Exemplo n.º 1
0
Arquivo: edit.cpp Projeto: cran/magick
// [[Rcpp::export]]
Rcpp::RawVector magick_image_write( XPtrImage input, Rcpp::CharacterVector format, Rcpp::IntegerVector quality,
                                    Rcpp::IntegerVector depth, Rcpp::CharacterVector density, Rcpp::CharacterVector comment){
  if(!input->size())
    return Rcpp::RawVector(0);
  XPtrImage image = copy(input);
#if MagickLibVersion >= 0x691
  //suppress write warnings see #74 and #116
  image->front().quiet(true);
#endif
  if(format.size())
    for_each ( image->begin(), image->end(), Magick::magickImage(std::string(format[0])));
  if(quality.size())
    for_each ( image->begin(), image->end(), Magick::qualityImage(quality[0]));
  if(depth.size())
    for_each ( image->begin(), image->end(), Magick::depthImage(depth[0]));
  if(density.size()){
    for_each ( image->begin(), image->end(), Magick::resolutionUnitsImage(Magick::PixelsPerInchResolution));
    for_each ( image->begin(), image->end(), Magick::densityImage(Point(density[0])));
  }
  if(comment.size())
    for_each ( image->begin(), image->end(), Magick::commentImage(std::string(comment.at(0))));
  Magick::Blob output;
  writeImages( image->begin(), image->end(),  &output );
  Rcpp::RawVector res(output.length());
  std::memcpy(res.begin(), output.data(), output.length());
  return res;
}
Exemplo n.º 2
0
SEXP assignRawSymmetricMatrixDiagonal(SEXP destination_, SEXP indices_, SEXP source_)
{
BEGIN_RCPP
	Rcpp::S4 destination = destination_;
	Rcpp::RawVector source = source_;
	Rcpp::RawVector destinationData = destination.slot("data");
	Rcpp::IntegerVector indices = indices_;

	if(&(source(0)) == &(destinationData(0)))
	{
		throw std::runtime_error("Source and destination cannot be the same in assignRawSymmetricMatrixDiagonal");
	}

	if((indices.size()*(indices.size()+(R_xlen_t)1))/(R_xlen_t)2 != source.size())
	{
		throw std::runtime_error("Mismatch between index length and source object size");
	}
	for(R_xlen_t column = 0; column < indices.size(); column++)
	{
		for(R_xlen_t row = 0; row <= column; row++)
		{
			R_xlen_t rowIndex = indices[row];
			R_xlen_t columnIndex = indices[column];
			if(rowIndex > columnIndex)
			{
				std::swap(rowIndex, columnIndex);
			}
			destinationData((columnIndex*(columnIndex-(R_xlen_t)1))/(R_xlen_t)2+rowIndex-(R_xlen_t)1) = source((column*(column+(R_xlen_t)1))/(R_xlen_t)2 + row);
		}
	}
END_RCPP
}
Exemplo n.º 3
0
// [[Rcpp::export]]
Rcpp::IntegerMatrix quantileNorm(Rcpp::IntegerMatrix mat, Rcpp::IntegerVector ref, int nthreads=1, int seed=13){
    if (mat.nrow() != ref.length()) Rcpp::stop("incompatible arrays...");
    if (!std::is_sorted(ref.begin(), ref.end())) Rcpp::stop("ref must be sorted");
    int ncol = mat.ncol();
    int nrow = mat.nrow();
    //allocate new matrix
    Rcpp::IntegerMatrix res(nrow, ncol);
    Mat<int> oldmat = asMat(mat); 
    Mat<int> newmat = asMat(res);
    Vec<int> ref2 = asVec(ref);
    //allocate a seed for each column
    std::seed_seq sseq{seed};
    std::vector<std::uint32_t> seeds(ncol);
    sseq.generate(seeds.begin(), seeds.end());
    
