int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [differenceBeforeRegistration] ";
std::cerr << " [differenceAfterRegistration] ";
std::cerr << " [sliceBeforeRegistration] ";
std::cerr << " [sliceDifferenceBeforeRegistration] ";
std::cerr << " [sliceDifferenceAfterRegistration] ";
std::cerr << " [sliceAfterRegistration] " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 3;
typedef float PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : BeginLatex
//
// The Transform class is instantiated using the code below. The only
// template parameter to this class is the representation type of the
// space coordinates.
//
// \index{itk::Versor\-Rigid3D\-Transform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet

// Software Guide : EndCodeSnippet


typedef itk:: LinearInterpolateImageFunction< MovingImageType, double > InterpolatorType;
typedef itk::ImageRegistrationMethod< FixedImageType, MovingImageType > RegistrationType;

MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetInterpolator( interpolator );
// Software Guide : BeginLatex
//
// The transform object is constructed below and passed to the registration
// method.
//
// \index{itk::Versor\-Rigid3D\-Transform!New()}
// \index{itk::Versor\-Rigid3D\-Transform!Pointer}
// \index{itk::Registration\-Method!SetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer transform = TransformType::New();
registration->SetTransform( transform );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
// Software Guide : BeginLatex
//
// The input images are taken from readers. It is not necessary here to
// explicitly call \code{Update()} on the readers since the
// \doxygen{CenteredTransformInitializer} will do it as part of its
// computations. The following code instantiates the type of the
// initializer. This class is templated over the fixed and moving image type
// as well as the transform type. An initializer is then constructed by
// calling the \code{New()} method and assigning the result to a smart
// pointer.
//
// \index{itk::Centered\-Transform\-Initializer!Instantiation}
// \index{itk::Centered\-Transform\-Initializer!New()}
// \index{itk::Centered\-Transform\-Initializer!SmartPointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images available in the ftp
// site
//
// \url{ftp://public.kitware.com/pub/itk/Data/BrainWeb}
//
// Note that the images in the ftp site are compressed in \code{.tgz} files.
// You should download these files an uncompress them in your local system.
// After decompressing and extracting the files you could take a pair of
// volumes, for example the pair:
//
// \begin{itemize}
// \item \code{brainweb1e1a10f20.mha}
// \item \code{brainweb1e1a10f20Rot10Tx15.mha}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first image
// by $10$ degrees around the origin and shifting it $15mm$ in $X$. The
// registration takes $24$ iterations and produces:
//
// \begin{center}
// \begin{verbatim}
// [-6.03744e-05, 5.91487e-06, -0.0871932, 2.64659, -17.4637, -0.00232496]
// \end{verbatim}
// \end{center}
//
// That are interpreted as
//
// \begin{itemize}
// \item Versor = $(-6.03744e-05, 5.91487e-06, -0.0871932)$
// \item Translation = $(2.64659, -17.4637, -0.00232496)$ millimeters
// \end{itemize}
//
// This Versor is equivalent to a rotation of $9.98$ degrees around the $Z$
// axis.
//
// Note that the reported translation is not the translation of $(15.0,0.0,0.0)$
// that we may be naively expecting. The reason is that the
// \code{VersorRigid3DTransform} is applying the rotation around the center
// found by the \code{CenteredTransformInitializer} and then adding the
// translation vector shown above.
//
// It is more illustrative in this case to take a look at the actual
// rotation matrix and offset resulting form the $6$ parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
transform->SetParameters( finalParameters );
TransformType::MatrixType matrix = transform->GetMatrix();
TransformType::OffsetType offset = transform->GetOffset();
std::cout << "Matrix = " << std::endl << matrix << std::endl;
std::cout << "Offset = " << std::endl << offset << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this print statements is
//
// \begin{center}
// \begin{verbatim}
// Matrix =
// 0.984795 0.173722 2.23132e-05
// -0.173722 0.984795 0.000119257
// -1.25621e-06 -0.00012132 1
//
// Offset =
// [-15.0105, -0.00672343, 0.0110854]
// \end{verbatim}
// \end{center}
//
// From the rotation matrix it is possible to deduce that the rotation is
// happening in the X,Y plane and that the angle is on the order of
// $\arcsin{(0.173722)}$ which is very close to 10 degrees, as we expected.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17}
// \itkcaption[CenteredTransformInitializer input images]{Fixed and moving image
// provided as input to the registration method using
// CenteredTransformInitializer.}
// \label{fig:FixedMovingImageRegistration8}
// \end{figure}
//
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration8Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration8DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration8DifferenceAfter}
// \itkcaption[CenteredTransformInitializer output images]{Resampled moving
// image (left). Differences between fixed and moving images, before (center)
// and after (right) registration with the
// CenteredTransformInitializer.}
// \label{fig:ImageRegistration8Outputs}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration8Outputs} shows the output of the
// registration. The center image in this figure shows the differences
// between the fixed image and the resampled moving image before the
