Пример #1
0
TEST_F(StatusUpdateManagerTest, CheckpointStatusUpdate)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  // Require flags to retrieve work_dir when recovering
  // the checkpointed data.
  slave::Flags flags = CreateSlaveFlags();

  Try<PID<Slave> > slave = StartSlave(&exec, flags);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  EXPECT_CALL(exec, registered(_, _, _, _))
    .Times(1);

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  Future<Nothing> _statusUpdateAcknowledgement =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  AWAIT_READY(_statusUpdateAcknowledgement);

  // Ensure that both the status update and its acknowledgement are
  // correctly checkpointed.
  Result<slave::state::State> state =
    slave::state::recover(slave::paths::getMetaRootDir(flags.work_dir), true);

  ASSERT_SOME(state);
  ASSERT_SOME(state.get().slave);
  ASSERT_TRUE(state.get().slave.get().frameworks.contains(frameworkId.get()));

  slave::state::FrameworkState frameworkState =
    state.get().slave.get().frameworks.get(frameworkId.get()).get();

  ASSERT_EQ(1u, frameworkState.executors.size());

  slave::state::ExecutorState executorState =
    frameworkState.executors.begin()->second;

  ASSERT_EQ(1u, executorState.runs.size());

  slave::state::RunState runState = executorState.runs.begin()->second;

  ASSERT_EQ(1u, runState.tasks.size());

  slave::state::TaskState taskState = runState.tasks.begin()->second;

  EXPECT_EQ(1u, taskState.updates.size());
  EXPECT_EQ(1u, taskState.acks.size());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
Пример #2
0
// This test ensures that the command executor sends TASK_KILLING
// to frameworks that support the capability.
TEST_F(CommandExecutorTest, TaskKillingCapability)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  Try<PID<Slave>> slave = StartSlave();
  ASSERT_SOME(slave);

  // Start the framework with the task killing capability.
  FrameworkInfo::Capability capability;
  capability.set_type(FrameworkInfo::Capability::TASK_KILLING_STATE);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.add_capabilities()->CopyFrom(capability);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  // Launch a task with the command executor.
  TaskInfo task = createTask(
      offers->front().slave_id(),
      offers->front().resources(),
      "sleep 1000");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  driver.launchTasks(offers->front().id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  Future<TaskStatus> statusKilling, statusKilled;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusKilling))
    .WillOnce(FutureArg<1>(&statusKilled));

  driver.killTask(task.task_id());

  AWAIT_READY(statusKilling);
  EXPECT_EQ(TASK_KILLING, statusKilling->state());

  AWAIT_READY(statusKilled);
  EXPECT_EQ(TASK_KILLED, statusKilled->state());

  driver.stop();
  driver.join();
}
Пример #3
0
// This test verifies that docker image default cmd is executed correctly.
// This corresponds to the case in runtime isolator logic table: sh=0,
// value=0, argv=1, entrypoint=0, cmd=1.
TEST_F(DockerRuntimeIsolatorTest, ROOT_DockerDefaultCmdLocalPuller)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  const string directory = path::join(os::getcwd(), "archives");

  Future<Nothing> testImage =
    DockerArchive::create(directory, "alpine", "null", "[\"sh\"]");

  AWAIT_READY(testImage);

  ASSERT_TRUE(os::exists(path::join(directory, "alpine.tar")));

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "docker/runtime,filesystem/linux";
  flags.image_providers = "docker";
  flags.docker_registry = directory;

  // Make docker store directory as a temparary directory. Because the
  // manifest of the test image is changeable, the image cached on
  // previous tests should never be used.
  flags.docker_store_dir = path::join(os::getcwd(), "store");

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  TaskInfo task;
  task.set_name("test-task");
  task.mutable_task_id()->set_value(UUID::random().toString());
  task.mutable_slave_id()->CopyFrom(offer.slave_id());
  task.mutable_resources()->CopyFrom(Resources::parse("cpus:1;mem:128").get());
  task.mutable_command()->set_shell(false);
  task.mutable_command()->add_arguments("-c");
  task.mutable_command()->add_arguments("echo 'hello world'");

  Image image;
  image.set_type(Image::DOCKER);
  image.mutable_docker()->set_name("alpine");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);
  container->mutable_mesos()->mutable_image()->CopyFrom(image);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(task.task_id(), statusFinished->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
Пример #4
0
// This test ensures that driver based schedulers using explicit
// acknowledgements can acknowledge status updates sent from
// HTTP based executors.
TEST_F(HTTPCommandExecutorTest, ExplicitAcknowledgements)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();

  slave::Flags flags = CreateSlaveFlags();
  flags.http_command_executor = true;

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      false,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  // Launch a task with the command executor.
  TaskInfo task = createTask(
      offers->front().slave_id(),
      offers->front().resources(),
      "sleep 1000");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  // Ensure no status update acknowledgements are sent from the driver
  // to the master until the explicit acknowledgement is sent.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get()->pid);

  driver.launchTasks(offers->front().id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_TRUE(statusRunning->has_slave_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  // Now send the acknowledgement.
  Future<mesos::scheduler::Call> acknowledgement = FUTURE_CALL(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _,
      master.get()->pid);

  driver.acknowledgeStatusUpdate(statusRunning.get());

  AWAIT_READY(acknowledgement);

  driver.stop();
  driver.join();
}
Пример #5
0
TEST_F(ResourceOffersTest, ResourcesGetReofferedAfterTaskInfoError)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get());
  ASSERT_SOME(slave);

  MockScheduler sched1;
  MesosSchedulerDriver driver1(
      &sched1, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched1, registered(&driver1, _, _))
    .Times(1);

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched1, resourceOffers(&driver1, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver1.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  Resource* cpus = task.add_resources();
  cpus->set_name("cpus");
  cpus->set_type(Value::SCALAR);
  cpus->mutable_scalar()->set_value(-1);

  Resource* mem = task.add_resources();
  mem->set_name("mem");
  mem->set_type(Value::SCALAR);
  mem->mutable_scalar()->set_value(Gigabytes(1).bytes());