    #pragma omp parallel num_threads(nthreads)
    {
        std::vector<std::pair<int, int> > storage(nrow);//pairs <value, index>
        #pragma omp for 
        for (int col = 0; col < ncol; ++col){
            std::mt19937 gen(seeds[col]);
            qtlnorm(oldmat.getCol(col), ref2, newmat.getCol(col), storage, gen);
        }
    }
    
    res.attr("dimnames") = mat.attr("dimnames");
    return res;
}
Exemplo n.º 4
0
// Calculate mk = sum_i I(M(ti)=k), k=1, ..., M with m0=0;
// where h=(h0, h1, ..., hM) with h0=0 and d=(d0, d1, ..., dM) with d0=0, dM=R_PosInf
void Getmk(Rcpp::IntegerVector& mk, const Rcpp::IntegerVector& Mt){
  int n = Mt.size();
  std::fill(mk.begin(), mk.end(), 0);
  for (int i=0; i<n; ++i){
    int k = Mt[i];
    mk[k] +=1;
  }
}
Exemplo n.º 5
0
SEXP hclustThetaMatrix(SEXP mpcrossRF_, SEXP preClusterResults_)
{
BEGIN_RCPP
	Rcpp::List preClusterResults = preClusterResults_;
	bool noDuplicates;
	R_xlen_t preClusterMarkers = countPreClusterMarkers(preClusterResults_, noDuplicates);
	if(!noDuplicates)
	{
		throw std::runtime_error("Duplicate marker indices in call to hclustThetaMatrix");
	}

	Rcpp::S4 mpcrossRF = mpcrossRF_;
	Rcpp::S4 rf = mpcrossRF.slot("rf");

	Rcpp::S4 theta = rf.slot("theta");
	Rcpp::RawVector data = theta.slot("data");
	Rcpp::NumericVector levels = theta.slot("levels");
	Rcpp::CharacterVector markers = theta.slot("markers");
	if(markers.size() != preClusterMarkers)
	{
		throw std::runtime_error("Number of markers in precluster object was inconsistent with number of markers in mpcrossRF object");
	}
	R_xlen_t resultDimension = preClusterResults.size();
	//Allocate enough storage. This symmetric matrix stores the *LOWER* triangular part, in column-major storage. Excluding the diagonal. 
	Rcpp::NumericVector result(((resultDimension-(R_xlen_t)1)*resultDimension)/(R_xlen_t)2);
	for(R_xlen_t column = 0; column < resultDimension; column++)
	{
		Rcpp::IntegerVector columnMarkers = preClusterResults(column);
		for(R_xlen_t row = column + 1; row < resultDimension; row++)
		{
			Rcpp::IntegerVector rowMarkers = preClusterResults(row);
			double total = 0;
			R_xlen_t counter = 0;
			for(R_xlen_t columnMarkerCounter = 0; columnMarkerCounter < columnMarkers.size(); columnMarkerCounter++)
			{
				R_xlen_t marker1 = columnMarkers[columnMarkerCounter]-(R_xlen_t)1;
				for(R_xlen_t rowMarkerCounter = 0; rowMarkerCounter < rowMarkers.size(); rowMarkerCounter++)
				{
					R_xlen_t marker2 = rowMarkers[rowMarkerCounter]-(R_xlen_t)1;
					R_xlen_t column = std::max(marker1, marker2);
					R_xlen_t row = std::min(marker1, marker2);
					Rbyte thetaDataValue = data((column*(column+(R_xlen_t)1))/(R_xlen_t)2 + row);
					if(thetaDataValue != 0xFF)
					{
						total += levels(thetaDataValue);
						counter++;
					}
				}
			}
			if(counter == 0) total = 0.5;
			else total /= counter;
			result(((resultDimension-(R_xlen_t)1)*resultDimension)/(R_xlen_t)2 - ((resultDimension - column)*(resultDimension-column-(R_xlen_t)1))/(R_xlen_t)2 + row-column-(R_xlen_t)1) = total;
		}
	}
	return result;
END_RCPP
}
Exemplo n.º 6
0
// [[Rcpp::export]]
Rcpp::NumericMatrix testColPost(Rcpp::NumericMatrix post, Rcpp::List m2u, int nthreads){
    Rcpp::IntegerVector values = Rcpp::as<Rcpp::IntegerVector>(m2u["values"]);
    Rcpp::IntegerVector map = Rcpp::as<Rcpp::IntegerVector>(m2u["map"]);
    if (post.ncol() != map.length()) Rcpp::stop("posteriors doesn't match with m2u");
    
