/**=========================================================================**/ double Aztec_LSVector::norm1 (void) const { /** Aztec_LSVector::norm --- returns 1-norm of vector x **/ int N_update = amap_->localSize(); return(AZ_gvector_norm(N_update, 1,localCoeffs_, amap_->getProcConfig())); }
int main(int argc, char *argv[]) { char global[]="global"; char local[]="local"; int proc_config[AZ_PROC_SIZE];/* Processor information. */ int options[AZ_OPTIONS_SIZE]; /* Array used to select solver options. */ double params[AZ_PARAMS_SIZE]; /* User selected solver paramters. */ int *data_org; /* Array to specify data layout */ double status[AZ_STATUS_SIZE]; /* Information returned from AZ_solve(). */ int *update; /* vector elements updated on this node. */ int *external; /* vector elements needed by this node. */ int *update_index; /* ordering of update[] and external[] */ int *extern_index; /* locally on this processor. */ int *indx; /* MSR format of real and imag parts */ int *bindx; int *bpntr; int *rpntr; int *cpntr; AZ_MATRIX *Amat; AZ_PRECOND *Prec; double *val; double *x, *b, *xexact, *xsolve; int n_nonzeros, n_blk_nonzeros; int N_update; /* # of block unknowns updated on this node */ int N_local; /* Number scalar equations on this node */ int N_global, N_blk_global; /* Total number of equations */ int N_external, N_blk_eqns; double *val_msr; int *bindx_msr; double norm, d ; int matrix_type; int has_global_indices, option; int i, j, m, mp ; int ione = 1; #ifdef TEST_SINGULAR double * xnull; /* will contain difference of given exact solution and computed solution*/ double * Axnull; /* Product of A time xnull */ double norm_Axnull; #endif #ifdef AZTEC_MPI double MPI_Wtime(void) ; #endif double time ; #ifdef AZTEC_MPI MPI_Init(&argc,&argv); #endif /* get number of processors and the name of this processor */ #ifdef AZTEC_MPI AZ_set_proc_config(proc_config,MPI_COMM_WORLD); #else AZ_set_proc_config(proc_config,0); #endif printf("proc %d of %d is alive\n", proc_config[AZ_node],proc_config[AZ_N_procs]) ; #ifdef AZTEC_MPI MPI_Barrier(MPI_COMM_WORLD) ; #endif #ifdef VBRMATRIX if(argc != 3) perror("error: enter name of data and partition file on command line") ; #else if(argc != 2) perror("error: enter name of data file on command line") ; #endif /* Set exact solution to NULL */ xexact = NULL; /* Read matrix file and distribute among processors. Returns with this processor's set of rows */ #ifdef VBRMATRIX read_hb(argv[1], proc_config, &N_global, &n_nonzeros, &val_msr, &bindx_msr, &x, &b, &xexact); create_vbr(argv[2], proc_config, &N_global, &N_blk_global, &n_nonzeros, &n_blk_nonzeros, &N_update, &update, bindx_msr, val_msr, &val, &indx, &rpntr, &cpntr, &bpntr, &bindx); if(proc_config[AZ_node] == 0) { free ((void *) val_msr); free ((void *) bindx_msr); free ((void *) cpntr); } matrix_type = AZ_VBR_MATRIX; #ifdef AZTEC_MPI MPI_Barrier(MPI_COMM_WORLD) ; #endif distrib_vbr_matrix( proc_config, N_global, N_blk_global, &n_nonzeros, &n_blk_nonzeros, &N_update, &update, &val, &indx, &rpntr, &cpntr, &bpntr, &bindx, &x, &b, &xexact); #else read_hb(argv[1], proc_config, &N_global, &n_nonzeros, &val, &bindx, &x, &b, &xexact); #ifdef