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> status;
  EXPECT_CALL(sched1, statusUpdate(&driver1, _))
    .WillOnce(FutureArg<1>(&status));

  driver1.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(status);
  EXPECT_EQ(task.task_id(), status.get().task_id());
  EXPECT_EQ(TASK_ERROR, status.get().state());
  EXPECT_EQ(TaskStatus::REASON_TASK_INVALID, status.get().reason());
  EXPECT_TRUE(status.get().has_message());
  EXPECT_TRUE(strings::startsWith(
        status.get().message(), "Task uses invalid resources"));

  MockScheduler sched2;
  MesosSchedulerDriver driver2(
      &sched2, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched2, registered(&driver2, _, _))
    .Times(1);

  EXPECT_CALL(sched2, resourceOffers(&driver2, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver2.start();

  AWAIT_READY(offers);

  driver1.stop();
  driver1.join();

  driver2.stop();
  driver2.join();
}
Пример #6
0
// Testing route with authorization header and good credentials.
TEST_F(TeardownTest, Success)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  ASSERT_EQ(DRIVER_RUNNING, driver.start());

  AWAIT_READY(frameworkId);

  {
    Future<Response> response = process::http::post(
        master.get()->pid,
        "teardown",
        createBasicAuthHeaders(DEFAULT_CREDENTIAL),
        "frameworkId=" + frameworkId.get().value());

    AWAIT_READY(response);
    AWAIT_EXPECT_RESPONSE_STATUS_EQ(OK().status, response);
  }

  // Check that the framework that was shutdown appears in the
  // "completed_frameworks" list in the master's "/state" endpoint.
  {
    Future<Response> response = process::http::get(
        master.get()->pid,
        "state",
        None(),
        createBasicAuthHeaders(DEFAULT_CREDENTIAL));

    AWAIT_EXPECT_RESPONSE_STATUS_EQ(OK().status, response);
    AWAIT_EXPECT_RESPONSE_HEADER_EQ(APPLICATION_JSON, "Content-Type", response);

    Try<JSON::Object> parse = JSON::parse<JSON::Object>(response.get().body);
    ASSERT_SOME(parse);

    JSON::Array frameworks = parse->values["frameworks"].as<JSON::Array>();

    EXPECT_TRUE(frameworks.values.empty());

    JSON::Array completedFrameworks =
      parse->values["completed_frameworks"].as<JSON::Array>();

    ASSERT_EQ(1u, completedFrameworks.values.size());

    JSON::Object completedFramework =
      completedFrameworks.values.front().as<JSON::Object>();

    JSON::String completedFrameworkId =
      completedFramework.values["id"].as<JSON::String>();

    EXPECT_EQ(frameworkId.get(), completedFrameworkId.value);
  }

  driver.stop();
  driver.join();
}
Пример #7
0
// This test ensures that a task will transition straight from `TASK_KILLING` to
// `TASK_KILLED`, even if the health check begins to fail during the kill policy
// grace period.
//
// TODO(gkleiman): this test takes about 7 seconds to run, consider using mock
// tasks and health checkers to speed it up.
TEST_P(CommandExecutorTest, NoTransitionFromKillingToRunning)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();

  slave::Flags flags = CreateSlaveFlags();
  flags.http_command_executor = GetParam();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  // Start the framework with the task killing capability.
  FrameworkInfo::Capability capability;
  capability.set_type(FrameworkInfo::Capability::TASK_KILLING_STATE);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.add_capabilities()->CopyFrom(capability);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  const string command = strings::format(
      "%s %s --sleep_duration=15",
      getTestHelperPath("test-helper"),
      KillPolicyTestHelper::NAME).get();

  TaskInfo task = createTask(offers->front(), command);

  // Create a health check that succeeds until a temporary file is removed.
  Try<string> temporaryPath = os::mktemp(path::join(os::getcwd(), "XXXXXX"));
  ASSERT_SOME(temporaryPath);
  const string tmpPath = temporaryPath.get();

  HealthCheck healthCheck;
  healthCheck.set_type(HealthCheck::COMMAND);
  healthCheck.mutable_command()->set_value("ls " + tmpPath + " >/dev/null");
  healthCheck.set_delay_seconds(0);
  healthCheck.set_grace_period_seconds(0);
  healthCheck.set_interval_seconds(0);

  task.mutable_health_check()->CopyFrom(healthCheck);

  // Set the kill policy grace period to 5 seconds.
  KillPolicy killPolicy;
  killPolicy.mutable_grace_period()->set_nanoseconds(Seconds(5).ns());

  task.mutable_kill_policy()->CopyFrom(killPolicy);

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusHealthy;
  Future<TaskStatus> statusKilling;
  Future<TaskStatus> statusKilled;

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusHealthy))
    .WillOnce(FutureArg<1>(&statusKilling))
    .WillOnce(FutureArg<1>(&statusKilled));

  driver.launchTasks(offers->front().id(), tasks);

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning.get().state());

  AWAIT_READY(statusHealthy);
  EXPECT_EQ(TASK_RUNNING, statusHealthy.get().state());
  EXPECT_TRUE(statusHealthy.get().has_healthy());
  EXPECT_TRUE(statusHealthy.get().healthy());

  driver.killTask(task.task_id());

  AWAIT_READY(statusKilling);
  EXPECT_EQ(TASK_KILLING, statusKilling->state());
  EXPECT_FALSE(statusKilling.get().has_healthy());

  // Remove the temporary file, so that the health check fails.
  os::rm(tmpPath);

  AWAIT_READY(statusKilled);
  EXPECT_EQ(TASK_KILLED, statusKilled->state());
  EXPECT_FALSE(statusKilled.get().has_healthy());

  driver.stop();
  driver.join();
}
// This test verifies that when the slave re-registers, the master
// does not send TASK_LOST update for a task that has reached terminal
// state but is waiting for an acknowledgement.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterTerminalTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  EXPECT_CALL(exec, registered(_, _, _, _));

  // Send a terminal update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_FINISHED));

  // Drop the status update from slave to the master, so that
  // the slave has a pending terminal update when it re-registers.
  DROP_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<Nothing> _statusUpdate = FUTURE_DISPATCH(_, &Slave::_statusUpdate);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return()); // Ignore retried update due to update framework.