    Rcpp::NumericMatrix smallerPost(post.nrow(), values.length());
    Vec<double> foo; NMPreproc preproc(asVec(values), asVec(map), foo);
    collapsePosteriors_core(asMat(smallerPost), asMat(post), preproc);
    return smallerPost;
}
Exemplo n.º 7
0
RcppExport SEXP GetAllPoints(SEXP x,SEXP n,SEXP c) {

    try {
	Rcpp::XPtr< flann::Index<flann::L2<float> >  > index(x);
	Rcpp::NumericVector npoints(n);
	Rcpp::NumericVector cn(c);
	int colNum = cn[0];

	float *data = new float[colNum];
	
	for(int i=0;i<colNum;i++) {
	    data[i] = 0;
	    i++;
	}

	flann::Matrix<float> dataset = flann::Matrix<float>(data,1,colNum);

	delete [] data;

	std::vector< std::vector<int> > indices;
	std::vector< std::vector<float> > dists;

	index->knnSearch(dataset,indices,dists,npoints[0],flann::SearchParams(-1));

	std::sort (indices[0].begin(), indices[0].end()); 

	Rcpp::NumericMatrix results(indices[0].size(), colNum);
	Rcpp::IntegerVector rownames;

	int num = indices[0].size();

	//#pragma omp parallel for ordered schedule(dynamic)
	for(int i=0;i<num;i++) {
	    float* indexPoint = index->getPoint(indices[0][i]);
	    for(int j=0;j<colNum;j++) {
		results(i,j)=(*(indexPoint+j));
	    }

	    //#pragma omp ordered
	    rownames.push_back(indices[0][i]);
	}

	Rcpp::List dimnms = Rcpp::List::create(rownames, Rcpp::Range(1,colNum));
	results.attr("dimnames") = dimnms;

	return results;

    } catch( std::exception &ex ) {		// or use END_RCPP macro
	forward_exception_to_r( ex );
    } catch(...) {
	::Rf_error( "c++ exception (unknown reason)" );
    }
    return R_NilValue; // -Wall
}
Exemplo n.º 8
0
//[[Rcpp::export]]
Rcpp::IntegerVector getAllNodesFast (Rcpp::IntegerMatrix edge, bool rooted) {
    Rcpp::IntegerVector tmp = Rcpp::as_vector(edge);
    Rcpp::IntegerVector maxN = Rcpp::range(tmp);
    Rcpp::IntegerVector ans = Rcpp::seq_len(maxN[1] + 1);
    if (rooted) {
	return ans - 1;
    }
    else {
	ans.erase(0);
	return ans - 1;
    }
}
Exemplo n.º 9
0
SEXP getAllFunnels(SEXP Rmpcross)
{
	char* stackmem;
	{
		std::string error;
		{
			int nFounders;
			Rcpp::RObject mpcross_ = Rmpcross;
			bool valid = validateMPCross(mpcross_, nFounders, error, true, false, false);
			if(!valid)
			{
				goto signal_error;
			}
			Rcpp::List mpcross = Rmpcross;
			Rcpp::DataFrame pedigree(mpcross["pedigree"]);
			Rcpp::IntegerVector id = mpcross["id"];
			int nFinals = id.length();
			std::vector<int> fid = Rcpp::as<std::vector<int> >(mpcross["fid"]);
			Rcpp::IntegerMatrix output(id.length(), nFounders);
			std::vector<int> nIntercrossingGenerations;
			nIntercrossingGenerations.resize(nFinals, 0);
			//get number of intercrossing generations
			bool ok = intercrossingGenerations(pedigree, nFounders, id, nIntercrossingGenerations);
			if(!ok)
			{
				error = "Problem determining number of intercrossing generations";
				goto signal_error;
			}
			//now get the actual funnels from the pedigree
			int funnel[16];
			for(int i = 0; i < id.length(); i++)
			{
				ok = getFunnel(id[i], pedigree, fid, nIntercrossingGenerations[i], funnel, pedigree.nrows(), nFounders);
				if(!ok)
				{
					std::stringstream ss;
					ss << "Problem with pedigree, for individual number " << (i+1) << ", having id " << id[i];
					error = ss.str();
					goto signal_error;
				}
				for(int j = 0; j < nFounders; j++) output(i, j) = funnel[j];
			}
			return output;
		}
	signal_error:
		stackmem = (char*)alloca(error.size() + 4);
		memset(stackmem, 0, error.size() + 4);
		memcpy(stackmem, error.c_str(), error.size());
	}
	Rf_error(stackmem);
	return R_NilValue;
}
Exemplo n.º 10
0
// [[Rcpp::export]]
Rcpp::NumericVector seqC(double from_, double to_, double by_ = 1.0) {
  int adjust = std::pow(10, std::ceil(std::log10(10 / by_)) - 1);
  int from = adjust * from_;
  int to = adjust * to_;
  int by = adjust * by_;
  
