Exemplo n.º 1
0
void FifoRecorder::StartRecording(s32 numFrames, CallbackFunc finishedCb)
{
	sMutex.lock();

	delete m_File;
	delete []m_Ram;
	delete []m_ExRam;

	m_File = new FifoDataFile;

	m_Ram = new u8[Memory::RAM_SIZE];
	m_ExRam = new u8[Memory::EXRAM_SIZE];
	memset(m_Ram, 0, Memory::RAM_SIZE);
	memset(m_ExRam, 0, Memory::EXRAM_SIZE);

	m_File->SetIsWii(SConfig::GetInstance().m_LocalCoreStartupParameter.bWii);

	if (!m_IsRecording)
	{
		m_WasRecording = false;
		m_IsRecording = true;
		m_RecordFramesRemaining = numFrames;
	}

	m_RequestedRecordingEnd = false;
	m_FinishedCb = finishedCb;

	sMutex.unlock();
}
Exemplo n.º 2
0
// numFrames is number of stereo frames.
// This is called from *outside* the emulator thread.
int __AudioMix(short *outstereo, int numFrames)
{
	// TODO: if mixFrequency != the actual output frequency, resample!

	section.lock();
	int underrun = -1;
	s16 sampleL = 0;
	s16 sampleR = 0;
	bool anythingToPlay = false;
	for (int i = 0; i < numFrames; i++) {
		if (outAudioQueue.size() >= 2)
		{
			sampleL = outAudioQueue.pop_front();
			sampleR = outAudioQueue.pop_front();
			outstereo[i * 2 + 0] = sampleL;
			outstereo[i * 2 + 1] = sampleR;
			anythingToPlay = true;
		} else {
			if (underrun == -1) underrun = i;
			outstereo[i * 2 + 0] = sampleL;  // repeat last sample, can reduce clicking
			outstereo[i * 2 + 1] = sampleR;  // repeat last sample, can reduce clicking
		}
	}
	if (anythingToPlay && underrun >= 0) {
		DEBUG_LOG(HLE, "Audio out buffer UNDERRUN at %i of %i", underrun, numFrames);
	} else {
		// DEBUG_LOG(HLE, "No underrun, mixed %i samples fine", numFrames);
	}
	section.unlock();
	return underrun >= 0 ? underrun : numFrames;
}
Exemplo n.º 3
0
void __AudioDoState(PointerWrap &p)
{
	section.lock();

	p.Do(eventAudioUpdate);
	CoreTiming::RestoreRegisterEvent(eventAudioUpdate, "AudioUpdate", &hleAudioUpdate);
	p.Do(eventHostAudioUpdate);
	CoreTiming::RestoreRegisterEvent(eventHostAudioUpdate, "AudioUpdateHost", &hleHostAudioUpdate);

	p.Do(mixFrequency);
	outAudioQueue.DoState(p);

	int chanCount = ARRAY_SIZE(chans);
	p.Do(chanCount);
	if (chanCount != ARRAY_SIZE(chans))
	{
		ERROR_LOG(HLE, "Savestate failure: different number of audio channels.");
		section.unlock();
		return;
	}
	for (int i = 0; i < chanCount; ++i)
		chans[i].DoState(p);

	section.unlock();
	p.DoMarker("sceAudio");
}
Exemplo n.º 4
0
u32 __AudioEnqueue(AudioChannel &chan, int chanNum, bool blocking)
{
	u32 ret = 0;
	section.lock();
	if (chan.sampleAddress == 0)
		return SCE_ERROR_AUDIO_NOT_OUTPUT;
	if (chan.sampleQueue.size() > chan.sampleCount*2*chanQueueMaxSizeFactor) {
		// Block!
		if (blocking) {
			chan.waitingThread = __KernelGetCurThread();
			// WARNING: This changes currentThread so must grab waitingThread before (line above).
			__KernelWaitCurThread(WAITTYPE_AUDIOCHANNEL, (SceUID)chanNum, 0, 0, false, "blocking audio waited");
			// Fall through to the sample queueing, don't want to lose the samples even though
			// we're getting full.
		}
		else
		{
			chan.waitingThread = 0;
			return SCE_ERROR_AUDIO_CHANNEL_BUSY;
		}
	}
	if (chan.format == PSP_AUDIO_FORMAT_STEREO)
	{
		const u32 totalSamples = chan.sampleCount * 2;

		if (IS_LITTLE_ENDIAN)
		{
			s16 *sampleData = (s16 *) Memory::GetPointer(chan.sampleAddress);

			// Walking a pointer for speed.  But let's make sure we wouldn't trip on an invalid ptr.
			if (Memory::IsValidAddress(chan.sampleAddress + (totalSamples - 1) * sizeof(s16)))
			{
				for (u32 i = 0; i < totalSamples; i++)
					chan.sampleQueue.push(*sampleData++);
			}
		}
		else
		{
			for (u32 i = 0; i < totalSamples; i++)
				chan.sampleQueue.push((s16)Memory::Read_U16(chan.sampleAddress + sizeof(s16) * i));
		}

		ret = chan.sampleCount;
	}
	else if (chan.format == PSP_AUDIO_FORMAT_MONO)
	{
		for (u32 i = 0; i < chan.sampleCount; i++)
		{
			// Expand to stereo
			s16 sample = (s16)Memory::Read_U16(chan.sampleAddress + 2 * i);
			chan.sampleQueue.push(sample);
			chan.sampleQueue.push(sample);
		}

		ret = chan.sampleCount;
	}
	section.unlock();
	return ret;
}
Exemplo n.º 5
0
int main()
{
    m.lock();
    std::thread t(f);
    std::this_thread::sleep_for(ms(250));
    m.unlock();
    t.join();
}
void processFdbEntriesForAging()
{
    SWSS_LOG_ENTER();

    if (!g_recursive_mutex.try_lock())
    {
        return;
    }

    SWSS_LOG_INFO("fdb infos to process: %zu", g_fdb_info_set.size());

    uint32_t current = (uint32_t)time(NULL);

    // find aged fdb entries

    for (auto it = g_fdb_info_set.begin(); it != g_fdb_info_set.end();)
    {
        sai_attribute_t attr;

        attr.id = SAI_SWITCH_ATTR_FDB_AGING_TIME;

        sai_status_t status = vs_generic_get(SAI_OBJECT_TYPE_SWITCH, it->fdb_entry.switch_id, 1, &attr);

        if (status != SAI_STATUS_SUCCESS)
        {
            SWSS_LOG_WARN("failed to get FDB aging time for switch %s",
                    sai_serialize_object_id(it->fdb_entry.switch_id).c_str());

            ++it;
            continue;
        }

        uint32_t aging_time = attr.value.u32;

        if (aging_time == 0)
        {
            // aging is disabled
            ++it;
            continue;
        }

        if ((current - it->timestamp) >= aging_time)
        {
            fdb_info_t fi = *it;

            processFdbInfo(fi, SAI_FDB_EVENT_AGED);

            it = g_fdb_info_set.erase(it);
        }
        else
        {
            ++it;
        }
    }

    g_recursive_mutex.unlock();
}
Exemplo n.º 7
0
// Mix samples from the various audio channels into a single sample queue.
// This single sample queue is where __AudioMix should read from. If the sample queue is full, we should
// just sleep the main emulator thread a little.
void __AudioUpdate()
{
	// Audio throttle doesn't really work on the PSP since the mixing intervals are so closely tied
	// to the CPU. Much better to throttle the frame rate on frame display and just throw away audio
	// if the buffer somehow gets full.

	s32 mixBuffer[hwBlockSize * 2];
	memset(mixBuffer, 0, sizeof(mixBuffer));

	for (u32 i = 0; i < PSP_AUDIO_CHANNEL_MAX + 1; i++)
	{
		if (!chans[i].reserved)
			continue;
		__AudioWakeThreads(chans[i], hwBlockSize);

		if (!chans[i].sampleQueue.size()) {
			// ERROR_LOG(HLE, "No queued samples, skipping channel %i", i);
			continue;
		}

		for (int s = 0; s < hwBlockSize; s++)
		{
			if (chans[i].sampleQueue.size() >= 2)
			{
				s16 sampleL = chans[i].sampleQueue.pop_front();
				s16 sampleR = chans[i].sampleQueue.pop_front();
				mixBuffer[s * 2 + 0] += sampleL;
				mixBuffer[s * 2 + 1] += sampleR;
			} 
			else
			{
				ERROR_LOG(HLE, "Channel %i buffer underrun at %i of %i", i, s, hwBlockSize);
				break;
			}
		}
	}

	if (g_Config.bEnableSound) {
		section.lock();
		if (outAudioQueue.room() >= hwBlockSize * 2) {
			// Push the mixed samples onto the output audio queue.
			for (int i = 0; i < hwBlockSize; i++) {
				s16 sampleL = clamp_s16(mixBuffer[i * 2 + 0]);
				s16 sampleR = clamp_s16(mixBuffer[i * 2 + 1]);

				outAudioQueue.push((s16)sampleL);
				outAudioQueue.push((s16)sampleR);
			}
		} else {
			// This happens quite a lot. There's still something slightly off
			// about the amount of audio we produce.
			DEBUG_LOG(HLE, "Audio outbuffer overrun! room = %i / %i", outAudioQueue.room(), (u32)outAudioQueue.capacity());
		}
		section.unlock();
	}
	