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(_statusUpdate);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  // The master should not send a TASK_LOST after the slave
  // re-registers. We check this by calling Clock::settle() so that
  // the only update the scheduler receives is the retried
  // TASK_FINISHED update.
  // NOTE: The status update manager resends the status update when
  // it detects a new master.
  Clock::pause();
  Clock::settle();

  AWAIT_READY(status);
  ASSERT_EQ(TASK_FINISHED, status.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
// This test verifies that when the slave re-registers, we correctly
// send the information about actively running frameworks.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterFrameworks)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  EXPECT_CALL(exec, registered(_, _, _, _));

  // Send an update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<Nothing> _statusUpdate = FUTURE_DISPATCH(_, &Slave::_statusUpdate);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return()); // Ignore retried update due to update framework.

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(_statusUpdate);

  Future<ReregisterSlaveMessage> reregisterSlave =
    FUTURE_PROTOBUF(ReregisterSlaveMessage(), _, _);

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  // Expect to receive the 'ReregisterSlaveMessage' containing the
  // active frameworks.
  AWAIT_READY(reregisterSlave);

  EXPECT_EQ(1u, reregisterSlave.get().frameworks().size());

  Clock::pause();
  Clock::settle();

  AWAIT_READY(status);

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
// This test verifies that the master reconciles tasks that are
// missing from a re-registering slave. In this case, we trigger
// a race between the slave re-registration message and the launch
// message. There should be no TASK_LOST.
// This was motivated by MESOS-1696.
TEST_F(MasterSlaveReconciliationTest, ReconcileRace)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Future<SlaveRegisteredMessage> slaveRegisteredMessage =
    FUTURE_PROTOBUF(SlaveRegisteredMessage(), master.get()->pid, _);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  AWAIT_READY(slaveRegisteredMessage);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  // Since the agent may have retried registration, we want to
  // ensure that any duplicate registrations are flushed before
  // we appoint the master again. Otherwise, the agent may
  // receive a stale registration message.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Trigger a re-registration of the slave and capture the message
  // so that we can spoof a race with a launch task message.
  DROP_PROTOBUFS(ReregisterSlaveMessage(), slave.get()->pid, master.get()->pid);

  Future<ReregisterSlaveMessage> reregisterSlaveMessage =
    DROP_PROTOBUF(
        ReregisterSlaveMessage(),
        slave.get()->pid,
        master.get()->pid);

  detector.appoint(master.get()->pid);

  AWAIT_READY(reregisterSlaveMessage);

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  ExecutorDriver* executorDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&executorDriver));

  // Leave the task in TASK_STAGING.
  Future<Nothing> launchTask;
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(FutureSatisfy(&launchTask));

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .Times(0);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(launchTask);

  // Send the stale re-registration message, which does not contain
  // the task we just launched. This will trigger a reconciliation
  // by the master.
  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Prevent this from being dropped per the DROP_PROTOBUFS above.
  FUTURE_PROTOBUF(
      ReregisterSlaveMessage(),
      slave.get()->pid,
      master.get()->pid);

  process::post(
      slave.get()->pid,
      master.get()->pid,
      reregisterSlaveMessage.get());

  AWAIT_READY(slaveReregisteredMessage);

  // Neither the master nor the slave should send a TASK_LOST
  // as part of the reconciliation. We check this by calling
  // Clock::settle() to flush all pending events.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Now send TASK_FINISHED and make sure it's the only message
  // received by the scheduler.
  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  TaskStatus taskStatus;
  taskStatus.mutable_task_id()->CopyFrom(task.task_id());
  taskStatus.set_state(TASK_FINISHED);
  executorDriver->sendStatusUpdate(taskStatus);

  AWAIT_READY(status);
  ASSERT_EQ(TASK_FINISHED, status.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
// This test verifies that the slave reports pending tasks when
// re-registering, otherwise the master will report them as being
// lost.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterPendingTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  // No TASK_LOST updates should occur!
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .Times(0);

  // We drop the _runTask dispatch to ensure the task remains
  // pending in the slave.
  Future<Nothing> _runTask = DROP_DISPATCH(slave.get()->pid, &Slave::_runTask);

  TaskInfo task1;
  task1.set_name("test task");
  task1.mutable_task_id()->set_value("1");
  task1.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task1.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task1.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  driver.launchTasks(offers.get()[0].id(), {task1});

  AWAIT_READY(_runTask);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  Clock::pause();
  Clock::settle();
  Clock::resume();

  driver.stop();
  driver.join();
}
// This test verifies that the master reconciles tasks that are
// missing from a re-registering slave. In this case, we drop the
// RunTaskMessage so the slave should send TASK_LOST.
TEST_F(MasterSlaveReconciliationTest, ReconcileLostTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);

  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  // We now launch a task and drop the corresponding RunTaskMessage on
  // the slave, to ensure that only the master knows about this task.
  Future<RunTaskMessage> runTaskMessage =
    DROP_PROTOBUF(RunTaskMessage(), _, _);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(runTaskMessage);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  Future<StatusUpdateMessage> statusUpdateMessage =
    FUTURE_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  // Make sure the slave generated the TASK_LOST.
  AWAIT_READY(statusUpdateMessage);

  AWAIT_READY(status);

  ASSERT_EQ(task.task_id(), status.get().task_id());
  ASSERT_EQ(TASK_LOST, status.get().state());

  // Before we obtain the metrics, ensure that the master has finished
  // processing the status update so metrics have been updated.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Check metrics.
  JSON::Object stats = Metrics();
  EXPECT_EQ(1u, stats.values.count("master/tasks_lost"));
  EXPECT_EQ(1u, stats.values["master/tasks_lost"]);
  EXPECT_EQ(
      1u,
      stats.values.count(
          "master/task_lost/source_slave/reason_reconciliation"));
  EXPECT_EQ(
      1u,
      stats.values["master/task_lost/source_slave/reason_reconciliation"]);

  driver.stop();
  driver.join();
}
Пример #13
0
TEST_P(MemoryIsolatorTest, ROOT_MemUsage)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = GetParam();

  Fetcher fetcher(flags);

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);

  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(
      detector.get(),
      containerizer.get());

  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  TaskInfo task = createTask(offers.get()[0], "sleep 120");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers->size());

  ContainerID containerId = *(containers->begin());

  Future<ResourceStatistics> usage = containerizer->usage(containerId);
  AWAIT_READY(usage);