  std::size_t n = ((to - from) / by) + 1;
  Rcpp::IntegerVector res = Rcpp::rep(from, n);
  add_multiple ftor(by);
  
  std::transform(res.begin(), res.end(), res.begin(), ftor);
  return Rcpp::NumericVector(res) / adjust;
}
Exemplo n.º 11
0
// [[Rcpp::export]]  
Rcpp::IntegerVector tabulate_cpp(const Rcpp::IntegerVector & v, R_xlen_t nlevels) {
  // Using R_xlen_t to avoid checking for entries < 0
  std::vector<R_xlen_t> table(nlevels);   
  R_xlen_t n =  v.size();
  for (R_xlen_t i = 0; i < n; ++i) { 
    table.at( v.at(i) - 1 ) ++;
  }    
  // Wrapp may throw errors with R_xlen_t
  // return wrap(table); 
  IntegerVector  a(table.size());
  std::copy(table.begin(), table.end(), a.begin());
  return a;
}
Exemplo n.º 12
0
// [[Rcpp::export]]
Rcpp::List subsetCounts(Rcpp::IntegerVector counts, Rcpp::IntegerVector start, Rcpp::IntegerVector width, Rcpp::LogicalVector strand){
	if (start.length() != width.length() || start.length() != strand.length()) Rcpp::stop("provided vectors have different lengths...");
	int nr = start.length();
	int len = counts.length();
	int tot = 0;
	int* S = start.begin(); int* W = width.begin();
	for (int i = 0; i < nr; ++i){
		int s = S[i] - 1;
		int w = W[i]; 
		if (s < 0) Rcpp::stop("negative start positions are invalid");
		if (s + w > len) Rcpp::stop("range exceeds the lengths of the counts vector");
		tot += w;
	}
	
	Rcpp::IntegerVector res(tot); 
	Rcpp::IntegerVector nstart(nr);
	Rcpp::IntegerVector nend(nr);
	int* R = res.begin(); int* C = counts.begin(); int* ST = strand.begin();
	int* NS = nstart.begin(); int* NE = nend.begin();
	int currpos = 0;
	for (int i = 0; i < nr; ++i){
		NS[i] = currpos + 1;
		int w = W[i];
		if (ST[i]) std::copy(C + S[i]-1, C + S[i]-1 + w, R + currpos);
		else std::reverse_copy(C + S[i]-1, C + S[i]-1 + w, R + currpos);
		currpos += w;
		NE[i] = currpos;
	}
	return List::create(_("counts")=res, _("starts")=nstart, _("ends")=nend);
}
Exemplo n.º 13
0
Rcpp::IntegerVector r_classify(const treetree::tree<T>& tr,
                               const std::vector<std::string>& labels) {
  treetree::tree<forest::node<int> > tmp = classify(tr, labels);
  Rcpp::IntegerVector ret;
  std::vector<std::string> names;
  names.reserve(tr.size());
  for (treetree::tree<forest::node<int> >::const_pre_iterator
         it = tmp.begin(); it != tmp.end(); ++it) {
    ret.push_back(it->data_);
    names.push_back(it->label_);
  }
  ret.attr("names") = names;
  return ret;
}
void ribi::ctm::Helper::CalcMaxLikelihood(
  const std::string& newick,
  Rate& birth_rate,
  Rate& death_rate,
  const Part part
) const
{
  assert(!newick.empty());
  auto& r = ribi::Rinside().Get();

  r.parseEval("library(ape)");
  r.parseEval("library(DDD)");
  r["newick"] = newick;
  r.parseEval("phylogeny <- read.tree(text = newick)");
  r.parseEval("branch_lengths <- phylogeny$edge.length");

  switch (part)
  {
    case Part::branch_lengths: r["part"] = 0; break;
    case Part::phylogeny     : r["part"] = 1; break;
  }