}
Exemplo n.º 8
0
void f()
{
    time_point t0 = Clock::now();
    m.lock();
    time_point t1 = Clock::now();
    m.lock();
    m.unlock();
    m.unlock();
    ns d = t1 - t0 - ms(250);
    assert(d < ns(2500000));  // within 2.5ms
}
Exemplo n.º 9
0
void FifoPlayerDlg::RecordingFinished()
{
	sMutex.lock();

	if (m_EvtHandler)
	{
		wxCommandEvent event(RECORDING_FINISHED_EVENT);
		m_EvtHandler->AddPendingEvent(event);
	}

	sMutex.unlock();
}
Exemplo n.º 10
0
void FifoPlayerDlg::FileLoaded()
{
	sMutex.lock();

	if (m_EvtHandler)
	{
		wxPaintEvent event;
		m_EvtHandler->AddPendingEvent(event);
	}

	sMutex.unlock();
}
Exemplo n.º 11
0
void FifoPlayerDlg::FrameWritten()
{
	sMutex.lock();

	if (m_EvtHandler)
	{
		wxCommandEvent event(FRAME_WRITTEN_EVENT);
		m_EvtHandler->AddPendingEvent(event);
	}

	sMutex.unlock();
}
Exemplo n.º 12
0
void attemp_10k_increasesR() {
	int i;
	mrtx.lock();
	mrtx.lock(); // 递归锁,多次调用lock都不会死锁
	for (i=0; i<10; ++i) {
		++counter;
		std::this_thread::sleep_for(std::chrono::microseconds(1*1000000));
		std::cout << "thread Reverse[" << std::this_thread::get_id() <<"]" << "add the counter" << endl; 

	}

	mrtx.unlock();
}
Exemplo n.º 13
0
FifoPlayerDlg::FifoPlayerDlg(wxWindow * const parent) :
	wxDialog(parent, wxID_ANY, _("FIFO Player"), wxDefaultPosition, wxDefaultSize),
	m_FramesToRecord(1)
{
	CreateGUIControls();

	sMutex.lock();	
	m_EvtHandler = GetEventHandler();	
	sMutex.unlock();

	FifoPlayer::GetInstance().SetFileLoadedCallback(FileLoaded);
	FifoPlayer::GetInstance().SetFrameWrittenCallback(FrameWritten);
}
Exemplo n.º 14
0
// Read the Wiimote once
void Update(int _WiimoteNumber)
{
	// Try to get a lock and return without doing anything if we fail
	// This avoids deadlocks when adding a Wiimote during continuous scan
	if(!g_refresh_lock.try_lock())
		return;

	if (g_wiimotes[_WiimoteNumber])
		g_wiimotes[_WiimoteNumber]->Update();

	// Wiimote::Update() may remove the Wiimote if it was disconnected.
	if (!g_wiimotes[_WiimoteNumber])
	{
		Host_ConnectWiimote(_WiimoteNumber, false);
	}
	g_refresh_lock.unlock();
}
Exemplo n.º 15
0
// Mix samples from the various audio channels into a single sample queue.
// This single sample queue is where __AudioMix should read from. If the sample queue is full, we should
// just sleep the main emulator thread a little.
void __AudioUpdate()
{
	// Audio throttle doesn't really work on the PSP since the mixing intervals are so closely tied
	// to the CPU. Much better to throttle the frame rate on frame display and just throw away audio
	// if the buffer somehow gets full.

	s32 mixBuffer[hwBlockSize * 2];
	memset(mixBuffer, 0, sizeof(mixBuffer));

	for (int i = 0; i < PSP_AUDIO_CHANNEL_MAX; i++)
	{
		if (!chans[i].reserved)
			continue;
		if (!chans[i].sampleQueue.size()) {
			// ERROR_LOG(HLE, "No queued samples, skipping channel %i", i);
			continue;
		}

		for (int s = 0; s < hwBlockSize; s++)
		{
			if (chans[i].sampleQueue.size() >= 2)
			{
				s16 sampleL = chans[i].sampleQueue.pop_front();
				s16 sampleR = chans[i].sampleQueue.pop_front();
				mixBuffer[s * 2 + 0] += sampleL;
				mixBuffer[s * 2 + 1] += sampleR;
			} 
			else
			{
				ERROR_LOG(HLE, "Channel %i buffer underrun at %i of %i", i, s, hwBlockSize);
				break;
			}
		}

		if (chans[i].sampleQueue.size() < chans[i].sampleCount * 2 * chanQueueMinSizeFactor)
		{
			// Ask the thread to send more samples until next time, queue is being drained.
			if (chans[i].waitingThread) {
				SceUID waitingThread = chans[i].waitingThread;
				chans[i].waitingThread = 0;
				// DEBUG_LOG(HLE, "Woke thread %i for some buffer filling", waitingThread);
				__KernelResumeThreadFromWait(waitingThread, chans[i].sampleCount);
			}
		}
	}

	if (g_Config.bEnableSound) {
		section.lock();
		if (outAudioQueue.room() >= hwBlockSize * 2) {
			// Push the mixed samples onto the output audio queue.
			for (int i = 0; i < hwBlockSize; i++) {
				s32 sampleL = mixBuffer[i * 2 + 0] >> 2;  // TODO - what factor?
				s32 sampleR = mixBuffer[i * 2 + 1] >> 2;

				outAudioQueue.push((s16)sampleL);
				outAudioQueue.push((s16)sampleR);
			}
		} else {
Exemplo n.º 16
0
void FifoRecorder::EndFrame(u32 fifoStart, u32 fifoEnd)
{
	// m_IsRecording is assumed to be true at this point, otherwise this function would not be called

	sMutex.lock();

	m_FrameEnded = true;

	m_CurrentFrame.fifoStart = fifoStart;
	m_CurrentFrame.fifoEnd = fifoEnd;

	if (m_WasRecording)
	{
		// If recording a fixed number of frames then check if the end of the recording was reached
		if (m_RecordFramesRemaining > 0)
		{
			--m_RecordFramesRemaining;
			if (m_RecordFramesRemaining == 0)
				m_RequestedRecordingEnd = true;
		}
	}
	else
	{
		m_WasRecording = true;

		// Skip the first data which will be the frame copy command
		m_SkipNextData = true;
		m_SkipFutureData = false;

		m_FrameEnded = false;

		m_FifoData.reserve(1024 * 1024 * 4);
		m_FifoData.clear();
	}

	if (m_RequestedRecordingEnd)
	{
		// Skip data after the next time WriteFifoData is called
		m_SkipFutureData = true;
		// Signal video backend that it should not call this function when the next frame ends
		m_IsRecording = false;
	}

	sMutex.unlock();
}
Exemplo n.º 17
0
void FifoRecorder::SetVideoMemory(u32 *bpMem, u32 *cpMem, u32 *xfMem, u32 *xfRegs, u32 xfRegsSize)
{
	sMutex.lock();

	if (m_File)
	{
		memcpy(m_File->GetBPMem(), bpMem, FifoDataFile::BP_MEM_SIZE * 4);
		memcpy(m_File->GetCPMem(), cpMem, FifoDataFile::CP_MEM_SIZE * 4);
		memcpy(m_File->GetXFMem(), xfMem, FifoDataFile::XF_MEM_SIZE * 4);

		u32 xfRegsCopySize = std::min((u32)FifoDataFile::XF_REGS_SIZE, xfRegsSize);
		memcpy(m_File->GetXFRegs(), xfRegs, xfRegsCopySize * 4);
	}

	m_RecordAnalyzer.Initialize(bpMem, cpMem);

	sMutex.unlock();
}
Exemplo n.º 18
0
static int AVCodecMTLockCallback(void** mutex, AVLockOp op)
{
	switch (op)
	{
	case AV_LOCK_CREATE:
		*mutex = &kAVCodecMTLock;
		break;
	case AV_LOCK_OBTAIN:
		kAVCodecMTLock.lock();
		break;
	case AV_LOCK_RELEASE:
		kAVCodecMTLock.unlock();
		break;
	case AV_LOCK_DESTROY:
		*mutex = NULL;
		break;
	}
	return 0;
}
Exemplo n.º 19
0
FifoPlayerDlg::~FifoPlayerDlg()
{
	Disconnect(RECORDING_FINISHED_EVENT, wxCommandEventHandler(FifoPlayerDlg::OnRecordingFinished), NULL, this);
	Disconnect(FRAME_WRITTEN_EVENT, wxCommandEventHandler(FifoPlayerDlg::OnFrameWritten), NULL, this);