  // TODO(jieyu): Consider using a program that predictably increases
  // RSS so that we can set more meaningful expectation here.
  EXPECT_LT(0u, usage->mem_rss_bytes());

  driver.stop();
  driver.join();
}
// This test verifies that the environment secrets are resolved when launching a
// task.
TEST_F(EnvironmentSecretIsolatorTest, ResolveSecret)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  mesos::internal::slave::Flags flags = CreateSlaveFlags();

  Fetcher fetcher(flags);
  Try<SecretResolver*> secretResolver = SecretResolver::create();
  EXPECT_SOME(secretResolver);

  Try<MesosContainerizer*> containerizer =
    MesosContainerizer::create(flags, false, &fetcher, secretResolver.get());
  EXPECT_SOME(containerizer);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), containerizer.get());
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<std::vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_FALSE(offers->empty());

  const string commandString = strings::format(
      "env; test \"$%s\" = \"%s\"",
      SECRET_ENV_NAME,
      SECRET_VALUE).get();

  CommandInfo command;
  command.set_value(commandString);

  // Request a secret.
  // TODO(kapil): Update createEnvironment() to support secrets.
  mesos::Environment::Variable *env =
    command.mutable_environment()->add_variables();
  env->set_name(SECRET_ENV_NAME);
  env->set_type(mesos::Environment::Variable::SECRET);

  mesos::Secret* secret = env->mutable_secret();
  secret->set_type(Secret::VALUE);
  secret->mutable_value()->set_data(SECRET_VALUE);

  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      Resources::parse("cpus:0.1;mem:32").get(),
      command);

  // NOTE: Successful tasks will output two status updates.
  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning.get().state());
  AWAIT_READY(statusFinished);
  EXPECT_EQ(TASK_FINISHED, statusFinished.get().state());

  driver.stop();
  driver.join();
}
Пример #15
0
// This test ensures that when explicit acknowledgements are enabled,
// acknowledgements for master-generated updates are dropped by the
// driver. We test this by creating an invalid task that uses no
// resources.
TEST_F(MesosSchedulerDriverTest, ExplicitAcknowledgementsMasterGeneratedUpdate)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  Try<PID<Slave>> slave = StartSlave();
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), false, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  // Ensure no status update acknowledgements are sent to the master.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get());

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  // Launch a task using no resources.
  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(status);
  ASSERT_EQ(TASK_ERROR, status.get().state());
  ASSERT_EQ(TaskStatus::SOURCE_MASTER, status.get().source());
  ASSERT_EQ(TaskStatus::REASON_TASK_INVALID, status.get().reason());

  // Now send the acknowledgement.
  driver.acknowledgeStatusUpdate(status.get());

  // Settle the clock to ensure driver processes the acknowledgement,
  // which should get dropped due to having come from the master.
  Clock::pause();
  Clock::settle();

  driver.stop();
  driver.join();

  Shutdown();
}
// This test verifies that a re-registering slave sends the terminal
// unacknowledged tasks for a terminal executor. This is required
// for the master to correctly reconcile its view with the slave's
// view of tasks. This test drops a terminal update to the master
// and then forces the slave to re-register.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterTerminatedExecutor)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 512, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  Future<StatusUpdateAcknowledgementMessage> statusUpdateAcknowledgementMessage
    = FUTURE_PROTOBUF(
        StatusUpdateAcknowledgementMessage(),
        master.get()->pid,
        slave.get()->pid);

  driver.start();

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Make sure the acknowledgement reaches the slave.
  AWAIT_READY(statusUpdateAcknowledgementMessage);

  // Drop the TASK_FINISHED status update sent to the master.
  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<ExitedExecutorMessage> executorExitedMessage =
    FUTURE_PROTOBUF(ExitedExecutorMessage(), _, _);

  TaskStatus finishedStatus;
  finishedStatus = status.get();
  finishedStatus.set_state(TASK_FINISHED);
  execDriver->sendStatusUpdate(finishedStatus);

  // Ensure the update was sent.
  AWAIT_READY(statusUpdateMessage);

  EXPECT_CALL(sched, executorLost(&driver, DEFAULT_EXECUTOR_ID, _, _));

  // Now kill the executor.
  containerizer.destroy(frameworkId.get(), DEFAULT_EXECUTOR_ID);

  Future<TaskStatus> status2;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status2));

  // We drop the 'UpdateFrameworkMessage' from the master to slave to
  // stop the status update manager from retrying the update that was
  // already sent due to the new master detection.
  DROP_PROTOBUFS(UpdateFrameworkMessage(), _, _);

  detector.appoint(master.get()->pid);

  AWAIT_READY(status2);
  EXPECT_EQ(TASK_FINISHED, status2.get().state());

  driver.stop();
  driver.join();
}
Пример #17
0
// The IPC namespace has its own copy of the svipc(7) tunables. We verify
// that we are correctly entering the IPC namespace by verifying that we
// can set shmmax some different value than that of the host namespace.
TEST_F(NamespacesIsolatorTest, ROOT_IPCNamespace)
{
  Try<Owned<MesosContainerizer>> containerizer =
    createContainerizer("namespaces/ipc");
  ASSERT_SOME(containerizer);

  // Value we will set the child namespace shmmax to.
  uint64_t shmmaxValue = static_cast<uint64_t>(::getpid());

  Try<uint64_t> hostShmmax = readValue("/proc/sys/kernel/shmmax");
  ASSERT_SOME(hostShmmax);

  // Verify that the host namespace shmmax is different.
  ASSERT_NE(hostShmmax.get(), shmmaxValue);

  const string command =
    "stat -c %i /proc/self/ns/ipc > ns;"
    "echo " + stringify(shmmaxValue) + " > /proc/sys/kernel/shmmax;"
    "cp /proc/sys/kernel/shmmax shmmax";

  process::Future<bool> launch = containerizer.get()->launch(
      containerId,
      None(),
      createExecutorInfo("executor", command),
      directory,
      None(),
      SlaveID(),
      std::map<string, string>(),
      false);

  AWAIT_READY(launch);
  ASSERT_TRUE(launch.get());

  // Wait on the container.
  Future<Option<ContainerTermination>> wait =
    containerizer.get()->wait(containerId);

  AWAIT_READY(wait);
  ASSERT_SOME(wait.get());