// registration. The image on the right side presents the difference between
// the fixed image and the resampled moving image after the registration has
// been performed. Note that these images are individual slices extracted
// from the actual volumes. For details, look at the source code of this
// example, where the ExtractImageFilter is used to extract a slice from the
// the center of each one of the volumes. One of the main purposes of this
// example is to illustrate that the toolkit can perform registration on
// images of any dimension. The only limitations are, as usual, the amount of
// memory available for the images and the amount of computation time that it
// will take to complete the optimization process.
//
// \begin{figure}
// \center
// \includegraphics[height=0.32\textwidth]{ImageRegistration8TraceMetric}
// \includegraphics[height=0.32\textwidth]{ImageRegistration8TraceAngle}
// \includegraphics[height=0.32\textwidth]{ImageRegistration8TraceTranslations}
// \itkcaption[CenteredTransformInitializer output plots]{Plots of the metric,
// rotation angle, center of rotation and translations during the
// registration using CenteredTransformInitializer.}
// \label{fig:ImageRegistration8Plots}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration8Plots} shows the plots of the main
// output parameters of the registration process. The metric values at every
// iteration. The Z component of the versor is plotted as an indication of
// how the rotation progress. The X,Y translation components of the
// registration are plotted at every iteration too.
//
// Shell and Gnuplot scripts for generating the diagrams in
// Figure~\ref{fig:ImageRegistration8Plots} are available in the directory
//
// \code{InsightDocuments/SoftwareGuide/Art}
//
// You are strongly encouraged to run the example code, since only in this
// way you can gain a first hand experience with the behavior of the
// registration process. Once again, this is a simple reflection of the
// philosophy that we put forward in this book:
//
// \emph{If you can not replicate it, then it does not exist!}.
//
// We have seen enough published papers with pretty pictures, presenting
// results that in practice are impossible to replicate. That is vanity, not
// science.
//
// Software Guide : EndLatex
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetCenter( transform->GetCenter() );
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform( finalTransform );
resampler->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 100 );
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter< FixedImageType, OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resampler->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
typedef itk::SubtractImageFilter<
FixedImageType,
FixedImageType,
FixedImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
typedef itk::RescaleIntensityImageFilter<
FixedImageType,
OutputImageType > RescalerType;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetInput( difference->GetOutput() );
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resampler->GetOutput() );
resampler->SetDefaultPixelValue( 1 );
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( intensityRescaler->GetOutput() );
// Compute the difference image between the
// fixed and resampled moving image.
if( argc > 5 )
{
writer2->SetFileName( argv[5] );
writer2->Update();
}
typedef itk::IdentityTransform< double, Dimension > IdentityTransformType;
IdentityTransformType::Pointer identity = IdentityTransformType::New();
// Compute the difference image between the
// fixed and moving image before registration.
if( argc > 4 )
{
resampler->SetTransform( identity );
writer2->SetFileName( argv[4] );
writer2->Update();
}
//
// Here we extract slices from the input volume, and the difference volumes
// produced before and after the registration. These slices are presented as
// figures in the Software Guide.
//
//
typedef itk::Image< OutputPixelType, 2 > OutputSliceType;
typedef itk::ExtractImageFilter<
OutputImageType,
OutputSliceType > ExtractFilterType;
ExtractFilterType::Pointer extractor = ExtractFilterType::New();
extractor->SetDirectionCollapseToSubmatrix();
extractor->InPlaceOn();
FixedImageType::RegionType inputRegion =
fixedImage->GetLargestPossibleRegion();
FixedImageType::SizeType size = inputRegion.GetSize();
FixedImageType::IndexType start = inputRegion.GetIndex();
// Select one slice as output
size[2] = 0;
start[2] = 90;
FixedImageType::RegionType desiredRegion;
desiredRegion.SetSize( size );
desiredRegion.SetIndex( start );
extractor->SetExtractionRegion( desiredRegion );
typedef itk::ImageFileWriter< OutputSliceType > SliceWriterType;
SliceWriterType::Pointer sliceWriter = SliceWriterType::New();
sliceWriter->SetInput( extractor->GetOutput() );
if( argc > 6 )
{
extractor->SetInput( caster->GetOutput() );
resampler->SetTransform( identity );
sliceWriter->SetFileName( argv[6] );
sliceWriter->Update();
}
if( argc > 7 )
{
extractor->SetInput( intensityRescaler->GetOutput() );
resampler->SetTransform( identity );
sliceWriter->SetFileName( argv[7] );
sliceWriter->Update();
}
if( argc > 8 )
{
resampler->SetTransform( finalTransform );
sliceWriter->SetFileName( argv[8] );
sliceWriter->Update();
}
if( argc > 9 )
{
extractor->SetInput( caster->GetOutput() );
resampler->SetTransform( finalTransform );
sliceWriter->SetFileName( argv[9] );
sliceWriter->Update();
}
return EXIT_SUCCESS;
}
Exemplo n.º 2
0
    void Clipper::Clip(Lazarus::image_3d_opencv_8uc1 *input, Lazarus::image_3d_opencv_8uc1 *output)
    {
        CHECK(UniversalAlgorithm::Check3DImage(input));
        CHECK(UniversalAlgorithm::isBinary(input));
        