	// Disconnect Events
	Disconnect(wxEVT_PAINT, wxPaintEventHandler(FifoPlayerDlg::OnPaint), NULL, this);
	m_FrameFromCtrl->Disconnect(wxEVT_COMMAND_SPINCTRL_UPDATED, wxSpinEventHandler(FifoPlayerDlg::OnFrameFrom), NULL, this);
	m_FrameToCtrl->Disconnect(wxEVT_COMMAND_SPINCTRL_UPDATED, wxSpinEventHandler(FifoPlayerDlg::OnFrameTo), NULL, this);
	m_ObjectFromCtrl->Disconnect(wxEVT_COMMAND_SPINCTRL_UPDATED, wxSpinEventHandler(FifoPlayerDlg::OnObjectFrom), NULL, this);
	m_ObjectToCtrl->Disconnect(wxEVT_COMMAND_SPINCTRL_UPDATED, wxSpinEventHandler(FifoPlayerDlg::OnObjectTo), NULL, this);
	m_EarlyMemoryUpdates->Disconnect(wxEVT_COMMAND_CHECKBOX_CLICKED, wxCommandEventHandler(FifoPlayerDlg::OnCheckEarlyMemoryUpdates), NULL, this);
	m_RecordStop->Disconnect(wxEVT_COMMAND_BUTTON_CLICKED, wxCommandEventHandler(FifoPlayerDlg::OnRecordStop), NULL, this);
	m_Save->Disconnect(wxEVT_COMMAND_BUTTON_CLICKED, wxCommandEventHandler(FifoPlayerDlg::OnSaveFile), NULL, this);	
	m_FramesToRecordCtrl->Disconnect(wxEVT_COMMAND_SPINCTRL_UPDATED, wxSpinEventHandler(FifoPlayerDlg::OnNumFramesToRecord), NULL, this);
	m_Close->Disconnect(wxEVT_COMMAND_BUTTON_CLICKED, wxCommandEventHandler(FifoPlayerDlg::OnCloseClick), NULL, this);

	FifoPlayer::GetInstance().SetFrameWrittenCallback(NULL);

	sMutex.lock();	
	m_EvtHandler = NULL;
	sMutex.unlock();
}
Exemplo n.º 20
0
void FifoRecorder::WriteGPCommand(const u8 *data, u32 size)
{
	if (!m_SkipNextData)
	{
		m_RecordAnalyzer.AnalyzeGPCommand(data);

		// Copy data to buffer
		size_t currentSize = m_FifoData.size();
		m_FifoData.resize(currentSize + size);
		memcpy(&m_FifoData[currentSize], data, size);
	}

	if (m_FrameEnded && m_FifoData.size() > 0)
	{
		size_t dataSize = m_FifoData.size();
		m_CurrentFrame.fifoDataSize = (u32)dataSize;
		m_CurrentFrame.fifoData = new u8[dataSize];
		memcpy(m_CurrentFrame.fifoData, m_FifoData.data(), dataSize);

		sMutex.lock();

		// Copy frame to file
		// The file will be responsible for freeing the memory allocated for each frame's fifoData
		m_File->AddFrame(m_CurrentFrame);

		if (m_FinishedCb && m_RequestedRecordingEnd)
			m_FinishedCb();

		sMutex.unlock();

		m_CurrentFrame.memoryUpdates.clear();
		m_FifoData.clear();
		m_FrameEnded = false;
	}

	m_SkipNextData = m_SkipFutureData;
}
Exemplo n.º 21
0
void FifoRecorder::StartRecording(s32 numFrames, CallbackFunc finishedCb)
{
	sMutex.lock();

	delete m_File;

	m_File = new FifoDataFile;
	std::fill(m_Ram.begin(), m_Ram.end(), 0);
	std::fill(m_ExRam.begin(), m_ExRam.end(), 0);

	m_File->SetIsWii(SConfig::GetInstance().bWii);

	if (!m_IsRecording)
	{
		m_WasRecording = false;
		m_IsRecording = true;
		m_RecordFramesRemaining = numFrames;
	}

	m_RequestedRecordingEnd = false;
	m_FinishedCb = finishedCb;

	sMutex.unlock();
}
LongRunningOperation::~LongRunningOperation()
{
	_operationMutex.unlock();
}
Exemplo n.º 23
0
void StartBulkLog(){
  log_mutex.lock();
  add_timestamp = false;
}
Exemplo n.º 24
0
void EndBulkLog(){
  add_timestamp = true;
  log_mutex.unlock();
}
Exemplo n.º 25
0
// We will inject the stereo here 
void sys_glAttachShader(GLuint program, GLuint shader)
{
	m_opengl32Mutex.lock();

	orig_glCompileShader = (func_glCompileShader)orig_wglGetProcAddress("glCompileShader");
	if (orig_glCompileShader == 0x0)
		add_log("glCompileShader not found !!!!");
	orig_glGetShaderiv = (func_glGetShaderiv_t)orig_wglGetProcAddress("glGetShaderiv");
	if (orig_glGetShaderiv == 0x0)
		add_log("glGetShaderiv not found !!!!");

	// Add the CRC of the program
	std::string programSring = std::to_string(program);
	DWORD progCRC32 = crc32buf(programSring.c_str(), programSring.length());
	
	// Get the correct shader type
	// Get the instance
	ShaderManager *shaderManager = ShaderManager::getInstance();
	
	// Depends on what type of shader it is we do stuff
	if (shaderManager->isShaderType(shader, GL_VERTEX_SHADER))
	{
		//get the original shader Source
		std::string shaderSource = shaderManager->getShaderSource(shader);

		// Calculate the CRC32 before we do any injection
		// Otherwise the CRC32 will change
		DWORD crc32 = crc32buf(shaderSource.c_str(), shaderSource.length());
		crc32 += progCRC32;

		if (shaderManager->GetVertexInjectionState())
		{
			//Apply the custom shaders
			// If we failed apply normal injection
			if (shaderManager->ApplyExceptionShaders(shaderSource, GL_VERTEX_SHADER, crc32) == false)
			{
				//Insert Stereo
				shaderSource = shaderManager->injectStereoScopy(shaderSource, program);
			}
		}

		// Swap the Source
		shaderManager->applyShaderSource(shader, shaderSource, NULL);

		// Store it as an existing shader
		EXISTING_SHADER_T currentShader;
		currentShader.m_CRC32 = crc32;
		currentShader.m_programId = program;
		currentShader.m_shaderId = shader;
		currentShader.m_shaderSourceCode = shaderSource;
		currentShader.m_shaderType = GL_VERTEX_SHADER;
		// Push it back
		shaderManager->addExistingShaderInfo(currentShader);
		
		// Export the Source
		ExportShader("Vertex", currentShader.m_programId, currentShader.m_CRC32, currentShader.m_shaderSourceCode);

		// We also need to compile the shader before attaching it
		//Compile shader
		(*orig_glCompileShader)(shader);

		//Test compile
		GLint statusOk = 0;
		(*orig_glGetShaderiv)(shader, GL_COMPILE_STATUS, &statusOk);

		if (statusOk == GL_FALSE)
		{
			CheckCompileState(shader);
		}
	}
	else if (shaderManager->isShaderType(shader, GL_FRAGMENT_SHADER))
	{
		//get the original shader Source
		std::string shaderSource = shaderManager->getShaderSource(shader);

		// Calculate the CRC32
		DWORD crc32 = crc32buf(shaderSource.c_str(), shaderSource.length());
		crc32 += progCRC32;

		if (shaderManager->GetVertexInjectionState())
		{
			//Apply the custom shaders
			// If we failed apply normal injection
			if (shaderManager->ApplyExceptionShaders(shaderSource, GL_FRAGMENT_SHADER, crc32) == false)
			{
				// This only happens in development mode.
#ifdef DEBUG_WRAPPER
				//Insert Stereo
				shaderSource = shaderManager->injectFragmentModification(shaderSource, program);
#endif
			}
		}

		// Swap the Source
		shaderManager->applyShaderSource(shader, shaderSource, NULL);

		// Store it as an existing shader
		EXISTING_SHADER_T currentShader;
		currentShader.m_CRC32 = crc32;
		currentShader.m_programId = program;
		currentShader.m_shaderId = shader;
		currentShader.m_shaderSourceCode = shaderSource;
		currentShader.m_shaderType = GL_FRAGMENT_SHADER;
		// Push it back
		shaderManager->addExistingShaderInfo(currentShader);

		// Export the Source
		ExportShader("Pixel", currentShader.m_programId, currentShader.m_CRC32, currentShader.m_shaderSourceCode);

		//Compile shader
		(*orig_glCompileShader)(shader);

		// We also need to compile the shader before attaching it
		//Test compile
		GLint statusOk = 0;
		(*orig_glGetShaderiv)(shader, GL_COMPILE_STATUS, &statusOk);

		if (statusOk == GL_FALSE)
		{
			CheckCompileState(shader);
		}
	}
	
	// We attach after we swapped the sources
	(*orig_glAttachShader)(program, shader);

	m_opengl32Mutex.unlock();
}
Exemplo n.º 26
0
// add the stereo values
void sys_glUseProgram(GLuint program)
{
	m_opengl32Mutex.lock();