  // Check the executor exited correctly.
  EXPECT_TRUE(wait->get().has_status());
  EXPECT_EQ(0, wait->get().status());

  // Check that the command was run in a different IPC namespace.
  Try<ino_t> testIPCNamespace = ns::getns(::getpid(), "ipc");
  ASSERT_SOME(testIPCNamespace);

  Try<string> containerIPCNamespace = os::read(path::join(directory, "ns"));
  ASSERT_SOME(containerIPCNamespace);

  EXPECT_NE(stringify(testIPCNamespace.get()),
            strings::trim(containerIPCNamespace.get()));

  // Check that we modified the IPC shmmax of the namespace, not the host.
  Try<uint64_t> childShmmax = readValue("shmmax");
  ASSERT_SOME(childShmmax);

  // Verify that we didn't modify shmmax in the host namespace.
  ASSERT_EQ(hostShmmax.get(), readValue("/proc/sys/kernel/shmmax").get());

  EXPECT_NE(hostShmmax.get(), childShmmax.get());
  EXPECT_EQ(shmmaxValue, childShmmax.get());
}
Пример #18
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to re-register, we deny the
// re-registration by sending a ShutdownMessage to the slave.
// Why? Because during a network partition, the master will remove a
// partitioned slave, thus sending its tasks to LOST. At this point,
// when the partition is removed, the slave will attempt to
// re-register with its running tasks. We've already notified
// frameworks that these tasks were LOST, so we have to have the slave
// slave shut down.
TEST_F(PartitionTest, PartitionedSlaveReregistration)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<PID<Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(Eq("PING"), _, _);
  DROP_MESSAGES(Eq("PONG"), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  StandaloneMasterDetector detector(master.get());

  Try<PID<Slave>> slave = StartSlave(&exec, &detector);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This is to ensure the task is killed by the slave,
  // during shutdown.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> runningStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&runningStatus));

  Future<Nothing> statusUpdateAck = FUTURE_DISPATCH(
      slave.get(), &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(runningStatus);
  EXPECT_EQ(TASK_RUNNING, runningStatus.get().state());

  // Wait for the slave to have handled the acknowledgment prior
  // to pausing the clock.
  AWAIT_READY(statusUpdateAck);

  // Drop the first shutdown message from the master (simulated
  // partition), allow the second shutdown message to pass when
  // the slave re-registers.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get());

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq("PING"), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  Clock::resume();

  // We now complete the partition on the slave side as well. This
  // is done by simulating a master loss event which would normally
  // occur during a network partition.
  detector.appoint(None());

  Future<Nothing> shutdown;
  EXPECT_CALL(exec, shutdown(_))
    .WillOnce(FutureSatisfy(&shutdown));

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get());

  // Have the slave re-register with the master.
  detector.appoint(master.get());

  // Upon re-registration, the master will shutdown the slave.
  // The slave will then shut down the executor.
  AWAIT_READY(shutdownMessage);
  AWAIT_READY(shutdown);

  driver.stop();
  driver.join();

  Shutdown();
}
Пример #19
0
TEST_F(MemoryPressureMesosTest, CGROUPS_ROOT_Statistics)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();

  // We only care about memory cgroup for this test.
  flags.isolation = "cgroups/mem";

  Fetcher fetcher(flags);

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);
  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());      // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  Offer offer = offers.get()[0];

  // Run a task that triggers memory pressure event. We request 1G
  // disk because we are going to write a 512 MB file repeatedly.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:256;disk:1024").get(),
      "while true; do dd count=512 bs=1M if=/dev/zero of=./temp; done");

  Future<TaskStatus> starting;
  Future<TaskStatus> running;
  Future<TaskStatus> killed;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&starting))
    .WillOnce(FutureArg<1>(&running))
    .WillOnce(FutureArg<1>(&killed))
    .WillRepeatedly(Return());       // Ignore subsequent updates.

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY(starting);
  EXPECT_EQ(task.task_id(), starting->task_id());
  EXPECT_EQ(TASK_STARTING, starting->state());

  AWAIT_READY(running);
  EXPECT_EQ(task.task_id(), running->task_id());
  EXPECT_EQ(TASK_RUNNING, running->state());

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers->size());

  ContainerID containerId = *(containers->begin());

  // Wait a while for some memory pressure events to occur.
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer->usage(containerId);
    AWAIT_READY(usage);

    if (usage->mem_low_pressure_counter() > 0) {
      // We will check the correctness of the memory pressure counters
      // later, because the memory-hammering task is still active
      // and potentially incrementing these counters.
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(5));

  EXPECT_LE(waited, Seconds(5));

  // Pause the clock to ensure that the reaper doesn't reap the exited
  // command executor and inform the containerizer/slave.
  Clock::pause();
  Clock::settle();

  // Stop the memory-hammering task.
  driver.killTask(task.task_id());

  AWAIT_READY_FOR(killed, Seconds(120));
  EXPECT_EQ(task.task_id(), killed->task_id());
  EXPECT_EQ(TASK_KILLED, killed->state());

  // Now check the correctness of the memory pressure counters.
  Future<ResourceStatistics> usage = containerizer->usage(containerId);
  AWAIT_READY(usage);

  EXPECT_GE(usage->mem_low_pressure_counter(),
            usage->mem_medium_pressure_counter());
  EXPECT_GE(usage->mem_medium_pressure_counter(),
            usage->mem_critical_pressure_counter());

  Clock::resume();

  driver.stop();
  driver.join();
}
Пример #20
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to send status updates, we send
// a ShutdownMessage to the slave. Why? Because during a network
// partition, the master will remove a partitioned slave, thus sending
// its tasks to LOST. At this point, when the partition is removed,
// the slave may attempt to send updates if it was unaware that the
// master removed it. We've already notified frameworks that these
// tasks were LOST, so we have to have the slave shut down.
TEST_F(PartitionTest, PartitionedSlaveStatusUpdates)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<PID<Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(Eq("PING"), _, _);
  DROP_MESSAGES(Eq("PONG"), _, _);

  Future<SlaveRegisteredMessage> slaveRegisteredMessage =
    FUTURE_PROTOBUF(SlaveRegisteredMessage(), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave>> slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  AWAIT_READY(slaveRegisteredMessage);
  SlaveID slaveId = slaveRegisteredMessage.get().slave_id();

