(); ++bt) {
            BRepBuilderAPI_MakePolygon mkPoly;
            for (std::vector<Base::Vector3f>::reverse_iterator it = bt->rbegin(); it != bt->rend(); ++it) {
                mkPoly.Add(gp_Pnt(it->x,it->y,it->z));
            }
            if (mkPoly.IsDone()) {
                PyObject* wire = new Part::TopoShapeWirePy(new Part::TopoShape(mkPoly.Wire()));
                wires.append(Py::Object(wire, true));
            }
        }
    }
    catch (Standard_Failure) {
        Handle_Standard_Failure e = Standard_Failure::Caught();
        PyErr_SetString(Base::BaseExceptionFreeCADError, e->GetMessageString());
        return 0;
    }

    return Py::new_reference_to(wires);
}
Exemplo n.º 9
0
PyObject*  MeshPy::getPlanes(PyObject *args)
{
    float dev;
    if (!PyArg_ParseTuple(args, "f",&dev))
        return NULL;

    Mesh::MeshObject* mesh = getMeshObjectPtr();
    std::vector<Mesh::Segment> segments = mesh->getSegmentsFromType
        (Mesh::MeshObject::PLANE, Mesh::Segment(mesh,false), dev);

    Py::List s;
    for (std::vector<Mesh::Segment>::iterator it = segments.begin(); it != segments.end(); ++it) {
        const std::vector<unsigned long>& segm = it->getIndices();
        Py::List ary;
        for (std::vector<unsigned long>::const_iterator jt = segm.begin(); jt != segm.end(); ++jt) {
            ary.append(Py::Int((int)*jt));
        }
        s.append(ary);
    }

    return Py::new_reference_to(s);
}
Exemplo n.º 10
0
void SegmentationBestFit::accept()
{
    const Mesh::MeshObject* mesh = myMesh->Mesh.getValuePtr();
    const MeshCore::MeshKernel& kernel = mesh->getKernel();

    MeshCore::MeshSegmentAlgorithm finder(kernel);

    std::vector<MeshCore::MeshSurfaceSegment*> segm;
    if (ui->groupBoxCyl->isChecked()) {
        MeshCore::AbstractSurfaceFit* fitter;
        if (cylinderParameter.size() == 7) {
            std::vector<float>& p = cylinderParameter;
            fitter = new MeshCore::CylinderSurfaceFit(
                Base::Vector3f(p[0],p[1],p[2]),
                Base::Vector3f(p[3],p[4],p[5]),
                p[6]);
        }
        else {
            fitter = new MeshCore::CylinderSurfaceFit;
        }
        segm.push_back(new MeshCore::MeshDistanceGenericSurfaceFitSegment
            (fitter, kernel, ui->numCyl->value(), ui->tolCyl->value()));
    }
    if (ui->groupBoxSph->isChecked()) {
        MeshCore::AbstractSurfaceFit* fitter;
        if (sphereParameter.size() == 4) {
            std::vector<float>& p = sphereParameter;
            fitter = new MeshCore::SphereSurfaceFit(
                Base::Vector3f(p[0],p[1],p[2]),
                p[3]);
        }
        else {
            fitter = new MeshCore::SphereSurfaceFit;
        }
        segm.push_back(new MeshCore::MeshDistanceGenericSurfaceFitSegment
            (fitter, kernel, ui->numSph->value(), ui->tolSph->value()));
    }
    if (ui->groupBoxPln->isChecked()) {
        MeshCore::AbstractSurfaceFit* fitter;
        if (planeParameter.size() == 6) {
            std::vector<float>& p = planeParameter;
            fitter = new MeshCore::PlaneSurfaceFit(
                Base::Vector3f(p[0],p[1],p[2]),
                Base::Vector3f(p[3],p[4],p[5]));
        }
        else {
            fitter = new MeshCore::PlaneSurfaceFit;
        }
        segm.push_back(new MeshCore::MeshDistanceGenericSurfaceFitSegment
            (fitter, kernel, ui->numPln->value(), ui->tolPln->value()));
    }
    finder.FindSegments(segm);