	// Get the shaderManager
	ShaderManager * shaderManager = ShaderManager::getInstance();

#ifdef DEBUG_WRAPPER
	if (shaderManager->GetVertexInjectionState())
	{
		shaderManager->ApplyDebugExceptionShaders();
	}
#endif

	// Use the original program
	(*orig_glUseProgram)(program);

	if (shaderManager->GetVertexInjectionState())
	{
		// Get the locations of the uniforms
		GLfloat value;
		const GLchar *uniform_eye = (GLchar*)"g_eye";
		const GLchar *uniform_eye_spearation = (GLchar*)"g_eye_separation";
		const GLchar *uniform_convergence = (GLchar*)"g_convergence";
		const GLchar *uniform_vertexEnabled = (GLchar*)"g_vertexEnabled";
		const GLchar *uniform_pixelEnabled = (GLchar*)"g_pixelEnabled";


		// Get our functions from the driver. Be sure to only take them once
		if (orig_glGetUniformLocation == NULL)
		{
			orig_glGetUniformLocation = (func_glGetUniformLocation_t)(orig_wglGetProcAddress)("glGetUniformLocation");
		}
		//glUniform1f
		if (orig_glUniform1f == NULL)
		{

			orig_glUniform1f = (func_glUniform1f_t)(orig_wglGetProcAddress)("glUniform1f");
		}

		if ((GLint)program >= 0)
		{
			GLint location_eye = (*orig_glGetUniformLocation)(program, uniform_eye);
			GLint location_eye_separation = (*orig_glGetUniformLocation)(program, uniform_eye_spearation);
			GLint location_convergence = (*orig_glGetUniformLocation)(program, uniform_convergence);
			GLint location_vertexEnabled = (*orig_glGetUniformLocation)(program, uniform_vertexEnabled);
			GLint location_pixelEnabled = (*orig_glGetUniformLocation)(program, uniform_pixelEnabled);

			//set the uniform inside the shaders
			if (NV3DVisionGetCurrentFrame() == 1)
			{
				//left eye
				value = -1.0f;
				(*orig_glUniform1f)(location_eye, value);
			}
			else
			{
				//right eye
				value = +1.0f;
				(*orig_glUniform1f)(location_eye, value);
			}
			//Set the Separation and convergence
			(*orig_glUniform1f)(location_eye_separation, Get3DEyeSeparation());
			(*orig_glUniform1f)(location_convergence, Get3DConvergence());
			(*orig_glUniform1f)(location_vertexEnabled, 1.0f);
			(*orig_glUniform1f)(location_pixelEnabled, 1.0f);
		}

		/////////////////////////////////////
		// APPLY CUSTOM SHADER PARAMS
		/////////////////////////////////////
		shaderManager->ApplyCustomShaderParams(program);
		
		/////////////////////////////////////
		// USED TO DISABLE ALOT OF SHADERS
		/////////////////////////////////////
#ifdef	DEBUG_WRAPPER
		if (shaderManager->VertexShadersExceptionsEnabled())
		{
			if (((GLint)program >= (GLint)shaderManager->GetExceptionShaderStart() && (GLint)program <= (GLint)shaderManager->GetExceptionShaderEnd()))
			{
				GLint location_eye_separation = (*orig_glGetUniformLocation)(program, uniform_eye_spearation);
				GLint location_convergence = (*orig_glGetUniformLocation)(program, uniform_convergence);

				//Set the Separation and convergence
				(*orig_glUniform1f)(location_eye_separation, 0);
				(*orig_glUniform1f)(location_convergence, 0);

				// Do we disable the vertex shaders ???
				if (shaderManager->VertexShaderExceptionsDisableShader())
				{
					GLint location_enabled = (*orig_glGetUniformLocation)(program, uniform_vertexEnabled);
					(*orig_glUniform1f)(location_enabled, 0.0f);
				}
				else
				{
					GLint location_enabled = (*orig_glGetUniformLocation)(program, uniform_vertexEnabled);
					(*orig_glUniform1f)(location_enabled, 1.0f);
				}
			}
			if (shaderManager->DisableCurrentShader())
			{
				// If we are navigating vertexes
				if (isCurrentShaderVertex)
				{
					// Disable the current Shader
					if (debugVertexIndex == (int)program)
					{
						GLint location_enabled = (*orig_glGetUniformLocation)(program, uniform_vertexEnabled);
						(*orig_glUniform1f)(location_enabled, 0.0f);
					}
				}
				else // Pixel Shader
				{
					// Disable the current Shader
					if (debugPixelIndex == (int)program)
					{
						GLint location_enabled = (*orig_glGetUniformLocation)(program, uniform_pixelEnabled);
						(*orig_glUniform1f)(location_enabled, 0.0f);
					}
				}
			}
		}
#endif	
	}

	m_opengl32Mutex.unlock();
}
Exemplo n.º 27
0
// Wanting to avoid include pollution, MemMap.h is included a lot.
MemoryInitedLock::MemoryInitedLock()
{
	g_shutdownLock.lock();
}
Exemplo n.º 28
0
MemoryInitedLock::~MemoryInitedLock()
{
	g_shutdownLock.unlock();
}
Exemplo n.º 29
0
namespace Memory {

// The base pointer to the auto-mirrored arena.
u8* base = NULL;

// The MemArena class
MemArena g_arena;
// ==============

u8 *m_pPhysicalScratchPad;
u8 *m_pUncachedScratchPad;
// 64-bit: Pointers to high-mem mirrors
// 32-bit: Same as above
u8 *m_pPhysicalRAM;
u8 *m_pUncachedRAM;
u8 *m_pKernelRAM;	// RAM mirrored up to "kernel space". Fully accessible at all times currently.
u8 *m_pPhysicalRAM2;
u8 *m_pUncachedRAM2;
u8 *m_pKernelRAM2;
u8 *m_pPhysicalRAM3;
u8 *m_pUncachedRAM3;
u8 *m_pKernelRAM3;

// VRAM is mirrored 4 times.  The second and fourth mirrors are swizzled.
// In practice, a game accessing the mirrors most likely is deswizzling the depth buffer.
u8 *m_pPhysicalVRAM1;
u8 *m_pPhysicalVRAM2;
u8 *m_pPhysicalVRAM3;
u8 *m_pPhysicalVRAM4;
u8 *m_pUncachedVRAM1;
u8 *m_pUncachedVRAM2;
u8 *m_pUncachedVRAM3;
u8 *m_pUncachedVRAM4;

// Holds the ending address of the PSP's user space.
// Required for HD Remasters to work properly.
// This replaces RAM_NORMAL_SIZE at runtime.
u32 g_MemorySize;
// Used to store the PSP model on game startup.
u32 g_PSPModel;

std::recursive_mutex g_shutdownLock;

// We don't declare the IO region in here since its handled by other means.
static MemoryView views[] =
{
	{&m_pPhysicalScratchPad,  0x00010000, SCRATCHPAD_SIZE, 0},
	{&m_pUncachedScratchPad,  0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS},
	{&m_pPhysicalVRAM1,       0x04000000, 0x00200000, 0},
	{&m_pPhysicalVRAM2,       0x04200000, 0x00200000, MV_MIRROR_PREVIOUS},
	{&m_pPhysicalVRAM3,       0x04400000, 0x00200000, MV_MIRROR_PREVIOUS},
	{&m_pPhysicalVRAM4,       0x04600000, 0x00200000, MV_MIRROR_PREVIOUS},
	{&m_pUncachedVRAM1,       0x44000000, 0x00200000, MV_MIRROR_PREVIOUS},
	{&m_pUncachedVRAM2,       0x44200000, 0x00200000, MV_MIRROR_PREVIOUS},
	{&m_pUncachedVRAM3,       0x44400000, 0x00200000, MV_MIRROR_PREVIOUS},
	{&m_pUncachedVRAM4,       0x44600000, 0x00200000, MV_MIRROR_PREVIOUS},
	{&m_pPhysicalRAM,         0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM},	// only from 0x08800000 is it usable (last 24 megs)
	{&m_pUncachedRAM,         0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM},
	{&m_pKernelRAM,           0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM | MV_KERNEL},
	// Starts at memory + 31 MB.
	{&m_pPhysicalRAM2,        0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM},
	{&m_pUncachedRAM2,        0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM},
	{&m_pKernelRAM2,          0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM | MV_KERNEL},
	// Starts at memory + 31 * 2 MB.
	{&m_pPhysicalRAM3,        0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM},
	{&m_pUncachedRAM3,        0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM},
	{&m_pKernelRAM3,          0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM | MV_KERNEL},

	// TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to
	// implement those.
};

static const int num_views = sizeof(views) / sizeof(MemoryView);

inline static bool CanIgnoreView(const MemoryView &view) {
#if PPSSPP_ARCH(32BIT)
	// Basically, 32-bit platforms can ignore views that are masked out anyway.
	return (view.flags & MV_MIRROR_PREVIOUS) && (view.virtual_address & ~MEMVIEW32_MASK) != 0;
#else
	return false;
#endif
}

#if defined(IOS) && PPSSPP_ARCH(64BIT)
#define SKIP(a_flags, b_flags) \
	if ((b_flags) & MV_KERNEL) \
		continue;
#else
#define SKIP(a_flags, b_flags) \
	;
#endif

static bool Memory_TryBase(u32 flags) {
	// OK, we know where to find free space. Now grab it!
	// We just mimic the popular BAT setup.

	size_t position = 0;
	size_t last_position = 0;

	// Zero all the pointers to be sure.
	for (int i = 0; i < num_views; i++) {
		if (views[i].out_ptr)
			*views[i].out_ptr = 0;
	}

	int i;
	for (i = 0; i < num_views; i++) {
		const MemoryView &view = views[i];
		if (view.size == 0)
			continue;
		SKIP(flags, view.flags);
		
		if (view.flags & MV_MIRROR_PREVIOUS) {
			position = last_position;
		}
#ifndef MASKED_PSP_MEMORY
		*view.out_ptr = (u8*)g_arena.CreateView(
			position, view.size, base + view.virtual_address);
		if (!*view.out_ptr) {
			goto bail;
			DEBUG_LOG(MEMMAP, "Failed at view %d", i);
		}
#else
		if (CanIgnoreView(view)) {
			// This is handled by address masking in 32-bit, no view needs to be created.
			*view.out_ptr = *views[i - 1].out_ptr;
		} else {
			*view.out_ptr = (u8*)g_arena.CreateView(
				position, view.size, base + (view.virtual_address & MEMVIEW32_MASK));
			if (!*view.out_ptr) {
				DEBUG_LOG(MEMMAP, "Failed at view %d", i);
				goto bail;
			}
		}
#endif
		last_position = position;
		position += g_arena.roundup(view.size);
	}

	return true;
bail:
	// Argh! ERROR! Free what we grabbed so far so we can try again.
	for (int j = 0; j <= i; j++) {
		if (views[i].size == 0)
			continue;
		SKIP(flags, views[i].flags);
		if (*views[j].out_ptr) {
			if (!CanIgnoreView(views[j])) {
				g_arena.ReleaseView(*views[j].out_ptr, views[j].size);
			}
			*views[j].out_ptr = NULL;
		}
	}
	return false;
}

bool MemoryMap_Setup(u32 flags) {
#if PPSSPP_PLATFORM(UWP)
	// We reserve the memory, then simply commit in TryBase.
	base = (u8*)VirtualAllocFromApp(0, 0x10000000, MEM_RESERVE, PAGE_READWRITE);
#else

	// Figure out how much memory we need to allocate in total.
	size_t total_mem = 0;
	for (int i = 0; i < num_views; i++) {
		if (views[i].size == 0)
			continue;
		SKIP(flags, views[i].flags);
		if (!CanIgnoreView(views[i]))
			total_mem += g_arena.roundup(views[i].size);
	}

	// Grab some pagefile backed memory out of the void ...
	g_arena.GrabLowMemSpace(total_mem);
#endif

#if !PPSSPP_PLATFORM(ANDROID)
	if (g_arena.NeedsProbing()) {
		int base_attempts = 0;
#if defined(_WIN32) && PPSSPP_ARCH(32BIT)
		// Try a whole range of possible bases. Return once we got a valid one.
		uintptr_t max_base_addr = 0x7FFF0000 - 0x10000000;
		uintptr_t min_base_addr = 0x01000000;
		uintptr_t stride = 0x400000;
#else
		// iOS
		uintptr_t max_base_addr = 0x1FFFF0000ULL - 0x80000000ULL;
		uintptr_t min_base_addr = 0x100000000ULL;
		uintptr_t stride = 0x800000;
#endif
		for (uintptr_t base_addr = min_base_addr; base_addr < max_base_addr; base_addr += stride) {
			base_attempts++;
			base = (u8 *)base_addr;
			if (Memory_TryBase(flags)) {
				INFO_LOG(MEMMAP, "Found valid memory base at %p after %i tries.", base, base_attempts);
				return true;
			}
		}
		ERROR_LOG(MEMMAP, "MemoryMap_Setup: Failed finding a memory base.");
		PanicAlert("MemoryMap_Setup: Failed finding a memory base.");
		return false;
	}
	else
#endif
	{
#if !PPSSPP_PLATFORM(UWP)
		base = g_arena.Find4GBBase();
#endif
	}

	// Should return true...
	return Memory_TryBase(flags);
}

void MemoryMap_Shutdown(u32 flags) {
	for (int i = 0; i < num_views; i++) {
		if (views[i].size == 0)
			continue;
		SKIP(flags, views[i].flags);
		if (*views[i].out_ptr)
			g_arena.ReleaseView(*views[i].out_ptr, views[i].size);
		*views[i].out_ptr = nullptr;
	}
	g_arena.ReleaseSpace();

#if PPSSPP_PLATFORM(UWP)
	VirtualFree(base, 0, MEM_RELEASE);
#endif
}

void Init() {
	// On some 32 bit platforms, you can only map < 32 megs at a time.
	// TODO: Wait, wtf? What platforms are those? This seems bad.
	const static int MAX_MMAP_SIZE = 31 * 1024 * 1024;
	_dbg_assert_msg_(MEMMAP, g_MemorySize < MAX_MMAP_SIZE * 3, "ACK - too much memory for three mmap views.");
	for (size_t i = 0; i < ARRAY_SIZE(views); i++) {
		if (views[i].flags & MV_IS_PRIMARY_RAM)
			views[i].size = std::min((int)g_MemorySize, MAX_MMAP_SIZE);
		if (views[i].flags & MV_IS_EXTRA1_RAM)
			views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE, 0), MAX_MMAP_SIZE);
		if (views[i].flags & MV_IS_EXTRA2_RAM)
			views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE * 2, 0), MAX_MMAP_SIZE);
	}
	int flags = 0;
	MemoryMap_Setup(flags);

	INFO_LOG(MEMMAP, "Memory system initialized. Base at %p (RAM at @ %p, uncached @ %p)",
		base, m_pPhysicalRAM, m_pUncachedRAM);
}

void DoState(PointerWrap &p) {
	auto s = p.Section("Memory", 1, 3);
	if (!s)
		return;

	if (s < 2) {
		if (!g_RemasterMode)
			g_MemorySize = RAM_NORMAL_SIZE;
		g_PSPModel = PSP_MODEL_FAT;
	} else if (s == 2) {
		// In version 2, we determine memory size based on PSP model.
		u32 oldMemorySize = g_MemorySize;
		p.Do(g_PSPModel);
		p.DoMarker("PSPModel");
		if (!g_RemasterMode) {
			g_MemorySize = g_PSPModel == PSP_MODEL_FAT ? RAM_NORMAL_SIZE : RAM_DOUBLE_SIZE;
			if (oldMemorySize < g_MemorySize) {
				Shutdown();
				Init();
			}
		}
	} else {
		// In version 3, we started just saving the memory size directly.
		// It's no longer based strictly on the PSP model.
		u32 oldMemorySize = g_MemorySize;
		p.Do(g_PSPModel);
		p.DoMarker("PSPModel");
		p.Do(g_MemorySize);
		if (oldMemorySize != g_MemorySize) {
			Shutdown();
			Init();
		}
	}

	p.DoArray(GetPointer(PSP_GetKernelMemoryBase()), g_MemorySize);
	p.DoMarker("RAM");

	p.DoArray(m_pPhysicalVRAM1, VRAM_SIZE);
	p.DoMarker("VRAM");
	p.DoArray(m_pPhysicalScratchPad, SCRATCHPAD_SIZE);
	p.DoMarker("ScratchPad");
}

void Shutdown() {
	std::lock_guard<std::recursive_mutex> guard(g_shutdownLock);
	u32 flags = 0;
	MemoryMap_Shutdown(flags);
	base = nullptr;
	DEBUG_LOG(MEMMAP, "Memory system shut down.");
}

void Clear() {
	if (m_pPhysicalRAM)
		memset(GetPointerUnchecked(PSP_GetKernelMemoryBase()), 0, g_MemorySize);
	if (m_pPhysicalScratchPad)
		memset(m_pPhysicalScratchPad, 0, SCRATCHPAD_SIZE);
	if (m_pPhysicalVRAM1)
		memset(m_pPhysicalVRAM1, 0, VRAM_SIZE);
}

bool IsActive() {
	return base != nullptr;
}

// Wanting to avoid include pollution, MemMap.h is included a lot.
MemoryInitedLock::MemoryInitedLock()
{
	g_shutdownLock.lock();
}
MemoryInitedLock::~MemoryInitedLock()
{
	g_shutdownLock.unlock();
}