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(frameworkId);

  // Drop the first shutdown message from the master (simulated
  // partition), allow the second shutdown message to pass when
  // the slave sends an update.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get());

  EXPECT_CALL(sched, offerRescinded(&driver, _))
    .WillRepeatedly(Return());

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq("PING"), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get());

  // At this point, the slave still thinks it's registered, so we
  // simulate a status update coming from the slave.
  TaskID taskId;
  taskId.set_value("task_id");
  const StatusUpdate& update = protobuf::createStatusUpdate(
      frameworkId.get(),
      slaveId,
      taskId,
      TASK_RUNNING,
      TaskStatus::SOURCE_SLAVE,
      UUID::random());

  StatusUpdateMessage message;
  message.mutable_update()->CopyFrom(update);
  message.set_pid(stringify(slave.get()));

  process::post(master.get(), message);

  // The master should shutdown the slave upon receiving the update.
  AWAIT_READY(shutdownMessage);

  Clock::resume();

  driver.stop();
  driver.join();

  Shutdown();
}
Пример #21
0
// This test ensures that the HTTP command executor can self terminate
// after it gets the ACK for the terminal status update from agent.
TEST_F(HTTPCommandExecutorTest, TerminateWithACK)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.http_command_executor = true;

  Fetcher fetcher;

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, false, &fetcher);

  CHECK_SOME(_containerizer);
  Owned<MesosContainerizer> containerizer(_containerizer.get());

  StandaloneMasterDetector detector(master.get()->pid);

  MockSlave slave(flags, &detector, containerizer.get());
  spawn(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_EQ(1u, offers->size());

  // Launch a short lived task.
  TaskInfo task = createTask(
      offers->front().slave_id(),
      offers->front().resources(),
      "sleep 1");

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;

  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  Future<Future<Option<ContainerTermination>>> termination;
  EXPECT_CALL(slave, executorTerminated(_, _, _))
    .WillOnce(FutureArg<2>(&termination));

  driver.launchTasks(offers->front().id(), {task});

  // Scheduler should first receive TASK_RUNNING followed by TASK_FINISHED.
  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  // The executor should self terminate with 0 as exit status once
  // it gets the ACK for the terminal status update from agent.
  AWAIT_READY(termination);
  ASSERT_TRUE(termination.get().isReady());
  EXPECT_EQ(0, termination.get().get().get().status());

  driver.stop();
  driver.join();

  terminate(slave);
  wait(slave);
}
Пример #22
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to send exited executor messages,
// we send a ShutdownMessage to the slave. Why? Because during a
// network partition, the master will remove a partitioned slave, thus
// sending its tasks to LOST. At this point, when the partition is
// removed, the slave may attempt to send exited executor messages if
// it was unaware that the master removed it. We've already
// notified frameworks that the tasks under the executors were LOST,
// so we have to have the slave shut down.
TEST_F(PartitionTest, PartitionedSlaveExitedExecutor)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<PID<Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(Eq("PING"), _, _);
  DROP_MESSAGES(Eq("PONG"), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Try<PID<Slave>> slave = StartSlave(&containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));\

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This allows us to have the slave send an
  // ExitedExecutorMessage.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Drop all the status updates from the slave, so that we can
  // ensure the ExitedExecutorMessage is what triggers the slave
  // shutdown.
  DROP_PROTOBUFS(StatusUpdateMessage(), _, master.get());

  driver.launchTasks(offers.get()[0].id(), {task});

  // Drop the first shutdown message from the master (simulated
  // partition) and allow the second shutdown message to pass when
  // triggered by the ExitedExecutorMessage.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get());

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq("PING"), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
    Clock::settle();
  }

  Clock::advance(masterFlags.slave_ping_timeout);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get());

  // Induce an ExitedExecutorMessage from the slave.
  containerizer.destroy(
      frameworkId.get(), DEFAULT_EXECUTOR_INFO.executor_id());

  // Upon receiving the message, the master will shutdown the slave.
  AWAIT_READY(shutdownMessage);

  Clock::resume();

  driver.stop();
  driver.join();

  Shutdown();
}
Пример #23
0
TEST_F(MemoryPressureMesosTest, CGROUPS_ROOT_Statistics)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();

  // We only care about memory cgroup for this test.
  flags.isolation = "cgroups/mem";
  flags.slave_subsystems = None();

  Fetcher fetcher;

  Try<MesosContainerizer*> containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(containerizer);

  Try<PID<Slave>> slave = StartSlave(containerizer.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());      // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  Offer offer = offers.get()[0];

  // Run a task that triggers memory pressure event. We request 1G
  // disk because we are going to write a 512 MB file repeatedly.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:256;disk:1024").get(),
      "while true; do dd count=512 bs=1M if=/dev/zero of=./temp; done");

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return());       // Ignore subsequent updates.

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY(status);
  EXPECT_EQ(task.task_id(), status.get().task_id());
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  Future<hashset<ContainerID>> containers = containerizer.get()->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers.get().size());

  ContainerID containerId = *(containers.get().begin());

  // Wait a while for some memory pressure events to occur.
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer.get()->usage(containerId);
    AWAIT_READY(usage);

    if (usage.get().mem_low_pressure_counter() > 0) {
      // We will check the correctness of the memory pressure counters
      // later, because the memory-hammering task is still active
      // and potentially incrementing these counters.
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(5));

  EXPECT_LE(waited, Seconds(5));

  // Stop the memory-hammering task.
  driver.killTask(task.task_id());

  // Process any queued up events through before proceeding.
  process::Clock::pause();
  process::Clock::settle();
  process::Clock::resume();

  // Now check the correctness of the memory pressure counters.
  Future<ResourceStatistics> usage = containerizer.get()->usage(containerId);
  AWAIT_READY(usage);

  EXPECT_GE(usage.get().mem_low_pressure_counter(),
            usage.get().mem_medium_pressure_counter());
  EXPECT_GE(usage.get().mem_medium_pressure_counter(),
            usage.get().mem_critical_pressure_counter());

  driver.stop();
  driver.join();