    App::Document* document = App::GetApplication().getActiveDocument();
    document->openTransaction("Segmentation");

    std::string internalname = "Segments_";
    internalname += myMesh->getNameInDocument();
    App::DocumentObjectGroup* group = static_cast<App::DocumentObjectGroup*>(document->addObject
        ("App::DocumentObjectGroup", internalname.c_str()));
    std::string labelname = "Segments ";
    labelname += myMesh->Label.getValue();
    group->Label.setValue(labelname);
    for (std::vector<MeshCore::MeshSurfaceSegment*>::iterator it = segm.begin(); it != segm.end(); ++it) {
        const std::vector<MeshCore::MeshSegment>& data = (*it)->GetSegments();
        for (std::vector<MeshCore::MeshSegment>::const_iterator jt = data.begin(); jt != data.end(); ++jt) {
            Mesh::MeshObject* segment = mesh->meshFromSegment(*jt);
            Mesh::Feature* feaSegm = static_cast<Mesh::Feature*>(group->addObject("Mesh::Feature", "Segment"));
            Mesh::MeshObject* feaMesh = feaSegm->Mesh.startEditing();
            feaMesh->swap(*segment);
            feaSegm->Mesh.finishEditing();
            delete segment;

            std::stringstream label;
            label << feaSegm->Label.getValue() << " (" << (*it)->GetType() << ")";
            feaSegm->Label.setValue(label.str());
        }
        delete (*it);
    }
    document->commitTransaction();
}
Exemplo n.º 11
0
Base::Reference<Mesh::MeshObject> loadMesh(const QString& s)
{
    Mesh::MeshObject* mesh = new Mesh::MeshObject();
    mesh->load((const char*)s.toUtf8());
    return mesh;
}
Exemplo n.º 12
0
Mesh::MeshObject* Mesher::createMesh() const
{
    // OCC standard mesher
    if (method == Standard) {
        Handle_StlMesh_Mesh aMesh = new StlMesh_Mesh();

        if (!shape.IsNull()) {
            BRepTools::Clean(shape);
#if OCC_VERSION_HEX >= 0x060801
            BRepMesh_IncrementalMesh bMesh(shape, deflection, Standard_False, angularDeflection);
            StlTransfer::RetrieveMesh(shape,aMesh);
#else
            StlTransfer::BuildIncrementalMesh(shape, deflection,
#if OCC_VERSION_HEX >= 0x060503
                Standard_True,
#endif
                aMesh);
#endif
        }

        std::map<uint32_t, std::vector<std::size_t> > colorMap;
        for (std::size_t i=0; i<colors.size(); i++) {
            colorMap[colors[i]].push_back(i);
        }

        bool createSegm = (static_cast<int>(colors.size()) == aMesh->NbDomains());

        MeshCore::MeshFacetArray faces;
        faces.reserve(aMesh->NbTriangles());

        std::set<Vertex> vertices;
        Standard_Real x1, y1, z1;
        Standard_Real x2, y2, z2;
        Standard_Real x3, y3, z3;

        std::vector< std::vector<unsigned long> > meshSegments;
        std::size_t numMeshFaces = 0;
        StlMesh_MeshExplorer xp(aMesh);
        for (Standard_Integer nbd=1;nbd<=aMesh->NbDomains();nbd++) {
            std::size_t numDomainFaces = 0;
            for (xp.InitTriangle(nbd); xp.MoreTriangle(); xp.NextTriangle()) {
                xp.TriangleVertices(x1,y1,z1,x2,y2,z2,x3,y3,z3);
                std::set<Vertex>::iterator it;
                MeshCore::MeshFacet face;

                // 1st vertex
                Vertex v1(x1,y1,z1);
                it = vertices.find(v1);
                if (it == vertices.end()) {
                    v1.i = vertices.size();
                    face._aulPoints[0] = v1.i;
                    vertices.insert(v1);
                }
                else {
                    face._aulPoints[0] = it->i;
                }

                // 2nd vertex
                Vertex v2(x2,y2,z2);
                it = vertices.find(v2);
                if (it == vertices.end()) {
                    v2.i = vertices.size();
                    face._aulPoints[1] = v2.i;
                    vertices.insert(v2);
                }
                else {
                    face._aulPoints[1] = it->i;
                }