        image_3d_opencv_8uc1* maskConnectivityFix = new image_3d_opencv_8uc1;
        maskConnectivityFix->Initialize();
        
        
        itk_3d_double::Pointer inITK = itk_3d_double::New();
        Converter::ocv_2_itk_3d(input, inITK);
        
        typedef itk::RescaleIntensityImageFilter<itk_3d_double> RescalerType;
        RescalerType::Pointer rescaler = RescalerType::New();
        rescaler->SetInput(inITK);
        rescaler->SetOutputMinimum(0);
        rescaler->SetOutputMaximum(255);
        rescaler->Update();
        
        typedef itk::ImageToVTKImageFilter<itk_3d_double> converterType;
        converterType::Pointer converter = converterType::New();
        converter->SetInput(rescaler->GetOutput());
        converter->Update();

        Pool::image=converter->GetOutput();
        
        int dim[3];
        Pool::image->GetDimensions(dim);
        
        Pool::pointSeries.clear();
        Pool::IdSeries.clear();
        for(int k=0; k<dim[2]; k++)
        {
            for(int j=0; j<dim[1]; j++)
            {
                for(int i=0; i<dim[0]; i++)
                {
                    double * voxel = static_cast<double*> (Pool::image->GetScalarPointer(i, j, k) );
                    if( *voxel > 0)
                    {
                        double p[3];
                        Pool::image->GetPoint(k*dim[1]*dim[0]+j*dim[0]+i,p);
                        Point3d pp;
                        {
                            pp.x = p[0];
                            pp.y = p[1];
                            pp.z = p[2];
                        }
                        Point3i ppp;
                        {
                            ppp.x = i;
                            ppp.y = j;
                            ppp.z = k;
                        }
                        Pool::pointSeries.push_back(pp);
                        Pool::IdSeries.push_back(ppp);
                    }
                }
            }
        }
//
//        vtkSmartPointer<vtkMarchingCubes> iso = vtkSmartPointer<vtkMarchingCubes>::New();
//        iso->SetInputData(Pool::image);
//        iso->SetNumberOfContours(1);
//        iso->SetValue(0,1);
//        iso->ComputeGradientsOn();
//        iso->ComputeNormalsOn();
//        iso->ComputeNormalsOn();
//        iso->ComputeScalarsOff();
//        iso->Update();
//        
//        vtkSmartPointer<vtkQuadricClustering> decimate =vtkSmartPointer<vtkQuadricClustering>::New();
//        decimate->SetNumberOfXDivisions(200);
//        decimate->SetNumberOfYDivisions(200);
//        decimate->SetNumberOfZDivisions(200);
//        decimate->SetInputData(iso->GetOutput());
//        decimate->Update();
//
//        vtkSmartPointer<vtkPolyDataMapper> dataMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
//        dataMapper->SetInputData(decimate->GetOutput());
//        dataMapper->Update();
        
        //Pool::cubeActor->SetMapper(dataMapper);
        
        ClipperVisualizer vis;
        
        Pool::currentMask = new image_3d_opencv_8uc1;
        Pool::currentMask->Initialize();
        
        Pool::currentMask->SetData(input);
        
        Pool::renderWindow->AddRenderer(Pool::renderer);
        Pool::renderWindow->SetSize(600,600);
        Pool::interactor->SetRenderWindow(Pool::renderWindow);
        Pool::camera->GetParallelProjection();
        Pool::renderer->ResetCamera();
        vtkSmartPointer<myInteractorStyle> myStyle = vtkSmartPointer<myInteractorStyle>::New();
        myStyle->SetDefaultRenderer(Pool::renderer);
        Pool::interactor->SetInteractorStyle( myStyle );
        myStyle->SetWrappingQtWindow(&vis);
        myStyle->FirstDraw();
        //Pool::renderer->AddActor(Pool::cubeActor);
        
        
        
        //QvtkWindow* wnd = new QvtkWindow(NULL);
        //wnd->AddRenderWindow(Pool::renderWindow);
        Pool::interactor->Initialize();
        Pool::renderWindow->Render();
        //Pool::interactor->Start();
        //wnd->exec();
        vis.exec();
        
        
        LOG(INFO)<<"rendering terminate."<<endl;
        
        
        output->SetData(Pool::currentMask);

        //delete maskConnectivityFix;
        //delete wnd;
    }