MemoryInitedLock Lock()
{
	return MemoryInitedLock();
}

__forceinline static Opcode Read_Instruction(u32 address, bool resolveReplacements, Opcode inst)
{
	if (!MIPS_IS_EMUHACK(inst.encoding)) {
		return inst;
	}

	if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) {
		inst = MIPSComp::jit->GetOriginalOp(inst);
		if (resolveReplacements && MIPS_IS_REPLACEMENT(inst)) {
			u32 op;
			if (GetReplacedOpAt(address, &op)) {
				if (MIPS_IS_EMUHACK(op)) {
					ERROR_LOG(MEMMAP, "WTF 1");
					return Opcode(op);
				} else {
					return Opcode(op);
				}
			} else {
				ERROR_LOG(MEMMAP, "Replacement, but no replacement op? %08x", inst.encoding);
			}
		}
		return inst;
	} else if (resolveReplacements && MIPS_IS_REPLACEMENT(inst.encoding)) {
		u32 op;
		if (GetReplacedOpAt(address, &op)) {
			if (MIPS_IS_EMUHACK(op)) {
				ERROR_LOG(MEMMAP, "WTF 2");
				return Opcode(op);
			} else {
				return Opcode(op);
			}
		} else {
			return inst;
		}
	} else {
		return inst;
	}
}

Opcode Read_Instruction(u32 address, bool resolveReplacements)
{
	Opcode inst = Opcode(Read_U32(address));
	return Read_Instruction(address, resolveReplacements, inst);
}

Opcode ReadUnchecked_Instruction(u32 address, bool resolveReplacements)
{
	Opcode inst = Opcode(ReadUnchecked_U32(address));
	return Read_Instruction(address, resolveReplacements, inst);
}

Opcode Read_Opcode_JIT(u32 address)
{
	Opcode inst = Opcode(Read_U32(address));
	if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) {
		return MIPSComp::jit->GetOriginalOp(inst);
	} else {
		return inst;
	}
}

// WARNING! No checks!
// We assume that _Address is cached
void Write_Opcode_JIT(const u32 _Address, const Opcode& _Value)
{
	Memory::WriteUnchecked_U32(_Value.encoding, _Address);
}

void Memset(const u32 _Address, const u8 _iValue, const u32 _iLength)
{
	u8 *ptr = GetPointer(_Address);
	if (ptr != NULL) {
		memset(ptr, _iValue, _iLength);
	}
	else
	{
		for (size_t i = 0; i < _iLength; i++)
			Write_U8(_iValue, (u32)(_Address + i));
	}
#ifndef MOBILE_DEVICE
	CBreakPoints::ExecMemCheck(_Address, true, _iLength, currentMIPS->pc);
#endif
}

} // namespace
Exemplo n.º 30
0
namespace WiimoteReal
{

void HandleFoundWiimotes(const std::vector<Wiimote*>&);
void TryToConnectBalanceBoard(Wiimote*);
void TryToConnectWiimote(Wiimote*);
void HandleWiimoteDisconnect(int index);
void DoneWithWiimote(int index);

static bool g_real_wiimotes_initialized = false;

std::recursive_mutex g_refresh_lock;

Wiimote* g_wiimotes[MAX_BBMOTES];
WiimoteScanner g_wiimote_scanner;

Wiimote::Wiimote()
	: m_index()
	, m_last_input_report()
	, m_channel(0)
	, m_rumble_state()
	, m_need_prepare()
{}

void Wiimote::Shutdown()
{
	StopThread();
	ClearReadQueue();
	m_write_reports.Clear();
}

// to be called from CPU thread
void Wiimote::WriteReport(Report rpt)
{
	if (rpt.size() >= 3)
	{
		bool const new_rumble_state = (rpt[2] & 0x1) != 0;

		// If this is a rumble report and the rumble state didn't change, ignore.
		if (WM_RUMBLE == rpt[1] && new_rumble_state == m_rumble_state)
			return;

		m_rumble_state = new_rumble_state;
	}

	m_write_reports.Push(std::move(rpt));
	IOWakeup();
}

// to be called from CPU thread
void Wiimote::QueueReport(u8 rpt_id, const void* _data, unsigned int size)
{
	auto const data = static_cast<const u8*>(_data);

	Report rpt(size + 2);
	rpt[0] = WM_SET_REPORT | WM_BT_OUTPUT;
	rpt[1] = rpt_id;
	std::copy_n(data, size, rpt.begin() + 2);
	WriteReport(std::move(rpt));
}

void Wiimote::DisableDataReporting()
{
	m_last_input_report.clear();

	// This probably accomplishes nothing.
	wm_report_mode rpt = {};
	rpt.mode = WM_REPORT_CORE;
	rpt.all_the_time = 0;
	rpt.continuous = 0;
	rpt.rumble = 0;
	QueueReport(WM_REPORT_MODE, &rpt, sizeof(rpt));
}

void Wiimote::EnableDataReporting(u8 mode)
{
	m_last_input_report.clear();

	wm_report_mode rpt = {};
	rpt.mode = mode;
	rpt.all_the_time = 1;
	rpt.continuous = 1;
	QueueReport(WM_REPORT_MODE, &rpt, sizeof(rpt));
}

void Wiimote::SetChannel(u16 channel)
{
	m_channel = channel;
}

void Wiimote::ClearReadQueue()
{
	Report rpt;

	// The "Clear" function isn't thread-safe :/
	while (m_read_reports.Pop(rpt))
	{}
}

void Wiimote::ControlChannel(const u16 channel, const void* const data, const u32 size)
{
	// Check for custom communication
	if (99 == channel)
	{
		EmuStop();
	}
	else
	{
		InterruptChannel(channel, data, size);
		const hid_packet* const hidp = (hid_packet*)data;
		if (hidp->type == HID_TYPE_SET_REPORT)
		{
			u8 handshake_ok = HID_HANDSHAKE_SUCCESS;
			Core::Callback_WiimoteInterruptChannel(m_index, channel, &handshake_ok, sizeof(handshake_ok));
		}
	}
}

void Wiimote::InterruptChannel(const u16 channel, const void* const _data, const u32 size)
{
	// first interrupt/control channel sent
	if (channel != m_channel)
	{
		m_channel = channel;

		ClearReadQueue();

		EmuStart();
	}

	auto const data = static_cast<const u8*>(_data);
	Report rpt(data, data + size);
	WiimoteEmu::Wiimote *const wm = (WiimoteEmu::Wiimote*)::Wiimote::GetConfig()->controllers[m_index];

	// Convert output DATA packets to SET_REPORT packets.
	// Nintendo Wiimotes work without this translation, but 3rd
	// party ones don't.
	if (rpt[0] == 0xa2)
	{
		rpt[0] = WM_SET_REPORT | WM_BT_OUTPUT;
	}

	// Disallow games from turning off all of the LEDs.
	// It makes Wiimote connection status confusing.
	if (rpt[1] == WM_LEDS)
	{
		auto& leds_rpt = *reinterpret_cast<wm_leds*>(&rpt[2]);
		if (0 == leds_rpt.leds)
		{
			// Turn on ALL of the LEDs.
			leds_rpt.leds = 0xf;
		}
	}
	else if (rpt[1] == WM_WRITE_SPEAKER_DATA &&
	         (!SConfig::GetInstance().m_WiimoteEnableSpeaker ||
	         (!wm->m_status.speaker || wm->m_speaker_mute)))
	{
		// Translate speaker data reports into rumble reports.
		rpt[1] = WM_RUMBLE;
		// Keep only the rumble bit.
		rpt[2] &= 0x1;
		rpt.resize(3);
	}

	WriteReport(std::move(rpt));
}

bool Wiimote::Read()
{
	Report rpt(MAX_PAYLOAD);
	auto const result = IORead(rpt.data());

	if (result > 0 && m_channel > 0)
	{
		if (SConfig::GetInstance().iBBDumpPort > 0 &&
		    m_index == WIIMOTE_BALANCE_BOARD)
		{
			static sf::UdpSocket Socket;
			Socket.send((char*)rpt.data(),
			            rpt.size(),
			            sf::IpAddress::LocalHost,
		                SConfig::GetInstance().iBBDumpPort);
		}

		// Add it to queue
		rpt.resize(result);
		m_read_reports.Push(std::move(rpt));
		return true;
	}
	else if (0 == result)
	{
		ERROR_LOG(WIIMOTE, "Wiimote::IORead failed. Disconnecting Wiimote %d.", m_index + 1);
		DisconnectInternal();
	}

	return false;
}

bool Wiimote::Write()
{
	if (!m_write_reports.Empty())
	{
		Report const& rpt = m_write_reports.Front();

		bool const is_speaker_data = rpt[1] == WM_WRITE_SPEAKER_DATA;

		if (!is_speaker_data || m_last_audio_report.GetTimeDifference() > 5)
		{
			if (SConfig::GetInstance().iBBDumpPort > 0 && m_index == WIIMOTE_BALANCE_BOARD)
			{
				static sf::UdpSocket Socket;
				Socket.send((char*)rpt.data(), rpt.size(), sf::IpAddress::LocalHost, SConfig::GetInstance().iBBDumpPort);
			}
			IOWrite(rpt.data(), rpt.size());

			if (is_speaker_data)
			{
				m_last_audio_report.Update();
			}

			m_write_reports.Pop();
			return true;
		}
	}

	return false;
}

static bool IsDataReport(const Report& rpt)
{
	return rpt.size() >= 2 && rpt[1] >= WM_REPORT_CORE;
}