                // 3rd vertex
                Vertex v3(x3,y3,z3);
                it = vertices.find(v3);
                if (it == vertices.end()) {
                    v3.i = vertices.size();
                    face._aulPoints[2] = v3.i;
                    vertices.insert(v3);
                }
                else {
                    face._aulPoints[2] = it->i;
                }

                // make sure that we don't insert invalid facets
                if (face._aulPoints[0] != face._aulPoints[1] &&
                    face._aulPoints[1] != face._aulPoints[2] &&
                    face._aulPoints[2] != face._aulPoints[0]) {
                    faces.push_back(face);
                    numDomainFaces++;
                }
            }

            // add a segment for the face
            if (createSegm || this->segments) {
                std::vector<unsigned long> segment(numDomainFaces);
                std::generate(segment.begin(), segment.end(), Base::iotaGen<unsigned long>(numMeshFaces));
                numMeshFaces += numDomainFaces;
                meshSegments.push_back(segment);
            }
        }

        MeshCore::MeshPointArray verts;
        verts.resize(vertices.size());
        for (auto it : vertices)
            verts[it.i] = it.toPoint();

        MeshCore::MeshKernel kernel;
        kernel.Adopt(verts, faces, true);

        Mesh::MeshObject* meshdata = new Mesh::MeshObject();
        meshdata->swap(kernel);
        if (createSegm) {
            int index = 0;
            for (auto it : colorMap) {
                Mesh::Segment segm(meshdata, false);
                for (auto jt : it.second) {
                    segm.addIndices(meshSegments[jt]);
                }
                segm.save(true);
                std::stringstream str;
                str << "patch" << index++;
                segm.setName(str.str());
                meshdata->addSegment(segm);
            }
        }
        else {
            for (auto it : meshSegments) {
                meshdata->addSegment(it);
            }
        }
        return meshdata;
    }

#ifndef HAVE_SMESH
    throw Base::Exception("SMESH is not available on this platform");
#else
    std::list<SMESH_Hypothesis*> hypoth;

    SMESH_Gen* meshgen = SMESH_Gen::get();
    SMESH_Mesh* mesh = meshgen->CreateMesh(0, true);
    int hyp=0;

    switch (method) {
#if defined (HAVE_NETGEN)
    case Netgen: {
        NETGENPlugin_Hypothesis_2D* hyp2d = new NETGENPlugin_Hypothesis_2D(hyp++,0,meshgen);

        if (fineness >=0 && fineness < 5) {
            hyp2d->SetFineness(NETGENPlugin_Hypothesis_2D::Fineness(fineness));
        }
        // user defined values
        else {
            if (growthRate > 0)
                hyp2d->SetGrowthRate(growthRate);
            if (nbSegPerEdge > 0)
                hyp2d->SetNbSegPerEdge(nbSegPerEdge);
            if (nbSegPerRadius > 0)
                hyp2d->SetNbSegPerRadius(nbSegPerRadius);
        }

        hyp2d->SetQuadAllowed(allowquad);
        hyp2d->SetOptimize(optimize);
        hyp2d->SetSecondOrder(secondOrder); // apply bisecting to create four triangles out of one
        hypoth.push_back(hyp2d);