  r.parseEval(
    "max_likelihood <- bd_ML("
    "  brts = branch_lengths,"
    "  cond = 1," // # cond == 1 : conditioning on stem or crown age and non-extinction of the phylogeny
    "  btorph = part"
    ")"
  );

  r.parseEval("lambda0 <- max_likelihood$lambda0");
  r.parseEval("mu0 <- max_likelihood$mu0");
  r.parseEval("conv <- max_likelihood$conv");
  const Rcpp::DoubleVector lambda0 = r["lambda0"];
  const Rcpp::DoubleVector mu0 = r["mu0"];
  const Rcpp::IntegerVector conv = r["conv"];
  assert(lambda0.size() == 1);
  assert(mu0.size() == 1);
  assert(conv.size() == 1);
  const bool has_converged = conv[0] == 0;
  if (!has_converged)
  {
    std::stringstream s;
    s << __func__ << ": has not converged" ;
    throw std::runtime_error(s.str());
  }
  birth_rate = lambda0[0] / boost::units::si::second;
  death_rate = mu0[0] / boost::units::si::second;
}
Exemplo n.º 15
0
    Permutation::Permutation(Rcpp::IntegerVector &vv)
	: d_perm(vv),
	  n(vv.size()) {
	int *vpt = vv.begin();
	std::vector<bool> chk(n);
	std::fill(chk.begin(), chk.end(), false);
	for (int i = 0; i < n; i++) {
	    int vi = vpt[i];
	    if (vi < 0 || n <= vi)
		throw runtime_error("permutation elements must be in [0,n)");
	    if (chk[vi])
		throw runtime_error("permutation is not a permutation");
	    chk[vi] = true;
	}
    }
Exemplo n.º 16
0
static double bic_logistic(Rcpp::NumericMatrix X, 
			   Rcpp::NumericVector y, 
			   Rcpp::NumericMatrix beta_new, 
			   double eps, 
			   Rcpp::IntegerVector nk)
{
  int n_tot = X.nrow();
  int p = X.ncol();
  int K = nk.size();
    
  int idx = 0;
  double ll = 0.0;
  for (int k = 0; k < K; k++) {
    int n = nk[k];
    for (int i = 0; i < n; i++) {
      double lp = 0.0;
      for (int j = 0; j < p; j++) {
	lp += elem(X, idx+i, j) * elem(beta_new, j, k);
      }
      ll += y[idx+i] * lp - log(1.0 + exp(lp));
    }
    idx += n;
  }
  
  double bic = -2.0 * ll + df(beta_new, eps) * log(n_tot);
  return bic;
}
Exemplo n.º 17
0
//' Update eigen values, vectors, and inverse matrices for irms
//'
//' @param tpm_prods array of transition probability matrix products
//' @param tpms array of transition probability matrices
//' @param pop_mat population level bookkeeping matrix
//' @param obstimes vector of observation times
//'
//' @return Updated eigenvalues, eigenvectors, and inverse matrices
// [[Rcpp::export]]
void tpmProdSeqs(Rcpp::NumericVector& tpm_prods, Rcpp::NumericVector& tpms, const Rcpp::IntegerVector obs_time_inds) {

        // Get indices
        int n_obs = obs_time_inds.size();
        Rcpp::IntegerVector tpmDims = tpms.attr("dim");

        // Ensure obs_time_inds starts at 0
        Rcpp::IntegerVector obs_inds = obs_time_inds - 1;

        // Set array pointers
        arma::cube prod_arr(tpm_prods.begin(), tpmDims[0], tpmDims[1], tpmDims[2], false);
        arma::cube tpm_arr(tpms.begin(), tpmDims[0], tpmDims[1], tpmDims[2], false);

        // Generate tpm products and store them in the appropriate spots in the tpm product array
        for(int j = 0; j < (n_obs - 1); ++j) {

                prod_arr.slice(obs_inds[j+1] - 1) = tpm_arr.slice(obs_inds[j+1] - 1);