// Returns the next report that should be sent
const Report& Wiimote::ProcessReadQueue()
{
	// Pop through the queued reports
	while (m_read_reports.Pop(m_last_input_report))
	{
		if (!IsDataReport(m_last_input_report))
		{
			// A non-data report, use it.
			return m_last_input_report;

			// Forget the last data report as it may be of the wrong type
			// or contain outdated button data
			// or it's not supposed to be sent at this time
			// It's just easier to be correct this way and it's probably not horrible.
		}
	}

	// If the last report wasn't a data report it's irrelevant.
	if (!IsDataReport(m_last_input_report))
		m_last_input_report.clear();

	// If it was a data report, we repeat that until something else comes in.
	return m_last_input_report;
}

void Wiimote::Update()
{
	if (!IsConnected())
	{
		HandleWiimoteDisconnect(m_index);
		return;
	}

	// Pop through the queued reports
	const Report& rpt = ProcessReadQueue();

	// Send the report
	if (!rpt.empty() && m_channel > 0)
	{
		Core::Callback_WiimoteInterruptChannel(m_index, m_channel,
			rpt.data(), (u32)rpt.size());
	}
}

void Wiimote::Prepare(int _index)
{
	m_index = _index;
	m_need_prepare.store(true);
}

bool Wiimote::PrepareOnThread()
{
	// core buttons, no continuous reporting
	u8 static const mode_report[] = {WM_SET_REPORT | WM_BT_OUTPUT, WM_REPORT_MODE, 0, WM_REPORT_CORE};

	// Set the active LEDs and turn on rumble.
	u8 static const led_report[] = {WM_SET_REPORT | WM_BT_OUTPUT, WM_LEDS, u8(WIIMOTE_LED_1 << (m_index%WIIMOTE_BALANCE_BOARD) | 0x1)};

	// Turn off rumble
	u8 static const rumble_report[] = {WM_SET_REPORT | WM_BT_OUTPUT, WM_RUMBLE, 0};

	// Request status report
	u8 static const req_status_report[] = {WM_SET_REPORT | WM_BT_OUTPUT, WM_REQUEST_STATUS, 0};
	// TODO: check for sane response?

	return (IOWrite(mode_report, sizeof(mode_report)) &&
	        IOWrite(led_report, sizeof(led_report)) &&
	        (SLEEP(200), IOWrite(rumble_report, sizeof(rumble_report))) &&
	        IOWrite(req_status_report, sizeof(req_status_report)));
}

void Wiimote::EmuStart()
{
	DisableDataReporting();
	EnablePowerAssertionInternal();
}

void Wiimote::EmuStop()
{
	m_channel = 0;

	DisableDataReporting();

	NOTICE_LOG(WIIMOTE, "Stopping Wiimote data reporting.");

	DisablePowerAssertionInternal();
}

void Wiimote::EmuResume()
{
	WiimoteEmu::Wiimote *const wm = (WiimoteEmu::Wiimote*)::Wiimote::GetConfig()->controllers[m_index];

	m_last_input_report.clear();

	wm_report_mode rpt = {};
	rpt.mode = wm->m_reporting_mode;
	rpt.all_the_time = 1;
	rpt.continuous = 1;
	QueueReport(WM_REPORT_MODE, &rpt, sizeof(rpt));

	NOTICE_LOG(WIIMOTE, "Resuming Wiimote data reporting.");

	EnablePowerAssertionInternal();
}

void Wiimote::EmuPause()
{
	m_last_input_report.clear();

	wm_report_mode rpt = {};
	rpt.mode = WM_REPORT_CORE;
	rpt.all_the_time = 0;
	rpt.continuous = 0;
	QueueReport(WM_REPORT_MODE, &rpt, sizeof(rpt));

	NOTICE_LOG(WIIMOTE, "Pausing Wiimote data reporting.");

	DisablePowerAssertionInternal();
}

static unsigned int CalculateConnectedWiimotes()
{
	unsigned int connected_wiimotes = 0;
	for (unsigned int i = 0; i < MAX_WIIMOTES; ++i)
		if (g_wiimotes[i])
			++connected_wiimotes;

	return connected_wiimotes;
}

static unsigned int CalculateWantedWiimotes()
{
	// Figure out how many real Wiimotes are required
	unsigned int wanted_wiimotes = 0;
	for (unsigned int i = 0; i < MAX_WIIMOTES; ++i)
		if (WIIMOTE_SRC_REAL & g_wiimote_sources[i] && !g_wiimotes[i])
			++wanted_wiimotes;

	return wanted_wiimotes;
}

static unsigned int CalculateWantedBB()
{
	unsigned int wanted_bb = 0;
	if (WIIMOTE_SRC_REAL & g_wiimote_sources[WIIMOTE_BALANCE_BOARD] && !g_wiimotes[WIIMOTE_BALANCE_BOARD])
		++wanted_bb;
	return wanted_bb;
}

void WiimoteScanner::WantWiimotes(bool do_want)
{
	m_want_wiimotes.store(do_want);
}


void WiimoteScanner::WantBB(bool do_want)
{
	m_want_bb.store(do_want);
}

void WiimoteScanner::StartScanning()
{
	if (!m_run_thread.load())
	{
		m_run_thread.store(true);
		m_scan_thread = std::thread(&WiimoteScanner::ThreadFunc, this);
	}
}

void WiimoteScanner::StopScanning()
{
	m_run_thread.store(false);
	if (m_scan_thread.joinable())
	{
		m_scan_thread.join();
	}
}

static void CheckForDisconnectedWiimotes()
{
	std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);

	for (unsigned int i = 0; i < MAX_BBMOTES; ++i)
		if (g_wiimotes[i] && !g_wiimotes[i]->IsConnected())
			HandleWiimoteDisconnect(i);
}

void WiimoteScanner::ThreadFunc()
{
	Common::SetCurrentThreadName("Wiimote Scanning Thread");

	NOTICE_LOG(WIIMOTE, "Wiimote scanning has started.");

	while (m_run_thread.load())
	{
		std::vector<Wiimote*> found_wiimotes;
		Wiimote* found_board = nullptr;

		//NOTICE_LOG(WIIMOTE, "In loop");

		if (m_want_wiimotes.load() || m_want_bb.load())
		{
			FindWiimotes(found_wiimotes, found_board);
		}
		else
		{
			// Does stuff needed to detect disconnects on Windows
			Update();
		}

		//NOTICE_LOG(WIIMOTE, "After update");

		// TODO: this is a fairly lame place for this
		CheckForDisconnectedWiimotes();

		if (m_want_wiimotes.load())
			HandleFoundWiimotes(found_wiimotes);

		if (m_want_bb.load() && found_board)
			TryToConnectBalanceBoard(found_board);

		//std::this_thread::yield();
		Common::SleepCurrentThread(500);
	}

	NOTICE_LOG(WIIMOTE, "Wiimote scanning has stopped.");
}

bool Wiimote::Connect()
{
	if (!m_run_thread.load())
	{
		m_thread_ready.store(false);
		StartThread();
		WaitReady();
	}
	return IsConnected();
}

void Wiimote::StartThread()
{
	m_run_thread.store(true);
	m_wiimote_thread = std::thread(&Wiimote::ThreadFunc, this);
}

void Wiimote::StopThread()
{
	m_run_thread.store(false);
	IOWakeup();
	if (m_wiimote_thread.joinable())
		m_wiimote_thread.join();
}

void Wiimote::SetReady()
{
	if (!m_thread_ready.load())
	{
		m_thread_ready.store(true);
		m_thread_ready_cond.notify_all();
	}
}

void Wiimote::WaitReady()
{
	std::unique_lock<std::mutex> lock(m_thread_ready_mutex);
	while (!m_thread_ready.load())
	{
		m_thread_ready_cond.wait(lock);
	}
}

void Wiimote::ThreadFunc()
{
	Common::SetCurrentThreadName("Wiimote Device Thread");

	bool ok = ConnectInternal();

	if (!ok)
	{
		// try again, it might take a moment to settle
		Common::SleepCurrentThread(100);
		ok = ConnectInternal();
	}

	SetReady();

	if (!ok)
	{
		return;
	}

	// main loop
	while (IsConnected() && m_run_thread.load())
	{
		if (m_need_prepare.load())
		{
			m_need_prepare.store(false);
			if (!PrepareOnThread())
			{
				ERROR_LOG(WIIMOTE, "Wiimote::PrepareOnThread failed.  Disconnecting Wiimote %d.", m_index + 1);
				break;
			}
		}
		Write();
		Read();
	}