        NETGENPlugin_NETGEN_2D* alg2d = new NETGENPlugin_NETGEN_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
#if defined (HAVE_MEFISTO)
    case Mefisto: {
        if (maxLength > 0) {
            StdMeshers_MaxLength* hyp1d = new StdMeshers_MaxLength(hyp++, 0, meshgen);
            hyp1d->SetLength(maxLength);
            hypoth.push_back(hyp1d);
        }
        else if (localLength > 0) {
            StdMeshers_LocalLength* hyp1d = new StdMeshers_LocalLength(hyp++,0,meshgen);
            hyp1d->SetLength(localLength);
            hypoth.push_back(hyp1d);
        }
        else if (maxArea > 0) {
            StdMeshers_MaxElementArea* hyp2d = new StdMeshers_MaxElementArea(hyp++,0,meshgen);
            hyp2d->SetMaxArea(maxArea);
            hypoth.push_back(hyp2d);
        }
        else if (deflection > 0) {
            StdMeshers_Deflection1D* hyp1d = new StdMeshers_Deflection1D(hyp++,0,meshgen);
            hyp1d->SetDeflection(deflection);
            hypoth.push_back(hyp1d);
        }
        else if (minLen > 0 && maxLen > 0) {
            StdMeshers_Arithmetic1D* hyp1d = new StdMeshers_Arithmetic1D(hyp++,0,meshgen);
            hyp1d->SetLength(minLen, false);
            hyp1d->SetLength(maxLen, true);
            hypoth.push_back(hyp1d);
        }
        else {
            StdMeshers_AutomaticLength* hyp1d = new StdMeshers_AutomaticLength(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        {
            StdMeshers_NumberOfSegments* hyp1d = new StdMeshers_NumberOfSegments(hyp++,0,meshgen);
            hyp1d->SetNumberOfSegments(1);
            hypoth.push_back(hyp1d);
        }

        if (regular) {
            StdMeshers_Regular_1D* hyp1d = new StdMeshers_Regular_1D(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        StdMeshers_TrianglePreference* hyp2d_1 = new StdMeshers_TrianglePreference(hyp++,0,meshgen);
        hypoth.push_back(hyp2d_1);
        StdMeshers_MEFISTO_2D* alg2d = new StdMeshers_MEFISTO_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
    default:
        break;
    }

    // Set new cout
    MeshingOutput stdcout;
    std::streambuf* oldcout = std::cout.rdbuf(&stdcout);

    // Apply the hypothesis and create the mesh
    mesh->ShapeToMesh(shape);
    for (int i=0; i<hyp;i++)
        mesh->AddHypothesis(shape, i);
    meshgen->Compute(*mesh, mesh->GetShapeToMesh());

    // Restore old cout
    std::cout.rdbuf(oldcout);

    // build up the mesh structure
    SMDS_FaceIteratorPtr aFaceIter = mesh->GetMeshDS()->facesIterator();
    SMDS_NodeIteratorPtr aNodeIter = mesh->GetMeshDS()->nodesIterator();

    MeshCore::MeshPointArray verts;
    MeshCore::MeshFacetArray faces;
    verts.reserve(mesh->NbNodes());
    faces.reserve(mesh->NbFaces());

    int index=0;
    std::map<const SMDS_MeshNode*, int> mapNodeIndex;
    for (;aNodeIter->more();) {
        const SMDS_MeshNode* aNode = aNodeIter->next();
        MeshCore::MeshPoint p;
        p.Set((float)aNode->X(), (float)aNode->Y(), (float)aNode->Z());
        verts.push_back(p);
        mapNodeIndex[aNode] = index++;
    }
    for (;aFaceIter->more();) {
        const SMDS_MeshFace* aFace = aFaceIter->next();
        if (aFace->NbNodes() == 3) {
            MeshCore::MeshFacet f;
            for (int i=0; i<3;i++) {
                const SMDS_MeshNode* node = aFace->GetNode(i);
                f._aulPoints[i] = mapNodeIndex[node];
            }
            faces.push_back(f);
        }
        else if (aFace->NbNodes() == 4) {
            MeshCore::MeshFacet f1, f2;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node1];
            f1._aulPoints[2] = mapNodeIndex[node2];

            f2._aulPoints[0] = mapNodeIndex[node0];
            f2._aulPoints[1] = mapNodeIndex[node2];
            f2._aulPoints[2] = mapNodeIndex[node3];

            faces.push_back(f1);
            faces.push_back(f2);
        }
        else if (aFace->NbNodes() == 6) {
            MeshCore::MeshFacet f1, f2, f3, f4;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node3];
            f1._aulPoints[2] = mapNodeIndex[node5];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node4];
            f2._aulPoints[2] = mapNodeIndex[node3];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node5];
            f3._aulPoints[2] = mapNodeIndex[node4];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node4];
            f4._aulPoints[2] = mapNodeIndex[node5];