                for(int k = (obs_inds[j+1] - 2); k > (obs_inds[j] - 1); --k) {

                        prod_arr.slice(k) = tpm_arr.slice(k) * prod_arr.slice(k + 1);
                }

        }
}
Exemplo n.º 18
0
static void print(Rcpp::IntegerVector a)
{
  for (int i = 0; i < a.size(); i++) {
    printf("%d ", a[i]);
  }
  putchar('\n');
}
Exemplo n.º 19
0
// [[Rcpp::export]]
Rcpp::IntegerVector testSortCounts(Rcpp::IntegerVector v){
    Rcpp::IntegerVector res(v.length());
    Vec<int> v2 = asVec(v);
    Vec<int> v3 = asVec(res);
    sortCounts(v2, v3);
    return res;
}
Exemplo n.º 20
0
static Rcpp::NumericMatrix x_tilde(Rcpp::NumericMatrix X, 
				   Rcpp::IntegerVector nk,
				   Rcpp::IntegerMatrix groups, 
				   Rcpp::NumericVector d_cur, 
				   Rcpp::NumericMatrix eta_cur)
{
  int K = nk.size();
  int n_tot = X.nrow();
  int p = X.ncol();
  int L = groups.ncol();
  Rcpp::NumericMatrix result(n_tot, p * K);

  int idx = 0;
  for (int k = 0; k < K; k++) {
    int n = nk[k];
    for (int j = 0; j < p; j++) {
      //calculate sum for column j
      double sum = 0.0;
      for (int l = 0; l < L; l++) {
	if (elem(groups, j, l)) {
	  sum += d_cur[l] * elem(eta_cur, l, k);
	} 
      }
      
      //multiply column j in submatrix k of X with sum
      for (int i = 0; i < n; i++) {
	elem(result, idx + i, p * k + j) = elem(X, idx + i, j) * sum;
      }
    }
    idx += n;
  }
  return result;
}
Exemplo n.º 21
0
static Rcpp::NumericMatrix x_tilde_3(Rcpp::NumericMatrix X, 
				     Rcpp::IntegerVector nk,
				     Rcpp::IntegerMatrix groups, 
				     Rcpp::NumericMatrix alpha_new,
				     Rcpp::NumericVector d_new)
{
  int K = nk.size();
  int n_tot = X.nrow();
  int p = X.ncol();
  int L = groups.ncol();
  Rcpp::NumericMatrix result(n_tot, L * K);
  
  int idx = 0;
  for (int k = 0; k < K; k++) {
    int n = nk[k];
    for (int l = 0; l < L; l++) {	
      for (int i = 0; i < n; i++) {
	double sum = 0.0;
	for (int j = 0; j < p; j++) {
	  if (elem(groups, j, l)) {
	    sum += elem(X, idx + i, j) * elem(alpha_new, j, k);
	  }
	}
	elem(result, idx + i, L * k + l) = d_new[l] * sum;
      }
    }
    idx += n;
  }	
  return result;
}
Exemplo n.º 22
0
static Rcpp::NumericMatrix x_tilde_2(Rcpp::NumericMatrix X, 
				     Rcpp::IntegerVector nk,
				     Rcpp::IntegerMatrix groups, 
				     Rcpp::NumericMatrix alpha_new,
				     Rcpp::NumericMatrix eta_cur)
{	
  int K = nk.size();
  int n_tot = X.nrow();
  int p = X.ncol();
  int L = groups.ncol();
  Rcpp::NumericMatrix result(n_tot, L);

  for (int l = 0; l < L; l++) {
    int k = -1;
    int n = 0;    
    for (int i = 0; i < n_tot; i++) {
      if (i == n){
	k +=1;
	n += nk[k];
      }
      double sum = 0.0;
      for (int j = 0; j < p; j++) {
	if (elem(groups, j, l)) {
	  sum += elem(X, i, j) * elem(alpha_new, j, k);
	}
      }
      elem(result, i, l) = elem(eta_cur, l, k) * sum;
     }
   }
  return result;
}
Exemplo n.º 23
0
// Calculate CPO for spatial Copula Cox PH
arma::vec LinvSpCopulaCox(Rcpp::NumericVector tobs, Rcpp::IntegerVector delta, Rcpp::NumericVector Xbeta, 
                          Rcpp::NumericVector h, Rcpp::NumericVector d, arma::mat Cinv, arma::vec z){
  int n = delta.size();
  arma::vec res(n);
  for(int i=0; i<n; ++i){
    double Cii = Cinv(i,i);
    double s2i = 1.0/Cii;
    double mui = -s2i*( arma::dot(Cinv.col(i), z) - Cii*z[i] );
    double si = std::sqrt(s2i);
    double Fi = Foft(tobs[i], h, d, Xbeta[i]);
    double PinvFyi = Rf_qnorm5(Fi, 0, 1, true, false);
    double newzi = (PinvFyi-mui)/si;
    if(delta[i]==0){
      double St = 1.0-Rf_pnorm5(newzi, 0, 1, true, false);
      //Rprintf( "St=%f\n", St );
      res(i) = 1.0/St;
    } else {
      double fi = foft(tobs[i], h, d, Xbeta[i]);
      double diff = -0.5*std::pow(newzi, 2) + 0.5*std::pow(PinvFyi, 2);
      double ft = (1.0/si*std::exp(diff)*fi);
      res(i) = 1.0/ft;
      //Rprintf( "ft=%f\n", ft );
    }
  }
  return(res);
}
Exemplo n.º 24
0
static Rcpp::NumericMatrix next_beta(Rcpp::IntegerVector nk,
				     Rcpp::IntegerMatrix groups, 
				     Rcpp::NumericMatrix alpha_new,
				     Rcpp::NumericVector d_new,
				     Rcpp::NumericMatrix eta_new)
{
  int K = nk.size();
  int p = groups.nrow();
  int L = groups.ncol();
  