	DisconnectInternal();
}

void LoadSettings()
{
	std::string ini_filename = File::GetUserPath(D_CONFIG_IDX) + WIIMOTE_INI_NAME ".ini";

	IniFile inifile;
	inifile.Load(ini_filename);

	for (unsigned int i=0; i<MAX_WIIMOTES; ++i)
	{
		std::string secname("Wiimote");
		secname += (char)('1' + i);
		IniFile::Section& sec = *inifile.GetOrCreateSection(secname);

		sec.Get("Source", &g_wiimote_sources[i], i ? WIIMOTE_SRC_NONE : WIIMOTE_SRC_EMU);
	}

	std::string secname("BalanceBoard");
	IniFile::Section& sec = *inifile.GetOrCreateSection(secname);
	sec.Get("Source", &g_wiimote_sources[WIIMOTE_BALANCE_BOARD], WIIMOTE_SRC_NONE);
}

// config dialog calls this when some settings change
void Initialize(bool wait)
{
	if (SConfig::GetInstance().m_WiimoteContinuousScanning)
		g_wiimote_scanner.StartScanning();
	else
		g_wiimote_scanner.StopScanning();

	std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);

	g_wiimote_scanner.WantWiimotes(0 != CalculateWantedWiimotes());
	g_wiimote_scanner.WantBB(0 != CalculateWantedBB());

	// wait for connection because it should exist before state load
	if (wait)
	{
		int timeout = 100;
		std::vector<Wiimote*> found_wiimotes;
		Wiimote* found_board = nullptr;
		g_wiimote_scanner.FindWiimotes(found_wiimotes, found_board);
		if (SConfig::GetInstance().m_WiimoteContinuousScanning)
		{
			while (CalculateWantedWiimotes() && CalculateConnectedWiimotes() < found_wiimotes.size() && timeout)
			{
				Common::SleepCurrentThread(100);
				timeout--;
			}
		}
	}

	if (g_real_wiimotes_initialized)
		return;

	NOTICE_LOG(WIIMOTE, "WiimoteReal::Initialize");

	g_real_wiimotes_initialized = true;
}

// called on emulation shutdown
void Stop()
{
	for (auto& wiimote : g_wiimotes)
		if (wiimote && wiimote->IsConnected())
			wiimote->EmuStop();
}

// called when the Dolphin app exits
void Shutdown()
{
	g_wiimote_scanner.StopScanning();

	std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);

	if (!g_real_wiimotes_initialized)
		return;

	NOTICE_LOG(WIIMOTE, "WiimoteReal::Shutdown");

	g_real_wiimotes_initialized = false;

	for (unsigned int i = 0; i < MAX_BBMOTES; ++i)
		HandleWiimoteDisconnect(i);
}

void Resume()
{
	for (auto& wiimote : g_wiimotes)
		if (wiimote && wiimote->IsConnected())
			wiimote->EmuResume();
}

void Pause()
{
	for (auto& wiimote : g_wiimotes)
		if (wiimote && wiimote->IsConnected())
			wiimote->EmuPause();
}

void ChangeWiimoteSource(unsigned int index, int source)
{
	{
		std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);
		g_wiimote_sources[index] = source;
		g_wiimote_scanner.WantWiimotes(0 != CalculateWantedWiimotes());
		g_wiimote_scanner.WantBB(0 != CalculateWantedBB());
		// kill real connection (or swap to different slot)
		DoneWithWiimote(index);
	}

	// reconnect to the emulator
	Host_ConnectWiimote(index, false);
	if (WIIMOTE_SRC_EMU & source)
		Host_ConnectWiimote(index, true);
}

static bool TryToConnectWiimoteN(Wiimote* wm, unsigned int i)
{
	if (WIIMOTE_SRC_REAL & g_wiimote_sources[i] && !g_wiimotes[i])
	{
		if (wm->Connect())
		{
			wm->Prepare(i);
			NOTICE_LOG(WIIMOTE, "Connected to Wiimote %i.", i + 1);
			g_wiimotes[i] = wm;
			Host_ConnectWiimote(i, true);
		}
		return true;
	}
	return false;
}

void TryToConnectWiimote(Wiimote* wm)
{
	std::unique_lock<std::recursive_mutex> lk(g_refresh_lock);

	for (unsigned int i = 0; i < MAX_WIIMOTES; ++i)
	{
		if (TryToConnectWiimoteN(wm, i))
		{
			wm = nullptr;
			break;
		}
	}

	g_wiimote_scanner.WantWiimotes(0 != CalculateWantedWiimotes());

	lk.unlock();

	delete wm;
}

void TryToConnectBalanceBoard(Wiimote* wm)
{
	std::unique_lock<std::recursive_mutex> lk(g_refresh_lock);

	if (TryToConnectWiimoteN(wm, WIIMOTE_BALANCE_BOARD))
	{
		wm = nullptr;
	}

	g_wiimote_scanner.WantBB(0 != CalculateWantedBB());

	lk.unlock();

	delete wm;
}

void DoneWithWiimote(int index)
{
	std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);

	Wiimote* wm = g_wiimotes[index];

	if (wm)
	{
		g_wiimotes[index] = nullptr;
		// First see if we can use this real Wiimote in another slot.
		TryToConnectWiimote(wm);
	}

	// else, just disconnect the Wiimote
	HandleWiimoteDisconnect(index);
}

void HandleWiimoteDisconnect(int index)
{
	Wiimote* wm = nullptr;

	{
		std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);

		std::swap(wm, g_wiimotes[index]);
		g_wiimote_scanner.WantWiimotes(0 != CalculateWantedWiimotes());
		g_wiimote_scanner.WantBB(0 != CalculateWantedBB());
	}

	if (wm)
	{
		delete wm;
		NOTICE_LOG(WIIMOTE, "Disconnected Wiimote %i.", index + 1);
	}
}

void HandleFoundWiimotes(const std::vector<Wiimote*>& wiimotes)
{
	std::for_each(wiimotes.begin(), wiimotes.end(), TryToConnectWiimote);
}

// This is called from the GUI thread
void Refresh()
{
	g_wiimote_scanner.StopScanning();

	{
		std::unique_lock<std::recursive_mutex> lk(g_refresh_lock);
		std::vector<Wiimote*> found_wiimotes;
		Wiimote* found_board = nullptr;

		if (0 != CalculateWantedWiimotes() || 0 != CalculateWantedBB())
		{
			// Don't hang Dolphin when searching
			lk.unlock();
			g_wiimote_scanner.FindWiimotes(found_wiimotes, found_board);
			lk.lock();
		}

		CheckForDisconnectedWiimotes();

		// Brief rumble for already connected Wiimotes.
		// Don't do this for Balance Board as it doesn't have rumble anyway.
		for (int i = 0; i < MAX_WIIMOTES; ++i)
		{
			if (g_wiimotes[i])
			{
				g_wiimotes[i]->Prepare(i);
			}
		}

		HandleFoundWiimotes(found_wiimotes);
		if (found_board)
			TryToConnectBalanceBoard(found_board);
	}

	Initialize();
}

void InterruptChannel(int _WiimoteNumber, u16 _channelID, const void* _pData, u32 _Size)
{
	std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);
	if (g_wiimotes[_WiimoteNumber])
		g_wiimotes[_WiimoteNumber]->InterruptChannel(_channelID, _pData, _Size);
}

void ControlChannel(int _WiimoteNumber, u16 _channelID, const void* _pData, u32 _Size)
{
	std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);

	if (g_wiimotes[_WiimoteNumber])
		g_wiimotes[_WiimoteNumber]->ControlChannel(_channelID, _pData, _Size);
}


// Read the Wiimote once
void Update(int _WiimoteNumber)
{
	// Try to get a lock and return without doing anything if we fail
	// This avoids deadlocks when adding a Wiimote during continuous scan
	if(!g_refresh_lock.try_lock())
		return;

	if (g_wiimotes[_WiimoteNumber])
		g_wiimotes[_WiimoteNumber]->Update();

	// Wiimote::Update() may remove the Wiimote if it was disconnected.
	if (!g_wiimotes[_WiimoteNumber])
	{
		Host_ConnectWiimote(_WiimoteNumber, false);
	}
	g_refresh_lock.unlock();
}

void StateChange(EMUSTATE_CHANGE newState)
{
	//std::lock_guard<std::recursive_mutex> lk(g_refresh_lock);

	// TODO: disable/enable auto reporting, maybe
}

bool IsValidBluetoothName(const std::string& name)
{
	return
		"Nintendo RVL-CNT-01" == name ||
		"Nintendo RVL-CNT-01-TR" == name ||
		IsBalanceBoardName(name);
}

bool IsBalanceBoardName(const std::string& name)
{
	return
	"Nintendo RVL-WBC-01" == name;
}

}; // end of namespace