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
        }
        else if (aFace->NbNodes() == 8) {
            MeshCore::MeshFacet f1, f2, f3, f4, f5, f6;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);
            const SMDS_MeshNode* node6 = aFace->GetNode(6);
            const SMDS_MeshNode* node7 = aFace->GetNode(7);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node4];
            f1._aulPoints[2] = mapNodeIndex[node7];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node5];
            f2._aulPoints[2] = mapNodeIndex[node4];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node6];
            f3._aulPoints[2] = mapNodeIndex[node5];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node7];
            f4._aulPoints[2] = mapNodeIndex[node6];

            // Two solutions are possible:
            // <4,6,7>, <4,5,6> or <4,5,7>, <5,6,7>
            Base::Vector3d v4(node4->X(),node4->Y(),node4->Z());
            Base::Vector3d v5(node5->X(),node5->Y(),node5->Z());
            Base::Vector3d v6(node6->X(),node6->Y(),node6->Z());
            Base::Vector3d v7(node7->X(),node7->Y(),node7->Z());
            double dist46 = Base::DistanceP2(v4,v6);
            double dist57 = Base::DistanceP2(v5,v7);
            if (dist46 > dist57) {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node6];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node4];
                f6._aulPoints[1] = mapNodeIndex[node5];
                f6._aulPoints[2] = mapNodeIndex[node6];
            }
            else {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node5];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node5];
                f6._aulPoints[1] = mapNodeIndex[node6];
                f6._aulPoints[2] = mapNodeIndex[node7];
            }

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
            faces.push_back(f5);
            faces.push_back(f6);
        }
        else {
            Base::Console().Warning("Face with %d nodes ignored\n", aFace->NbNodes());
        }
    }

    // clean up
    TopoDS_Shape aNull;
    mesh->ShapeToMesh(aNull);
    mesh->Clear();
    delete mesh;
    for (std::list<SMESH_Hypothesis*>::iterator it = hypoth.begin(); it != hypoth.end(); ++it)
        delete *it;
    
    MeshCore::MeshKernel kernel;
    kernel.Adopt(verts, faces, true);

    Mesh::MeshObject* meshdata = new Mesh::MeshObject();
    meshdata->swap(kernel);
    return meshdata;
#endif // HAVE_SMESH
}
Exemplo n.º 13
0
Mesh::MeshObject* Mesher::createMesh() const
{
#ifndef HAVE_SMESH
    throw Base::Exception("SMESH is not available on this platform");
#else
    std::list<SMESH_Hypothesis*> hypoth;

    SMESH_Gen* meshgen = SMESH_Gen::get();
    SMESH_Mesh* mesh = meshgen->CreateMesh(0, true);
    int hyp=0;

    switch (method) {
#if defined (HAVE_NETGEN)
    case Netgen: {
        NETGENPlugin_Hypothesis_2D* hyp2d = new NETGENPlugin_Hypothesis_2D(hyp++,0,meshgen);

        if (fineness >=0 && fineness < 5) {
            hyp2d->SetFineness(NETGENPlugin_Hypothesis_2D::Fineness(fineness));
        }
        // user defined values
        else {
            if (growthRate > 0)
                hyp2d->SetGrowthRate(growthRate);
            if (nbSegPerEdge > 0)
                hyp2d->SetNbSegPerEdge(nbSegPerEdge);
            if (nbSegPerRadius > 0)
                hyp2d->SetNbSegPerRadius(nbSegPerRadius);
        }

        hyp2d->SetQuadAllowed(allowquad);
        hyp2d->SetOptimize(optimize);
        hyp2d->SetSecondOrder(secondOrder); // apply bisecting to create four triangles out of one
        hypoth.push_back(hyp2d);