  Rcpp::NumericMatrix result(p, K);
	
  for (int k = 0; k < K; k++) {
    for (int j = 0; j < p; j++) {
      double sum = 0.0;
      for (int l = 0; l < L; l++) {
	if (elem(groups, j, l)) {
	  sum += d_new[l] * elem(eta_new, l, k);
	}
      }					
      elem(result, j, k) = elem(alpha_new, j, k) * sum;
    }
  }
  return result;
}
Exemplo n.º 25
0
static double bic_linear(Rcpp::NumericMatrix X, 
			 Rcpp::NumericVector y, 
			 Rcpp::NumericMatrix beta_new, 
			 double eps, 
			 Rcpp::IntegerVector nk)
{
  int n_tot = X.nrow();
  int p = X.ncol();
  int K = nk.size();
 

  /*calculate SSe*/
  double SSe = 0.0;  
  int idx = 0;
  
  for (int k = 0; k < K; k++) {
    int n = nk[k];
    for (int i = 0; i < n; i++) {
      double Xrow_betacol = 0.0;
      for (int j = 0; j < p; j++) {
	Xrow_betacol += elem(X, idx+i, j) * elem(beta_new, j, k);
      }
      SSe += pow(y[idx+i] - Xrow_betacol, 2);
    }
    idx += n;
  }
  
  double ll = -n_tot / 2.0 * (log(SSe) - log(n_tot) + log(2.0 * M_PI) + 1);
  double bic = -2 * ll + df(beta_new, eps) * log(n_tot);

  return bic;
}
Exemplo n.º 26
0
//Function to summarize results from BeQTL and return a dataframe
// [[Rcpp::export]]
Rcpp::DataFrame SumRes(const arma::mat  & cormat, const arma::mat & errmat, const Rcpp::DataFrame SnpDF, const Rcpp::DataFrame Genedf, const int samplesize, const double tcutoff){
  Rcpp::Rcout<<"Generating Tmat"<<std::endl;
  arma::mat tmat = sqrt(samplesize-2)*(cormat/(sqrt(1-square(cormat))));
  Rcpp::Rcout<<"Finding strong t"<<std::endl;
  arma::uvec goods = find(abs(tmat)>tcutoff);
  Rcpp::Rcout<<"Generating matrix index"<<std::endl;
  arma::umat goodmat = Ind(tmat.n_rows,goods);
  Rcpp::Rcout<<"Subsetting tmat"<<std::endl;
  Rcpp::Rcout<<"This many good results"<<goodmat.n_rows<<std::endl;
  arma::vec tvec = tmat(goods);
  Rcpp::Rcout<<"Subsetting Errmat"<<std::endl;
  arma::vec errvec = errmat(goods);
  Rcpp::Rcout<<"Generating SNP and Gene lists"<<std::endl;
  Rcpp::IntegerVector GoodGenes = Rcpp::wrap(arma::conv_to<arma::ivec>::from(goodmat.col(0)));
  Rcpp::IntegerVector GoodSNPs = Rcpp::wrap(arma::conv_to<arma::ivec>::from(goodmat.col(1)));