  Shutdown();
  delete containerizer.get();
}
Пример #24
0
// This test checks that a scheduler gets a slave lost
// message for a partitioned slave.
TEST_F(PartitionTest, PartitionedSlave)
{
  master::Flags masterFlags = CreateMasterFlags();
  Try<PID<Master>> master = StartMaster(masterFlags);
  ASSERT_SOME(master);

  // Set these expectations up before we spawn the slave so that we
  // don't miss the first PING.
  Future<Message> ping = FUTURE_MESSAGE(Eq("PING"), _, _);

  // Drop all the PONGs to simulate slave partition.
  DROP_MESSAGES(Eq("PONG"), _, _);

  Try<PID<Slave>> slave = StartSlave();
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<Nothing> resourceOffers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureSatisfy(&resourceOffers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  // Need to make sure the framework AND slave have registered with
  // master. Waiting for resource offers should accomplish both.
  AWAIT_READY(resourceOffers);

  Clock::pause();

  EXPECT_CALL(sched, offerRescinded(&driver, _))
    .Times(AtMost(1));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  // Now advance through the PINGs.
  size_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == masterFlags.max_slave_ping_timeouts) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq("PING"), _, _);
    Clock::advance(masterFlags.slave_ping_timeout);
  }

  Clock::advance(masterFlags.slave_ping_timeout);

  AWAIT_READY(slaveLost);

  this->Stop(slave.get());

  JSON::Object stats = Metrics();
  EXPECT_EQ(1, stats.values["master/slave_removals"]);
  EXPECT_EQ(1, stats.values["master/slave_removals/reason_unhealthy"]);

  driver.stop();
  driver.join();

  Shutdown();

  Clock::resume();
}
// This is a simple end to end test that makes sure a master using log
// storage with ZooKeeper can successfully launch a task.
TEST_F(RegistrarZooKeeperTest, TaskRunning)
{
    Try<PID<Master> > master = StartMaster();
    ASSERT_SOME(master);

    MockExecutor exec(DEFAULT_EXECUTOR_ID);

    TestContainerizer containerizer(&exec);

    Try<PID<Slave> > slave = StartSlave(&containerizer);
    ASSERT_SOME(slave);

    MockScheduler sched;
    MesosSchedulerDriver driver(
        &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

    EXPECT_CALL(sched, registered(&driver, _, _))
    .Times(1);

    Future<vector<Offer> > offers;
    EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

    driver.start();

    AWAIT_READY(offers);
    EXPECT_NE(0u, offers.get().size());

    TaskInfo task = createTask(offers.get()[0], "dummy", DEFAULT_EXECUTOR_ID);

    EXPECT_CALL(exec, registered(_, _, _, _))
    .Times(1);

    EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

    Future<Nothing> resourcesUpdated;
    EXPECT_CALL(containerizer,
                update(_, Resources(offers.get()[0].resources())))
    .WillOnce(DoAll(FutureSatisfy(&resourcesUpdated),
                    Return(Nothing())));

    Future<TaskStatus> status;
    EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

    driver.launchTasks(offers.get()[0].id(), {task});

    AWAIT_READY(status);
    EXPECT_EQ(TASK_RUNNING, status.get().state());

    AWAIT_READY(resourcesUpdated);

    EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

    driver.stop();
    driver.join();

    Shutdown(); // Must shutdown before 'containerizer' gets deallocated.
}
// This test verifies that the image specified in the volume will be
// properly provisioned and mounted into the container if container
// root filesystem is not specified.
TEST_P(VolumeImageIsolatorTest, ROOT_ImageInVolumeWithoutRootFilesystem)
{
  string registry = path::join(sandbox.get(), "registry");
  AWAIT_READY(DockerArchive::create(registry, "test_image"));

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "filesystem/linux,volume/image,docker/runtime";
  flags.docker_registry = registry;
  flags.docker_store_dir = path::join(sandbox.get(), "store");
  flags.image_providers = "docker";

  Try<MesosContainerizer*> create =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(create);

  Owned<Containerizer> containerizer(create.get());

  ContainerID containerId;
  containerId.set_value(UUID::random().toString());

  ContainerInfo container = createContainerInfo(
      None(),
      {createVolumeFromDockerImage("rootfs", "test_image", Volume::RW)});

  CommandInfo command = createCommandInfo("test -d rootfs/bin");

  ExecutorInfo executor = createExecutorInfo(
      "test_executor",
      nesting ? createCommandInfo("sleep 1000") : command);

  if (!nesting) {
    executor.mutable_container()->CopyFrom(container);
  }

  string directory = path::join(flags.work_dir, "sandbox");
  ASSERT_SOME(os::mkdir(directory));

  Future<bool> launch = containerizer->launch(
      containerId,
      None(),
      executor,
      directory,
      None(),
      SlaveID(),
      map<string, string>(),
      false);

  AWAIT_ASSERT_TRUE(launch);

  Future<Option<ContainerTermination>> wait = containerizer->wait(containerId);

  if (nesting) {
    ContainerID nestedContainerId;
    nestedContainerId.mutable_parent()->CopyFrom(containerId);
    nestedContainerId.set_value(UUID::random().toString());

    launch = containerizer->launch(
        nestedContainerId,
        command,
        container,
        None(),
        SlaveID());

    AWAIT_ASSERT_TRUE(launch);

    wait = containerizer->wait(nestedContainerId);
  }

  AWAIT_READY(wait);
  ASSERT_SOME(wait.get());
  ASSERT_TRUE(wait->get().has_status());
  EXPECT_WEXITSTATUS_EQ(0, wait->get().status());

  if (nesting) {
    wait = containerizer->wait(containerId);

    containerizer->destroy(containerId);

    AWAIT_READY(wait);
    ASSERT_SOME(wait.get());
    ASSERT_TRUE(wait->get().has_status());
    EXPECT_WTERMSIG_EQ(SIGKILL, wait.get()->status());
  }
}
Пример #27
0
// This test verifies that docker image default entrypoint is executed
// correctly using registry puller. This corresponds to the case in runtime
// isolator logic table: sh=0, value=0, argv=1, entrypoint=1, cmd=0.
TEST_F(DockerRuntimeIsolatorTest,
       ROOT_CURL_INTERNET_DockerDefaultEntryptRegistryPuller)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "docker/runtime,filesystem/linux";
  flags.image_providers = "docker";
  flags.docker_store_dir = path::join(os::getcwd(), "store");