        NETGENPlugin_NETGEN_2D* alg2d = new NETGENPlugin_NETGEN_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
#if defined (HAVE_MEFISTO)
    case Mefisto: {
        if (maxLength > 0) {
            StdMeshers_MaxLength* hyp1d = new StdMeshers_MaxLength(hyp++, 0, meshgen);
            hyp1d->SetLength(maxLength);
            hypoth.push_back(hyp1d);
        }
        else if (localLength > 0) {
            StdMeshers_LocalLength* hyp1d = new StdMeshers_LocalLength(hyp++,0,meshgen);
            hyp1d->SetLength(localLength);
            hypoth.push_back(hyp1d);
        }
        else if (maxArea > 0) {
            StdMeshers_MaxElementArea* hyp2d = new StdMeshers_MaxElementArea(hyp++,0,meshgen);
            hyp2d->SetMaxArea(maxArea);
            hypoth.push_back(hyp2d);
        }
        else if (deflection > 0) {
            StdMeshers_Deflection1D* hyp1d = new StdMeshers_Deflection1D(hyp++,0,meshgen);
            hyp1d->SetDeflection(deflection);
            hypoth.push_back(hyp1d);
        }
        else if (minLen > 0 && maxLen > 0) {
            StdMeshers_Arithmetic1D* hyp1d = new StdMeshers_Arithmetic1D(hyp++,0,meshgen);
            hyp1d->SetLength(minLen, false);
            hyp1d->SetLength(maxLen, true);
            hypoth.push_back(hyp1d);
        }
        else {
            StdMeshers_AutomaticLength* hyp1d = new StdMeshers_AutomaticLength(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        {
            StdMeshers_NumberOfSegments* hyp1d = new StdMeshers_NumberOfSegments(hyp++,0,meshgen);
            hyp1d->SetNumberOfSegments(1);
            hypoth.push_back(hyp1d);
        }

        if (regular) {
            StdMeshers_Regular_1D* hyp1d = new StdMeshers_Regular_1D(hyp++,0,meshgen);
            hypoth.push_back(hyp1d);
        }

        StdMeshers_TrianglePreference* hyp2d_1 = new StdMeshers_TrianglePreference(hyp++,0,meshgen);
        hypoth.push_back(hyp2d_1);
        StdMeshers_MEFISTO_2D* alg2d = new StdMeshers_MEFISTO_2D(hyp++,0,meshgen);
        hypoth.push_back(alg2d);
    } break;
#endif
    default:
        break;
    }

    // Set new cout
    MeshingOutput stdcout;
    std::streambuf* oldcout = std::cout.rdbuf(&stdcout);

    // Apply the hypothesis and create the mesh
    mesh->ShapeToMesh(shape);
    for (int i=0; i<hyp;i++)
        mesh->AddHypothesis(shape, i);
    meshgen->Compute(*mesh, mesh->GetShapeToMesh());

    // Restore old cout
    std::cout.rdbuf(oldcout);

    // build up the mesh structure
    SMDS_FaceIteratorPtr aFaceIter = mesh->GetMeshDS()->facesIterator();
    SMDS_NodeIteratorPtr aNodeIter = mesh->GetMeshDS()->nodesIterator();

    MeshCore::MeshPointArray verts;
    MeshCore::MeshFacetArray faces;
    verts.reserve(mesh->NbNodes());
    faces.reserve(mesh->NbFaces());

    int index=0;
    std::map<const SMDS_MeshNode*, int> mapNodeIndex;
    for (;aNodeIter->more();) {
        const SMDS_MeshNode* aNode = aNodeIter->next();
        MeshCore::MeshPoint p;
        p.Set((float)aNode->X(), (float)aNode->Y(), (float)aNode->Z());
        verts.push_back(p);
        mapNodeIndex[aNode] = index++;
    }
    for (;aFaceIter->more();) {
        const SMDS_MeshFace* aFace = aFaceIter->next();
        if (aFace->NbNodes() == 3) {
            MeshCore::MeshFacet f;
            for (int i=0; i<3;i++) {
                const SMDS_MeshNode* node = aFace->GetNode(i);
                f._aulPoints[i] = mapNodeIndex[node];
            }
            faces.push_back(f);
        }
        else if (aFace->NbNodes() == 4) {
            MeshCore::MeshFacet f1, f2;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node1];
            f1._aulPoints[2] = mapNodeIndex[node2];

            f2._aulPoints[0] = mapNodeIndex[node0];
            f2._aulPoints[1] = mapNodeIndex[node2];
            f2._aulPoints[2] = mapNodeIndex[node3];

            faces.push_back(f1);
            faces.push_back(f2);
        }
        else if (aFace->NbNodes() == 6) {
            MeshCore::MeshFacet f1, f2, f3, f4;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node3];
            f1._aulPoints[2] = mapNodeIndex[node5];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node4];
            f2._aulPoints[2] = mapNodeIndex[node3];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node5];
            f3._aulPoints[2] = mapNodeIndex[node4];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node4];
            f4._aulPoints[2] = mapNodeIndex[node5];