//Subset SNP anno

  Rcpp::CharacterVector SNPnames = SnpDF["rsid"];
  SNPnames = SNPnames[GoodSNPs];
  arma::ivec SNPchr = Rcpp::as<arma::ivec>(SnpDF["Chrom"]);
  SNPchr = SNPchr(goodmat.col(1));
  arma::ivec SNPpos = Rcpp::as<arma::ivec>(SnpDF["Pos"]);
  SNPpos = SNPpos(goodmat.col(1));
//Subset Geneanno
  Rcpp::CharacterVector GeneNames = Genedf["Symbol"];
  GeneNames = GeneNames[GoodGenes];
  arma::ivec Genechr = Rcpp::as<arma::ivec>(Genedf["Chrom"]);
  Genechr = Genechr(goodmat.col(0));
  arma::ivec Genestart = Rcpp::as<arma::ivec>(Genedf["Start"]);
  Genestart = Genestart(goodmat.col(0));
  arma::ivec Genestop = Rcpp::as<arma::ivec>(Genedf["Stop"]);
  Genestop = Genestop(goodmat.col(0));

  arma::ivec CisDist(GoodGenes.length());
  Rcpp::Rcout<<"Calculating Cisdist"<<std::endl;
  CisDist = arma::min(arma::join_cols(abs(Genestop-SNPpos),abs(Genestart-SNPpos)),1);
  Rcpp::Rcout<<"CisDist Calculated"<<std::endl;
  CisDist.elem(find(Genechr!=SNPchr)).fill(-1);
  return  Rcpp::DataFrame::create(Rcpp::Named("SNP")=SNPnames,
                                  Rcpp::Named("Gene")=GeneNames,
                                  Rcpp::Named("t-stat")=Rcpp::wrap(tvec),
                                  Rcpp::Named("err")=Rcpp::wrap(errvec),
                                  Rcpp::Named("CisDist")=Rcpp::wrap(CisDist));

}
Exemplo n.º 27
0
void check_topset(const Rcpp::IntegerVector& top) {
    for (size_t t=1; t<top.size(); ++t) {
        if (top[t] < top[t-1]) { 
            throw std::runtime_error("numbers of top genes must be sorted"); 
        }
    }
    return;
}
Exemplo n.º 28
0
Rcpp::IntegerVector match_and_substract(Rcpp::IntegerVector x, Rcpp::IntegerVector yInt) {
    int y(1);
    y = yInt[0];
    for (unsigned k=0; k < x.size(); ++k) {
	if (x[k] > y)
	    x[k] = x[k] - 1;
    }
    return x;
}
Exemplo n.º 29
0
R_xlen_t countPreClusterMarkers(SEXP preClusterResults_, bool& noDuplicates)
{
	Rcpp::List preClusterResults = preClusterResults_;
	std::vector<int> markers;
	for(Rcpp::List::iterator i = preClusterResults.begin(); i != preClusterResults.end(); i++)
	{
		Rcpp::IntegerVector Rmarkers = *i;
		for(Rcpp::IntegerVector::iterator j = Rmarkers.begin(); j != Rmarkers.end(); j++)
		{
			markers.push_back(*j);
		}
	}
	R_xlen_t nMarkers1 = markers.size();
	std::sort(markers.begin(), markers.end());
	std::vector<int>::iterator lastUnique = std::unique(markers.begin(), markers.end());
	R_xlen_t nMarkers2 = std::distance(markers.begin(), lastUnique);
	noDuplicates = nMarkers1 == nMarkers2;
	return nMarkers1;
}
Exemplo n.º 30
0
// Calculate lk, k=1, ..., M with m0=0;
// where h=(h0, h1, ..., hM) with h0=0 and d=(d0, d1, ..., dM) with d0=0, dM=R_PosInf
void Getlk(Rcpp::NumericVector& lk, const Rcpp::IntegerVector& Mt, int M1, Rcpp::NumericVector d, 
           const Rcpp::NumericVector& t, const Rcpp::NumericVector& Xbeta){
  int n = Mt.size();
  std::fill(lk.begin(), lk.end(), 0);
  for (int k=1; k<M1; ++k){
    for (int i=0; i<n; ++i){
      if(Mt[i]>=k) lk[k] += (std::min(d[k],t[i])-d[k-1])*std::exp(Xbeta[i]);
    }
  }
}