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_EQ(1u, offers->size());

  const Offer& offer = offers.get()[0];

  TaskInfo task;
  task.set_name("test-task");
  task.mutable_task_id()->set_value(UUID::random().toString());
  task.mutable_slave_id()->CopyFrom(offer.slave_id());
  task.mutable_resources()->CopyFrom(Resources::parse("cpus:1;mem:128").get());
  task.mutable_command()->set_shell(false);
  task.mutable_command()->add_arguments("hello world");

  Image image;
  image.set_type(Image::DOCKER);

  // 'mesosphere/inky' image is used in docker containerizer test, which
  // contains entrypoint as 'echo' and cmd as null.
  image.mutable_docker()->set_name("mesosphere/inky");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);
  container->mutable_mesos()->mutable_image()->CopyFrom(image);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY_FOR(statusRunning, Seconds(60));
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinished);
  EXPECT_EQ(task.task_id(), statusFinished->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinished->state());

  driver.stop();
  driver.join();
}
Пример #28
0
// Ensures that when a scheduler enables explicit acknowledgements
// on the driver, there are no implicit acknowledgements sent, and
// the call to 'acknowledgeStatusUpdate' sends the ack to the master.
TEST_F(MesosSchedulerDriverTest, ExplicitAcknowledgements)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);
  Try<PID<Slave>> slave = StartSlave(&containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), false, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 16, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  // Ensure no status update acknowledgements are sent from the driver
  // to the master until the explicit acknowledgement is sent.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get());

  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.start();

  AWAIT_READY(status);

  // Settle the clock to ensure driver finishes processing the status
  // update, we want to ensure that no implicit acknowledgement gets
  // sent.
  Clock::pause();
  Clock::settle();

  // Now send the acknowledgement.
  Future<mesos::scheduler::Call> acknowledgement = FUTURE_CALL(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _,
      master.get());

  driver.acknowledgeStatusUpdate(status.get());

  AWAIT_READY(acknowledgement);

  driver.stop();
  driver.join();

  Shutdown();
}
Пример #29
0
// Ensures that the driver can handle the SUBSCRIBED event
// after a master failover.
TEST_F(SchedulerDriverEventTest, SubscribedMasterFailover)
{
  Try<PID<Master>> master = StartMaster();
  ASSERT_SOME(master);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_failover_timeout(Weeks(2).secs());

  // Make sure the initial registration calls 'registered'.
  MockScheduler sched;
  StandaloneMasterDetector detector(master.get());
  TestingMesosSchedulerDriver driver(&sched, &detector, frameworkInfo);

  // Intercept the registration message, send a SUBSCRIBED instead.
  Future<Message> frameworkRegisteredMessage =
    DROP_MESSAGE(Eq(FrameworkRegisteredMessage().GetTypeName()), _, _);

  // Ensure that there will be no (re-)registration retries
  // from the scheduler driver.
  Clock::pause();

  driver.start();

  AWAIT_READY(frameworkRegisteredMessage);
  UPID frameworkPid = frameworkRegisteredMessage.get().to;

  FrameworkRegisteredMessage message;
  ASSERT_TRUE(message.ParseFromString(frameworkRegisteredMessage.get().body));

  FrameworkID frameworkId = message.framework_id();
  frameworkInfo.mutable_id()->CopyFrom(frameworkId);

  Event event;
  event.set_type(Event::SUBSCRIBED);
  event.mutable_subscribed()->mutable_framework_id()->CopyFrom(frameworkId);

  Future<Nothing> registered;
  EXPECT_CALL(sched, registered(&driver, frameworkId, _))
    .WillOnce(FutureSatisfy(&registered));

  process::post(master.get(), frameworkPid, event);

  AWAIT_READY(registered);

  // Fail over the master and expect a 'reregistered' call.
  // Note that the master sends a registered message for
  // this case (see MESOS-786).
  Stop(master.get());
  master = StartMaster();
  ASSERT_SOME(master);

  EXPECT_CALL(sched, disconnected(&driver));

  frameworkRegisteredMessage =
    DROP_MESSAGE(Eq(FrameworkRegisteredMessage().GetTypeName()), _, _);

  detector.appoint(master.get());

  AWAIT_READY(frameworkRegisteredMessage);

  Future<Nothing> reregistered;
  EXPECT_CALL(sched, reregistered(&driver, _))
    .WillOnce(FutureSatisfy(&reregistered));

  process::post(master.get(), frameworkPid, event);

  AWAIT_READY(reregistered);
}
Пример #30
0
// This test verifies that if master receives a status update
// for an already terminated task it forwards it without
// changing the state of the task.
TEST_F(StatusUpdateManagerTest, DuplicatedTerminalStatusUpdate)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave>> slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  // Send a terminal update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_FINISHED));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  Future<Nothing> _statusUpdateAcknowledgement =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(status);

  EXPECT_EQ(TASK_FINISHED, status.get().state());

  AWAIT_READY(_statusUpdateAcknowledgement);

  Future<TaskStatus> update;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&update));

  Future<Nothing> _statusUpdateAcknowledgement2 =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  Clock::pause();

  // Now send a TASK_KILLED update for the same task.
  TaskStatus status2 = status.get();
  status2.set_state(TASK_KILLED);
  execDriver->sendStatusUpdate(status2);

  // Ensure the scheduler receives TASK_KILLED.
  AWAIT_READY(update);
  EXPECT_EQ(TASK_KILLED, update.get().state());

  // Ensure the slave properly handles the ACK.
  // Clock::settle() ensures that the slave successfully
  // executes Slave::_statusUpdateAcknowledgement().
  AWAIT_READY(_statusUpdateAcknowledgement2);

  // Verify the latest task status.
  Future<process::http::Response> tasks =
    process::http::get(master.get(), "tasks");

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(process::http::OK().status, tasks);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(APPLICATION_JSON, "Content-Type", tasks);

  Try<JSON::Object> parse = JSON::parse<JSON::Object>(tasks.get().body);
  ASSERT_SOME(parse);

  Result<JSON::String> state = parse.get().find<JSON::String>("tasks[0].state");

  ASSERT_SOME_EQ(JSON::String("TASK_FINISHED"), state);

  Clock::resume();

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}