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
        }
        else if (aFace->NbNodes() == 8) {
            MeshCore::MeshFacet f1, f2, f3, f4, f5, f6;
            const SMDS_MeshNode* node0 = aFace->GetNode(0);
            const SMDS_MeshNode* node1 = aFace->GetNode(1);
            const SMDS_MeshNode* node2 = aFace->GetNode(2);
            const SMDS_MeshNode* node3 = aFace->GetNode(3);
            const SMDS_MeshNode* node4 = aFace->GetNode(4);
            const SMDS_MeshNode* node5 = aFace->GetNode(5);
            const SMDS_MeshNode* node6 = aFace->GetNode(6);
            const SMDS_MeshNode* node7 = aFace->GetNode(7);

            f1._aulPoints[0] = mapNodeIndex[node0];
            f1._aulPoints[1] = mapNodeIndex[node4];
            f1._aulPoints[2] = mapNodeIndex[node7];

            f2._aulPoints[0] = mapNodeIndex[node1];
            f2._aulPoints[1] = mapNodeIndex[node5];
            f2._aulPoints[2] = mapNodeIndex[node4];

            f3._aulPoints[0] = mapNodeIndex[node2];
            f3._aulPoints[1] = mapNodeIndex[node6];
            f3._aulPoints[2] = mapNodeIndex[node5];

            f4._aulPoints[0] = mapNodeIndex[node3];
            f4._aulPoints[1] = mapNodeIndex[node7];
            f4._aulPoints[2] = mapNodeIndex[node6];

            // Two solutions are possible:
            // <4,6,7>, <4,5,6> or <4,5,7>, <5,6,7>
            Base::Vector3d v4(node4->X(),node4->Y(),node4->Z());
            Base::Vector3d v5(node5->X(),node5->Y(),node5->Z());
            Base::Vector3d v6(node6->X(),node6->Y(),node6->Z());
            Base::Vector3d v7(node7->X(),node7->Y(),node7->Z());
            double dist46 = Base::DistanceP2(v4,v6);
            double dist57 = Base::DistanceP2(v5,v7);
            if (dist46 > dist57) {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node6];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node4];
                f6._aulPoints[1] = mapNodeIndex[node5];
                f6._aulPoints[2] = mapNodeIndex[node6];
            }
            else {
                f5._aulPoints[0] = mapNodeIndex[node4];
                f5._aulPoints[1] = mapNodeIndex[node5];
                f5._aulPoints[2] = mapNodeIndex[node7];

                f6._aulPoints[0] = mapNodeIndex[node5];
                f6._aulPoints[1] = mapNodeIndex[node6];
                f6._aulPoints[2] = mapNodeIndex[node7];
            }

            faces.push_back(f1);
            faces.push_back(f2);
            faces.push_back(f3);
            faces.push_back(f4);
            faces.push_back(f5);
            faces.push_back(f6);
        }
        else {
            Base::Console().Warning("Face with %d nodes ignored\n", aFace->NbNodes());
        }
    }

    // clean up
    TopoDS_Shape aNull;
    mesh->ShapeToMesh(aNull);
    mesh->Clear();
    delete mesh;
    for (std::list<SMESH_Hypothesis*>::iterator it = hypoth.begin(); it != hypoth.end(); ++it)
        delete *it;
    
    MeshCore::MeshKernel kernel;
    kernel.Adopt(verts, faces, true);

    Mesh::MeshObject* meshdata = new Mesh::MeshObject();
    meshdata->swap(kernel);
    return meshdata;
#endif // HAVE_SMESH
}