AZTEC_MPI MPI_Barrier(MPI_COMM_WORLD) ; #endif distrib_msr_matrix(proc_config, N_global, &n_nonzeros, &N_update, &update, &val, &bindx, &x, &b, &xexact); #ifdef DEBUG for (i = 0; i<N_update; i++) if (val[i] == 0.0 ) printf("Zero diagonal at row %d\n",i); #endif matrix_type = AZ_MSR_MATRIX; #endif /* convert matrix to a local distributed matrix */ cpntr = NULL; AZ_transform(proc_config, &external, bindx, val, update, &update_index, &extern_index, &data_org, N_update, indx, bpntr, rpntr, &cpntr, matrix_type); printf("Processor %d: Completed AZ_transform\n",proc_config[AZ_node]) ; has_global_indices = 0; option = AZ_LOCAL; #ifdef VBRMATRIX N_local = rpntr[N_update]; #else N_local = N_update; #endif Amat = AZ_matrix_create(N_local); #ifdef VBRMATRIX AZ_set_VBR(Amat, rpntr, cpntr, bpntr, indx, bindx, val, data_org, N_update, update, option); #else AZ_set_MSR(Amat, bindx, val, data_org, N_update, update, option); #endif printf("proc %d Completed AZ_create_matrix\n",proc_config[AZ_node]) ; #ifdef AZTEC_MPI MPI_Barrier(MPI_COMM_WORLD) ; #endif /* initialize AZTEC options */ AZ_defaults(options, params); options[AZ_solver] = AZ_gmres; options[AZ_precond] = AZ_sym_GS; options[AZ_poly_ord] = 1; options[AZ_graph_fill] = 1; params[AZ_rthresh] = 0.0E-7; params[AZ_athresh] = 0.0E-7; options[AZ_overlap] = 1; /* params[AZ_ilut_fill] = 2.0; params[AZ_drop] = 0.01; options[AZ_overlap] = 0; options[AZ_reorder] = 0; params[AZ_rthresh] = 1.0E-1; params[AZ_athresh] = 1.0E-1; options[AZ_precond] = AZ_dom_decomp ; options[AZ_subdomain_solve] = AZ_bilu_ifp; options[AZ_reorder] = 0; options[AZ_graph_fill] = 0; params[AZ_rthresh] = 1.0E-7; params[AZ_athresh] = 1.0E-7; options[AZ_poly_ord] = 1; options[AZ_precond] = AZ_Jacobi; params[AZ_omega] = 1.0; options[AZ_precond] = AZ_none ; options[AZ_poly_ord] = 1; options[AZ_precond] = AZ_Jacobi ; options[AZ_scaling] = AZ_sym_row_sum ; options[AZ_scaling] = AZ_sym_diag; options[AZ_conv] = AZ_noscaled; options[AZ_scaling] = AZ_Jacobi ; options[AZ_precond] = AZ_dom_decomp ; options[AZ_subdomain_solve] = AZ_icc ; options[AZ_subdomain_solve] = AZ_ilut ; params[AZ_omega] = 1.2; params[AZ_ilut_fill] = 2.0; params[AZ_drop] = 0.01; options[AZ_reorder] = 0; options[AZ_overlap] = 0; options[AZ_type_overlap] = AZ_symmetric; options[AZ_precond] = AZ_dom_decomp ; options[AZ_subdomain_solve] = AZ_bilu ; options[AZ_graph_fill] = 0; options[AZ_overlap] = 0; options[AZ_precond] = AZ_dom_decomp ; options[AZ_subdomain_solve] = AZ_bilu_ifp ; options[AZ_graph_fill] = 0; options[AZ_overlap] = 0; params[AZ_rthresh] = 1.0E-3; params[AZ_athresh] = 1.0E-3; options[AZ_poly_ord] = 1; options[AZ_precond] = AZ_Jacobi ; */ options[AZ_kspace] = 600 ; options[AZ_max_iter] = 600 ; params[AZ_tol] = 1.0e-14; #ifdef BGMRES options[AZ_gmres_blocksize] = 3; options[AZ_gmres_num_rhs] = 1; #endif #ifdef DEBUG if (proc_config[AZ_N_procs]==1) write_vec("rhs.dat", N_local, b); #endif /* xsolve is a little longer vector needed to account for external entries. Make it and copy x (initial guess) into it. */ if (has_global_indices) { N_external = 0; } else { N_external = data_org[AZ_N_external]; } xsolve = (double *) calloc(N_local + N_external, sizeof(double)) ; for (i=0; i<N_local; i++) xsolve[i] = x[i]; /* Reorder rhs and xsolve to match matrix ordering from AZ_transform */ if (!has_global_indices) { AZ_reorder_vec(b, data_org, update_index, rpntr) ; AZ_reorder_vec(xsolve, data_org, update_index, rpntr) ; } #ifdef VBRMATRIX AZ_check_vbr(N_update, data_org[AZ_N_ext_blk], AZ_LOCAL, bindx, bpntr, cpntr, rpntr, proc_config); #else AZ_check_msr(bindx, N_update, N_external, AZ_LOCAL, proc_config); #endif printf("Processor %d of %d N_local = %d N_external = %d NNZ = %d\n", proc_config[AZ_node],proc_config[AZ_N_procs],N_local,N_external, n_nonzeros); /* solve the system of equations using b as the right hand side */ Prec = AZ_precond_create(Amat,AZ_precondition, NULL); AZ_iterate(xsolve, b, options, params, status, proc_config, Amat, Prec, NULL); /*AZ_ifpack_iterate(xsolve, b, options, params, status, proc_config, Amat);*/ if (proc_config[AZ_node]==0) { printf("True residual norm = %22.16g\n",status[AZ_r]); printf("True scaled res = %22.16g\n",status[AZ_scaled_r]); printf("Computed res norm = %22.16g\n",status[AZ_rec_r]); } #ifdef TEST_SINGULAR xnull = (double *) calloc(N_local + N_external, sizeof(double)) ; Axnull = (double *) calloc(N_local + N_external, sizeof(double)) ; for (i=0; i<N_local; i++) xnull[i] = xexact[i]; if (!has_global_indices) AZ_reorder_vec(xnull, data_org, update_index, rpntr); for (i=0; i<N_local; i++) xnull[i] -= xsolve[i]; /* fill with nullerence */ Amat->matvec(xnull, Axnull, Amat, proc_config); norm_Axnull = AZ_gvector_norm(N_local, 2, Axnull, proc_config); if (proc_config[AZ_node]==0) printf("Norm of A(xexact-xsolve) = %12.4g\n",norm_Axnull); free((void *) xnull); free((void *) Axnull); #endif /* Get solution back into original ordering */ if (!has_global_indices) { AZ_invorder_vec(xsolve, data_org, update_index, rpntr, x); free((void *) xsolve); } else { free((void *) x); x = xsolve; } #ifdef DEBUG if (proc_config[AZ_N_procs]==1) write_vec("solution.dat", N_local, x); #endif if (xexact != NULL) { double sum = 0.0; double largest = 0.0; for (i=0; i<N_local; i++) sum += fabs(x[i]-xexact[i]); printf("Processor %d: Difference between exact and computed solution = %12.4g\n", proc_config[AZ_node],sum); for (i=0; i<N_local; i++) largest = AZ_MAX(largest,fabs(xexact[i])); printf("Processor %d: Difference divided by max abs value of exact = %12.4g\n", proc_config[AZ_node],sum/largest); } free((void *) val); free((void *) bindx); #ifdef VBRMATRIX free((void *) rpntr); free((void *) bpntr); free((void *) indx); #endif free((void *) b); free((void *) x); if (xexact!=NULL) free((void *) xexact); AZ_free((void *) update); AZ_free((void *) update_index); AZ_free((void *) external); AZ_free((void *) extern_index); AZ_free((void *) data_org); if (cpntr!=NULL) AZ_free((void *) cpntr); AZ_precond_destroy(&Prec); AZ_matrix_destroy(&Amat); #ifdef AZTEC_MPI MPI_Finalize() ; #endif /* end main */ return 0 ; }
double AZK_residual_norm_no_copy(double *xr, double *xi, double *br, double *bi, int *options, double *params, int *proc_config, AZ_MATRIX *Amat_real, AZ_MATRIX *Amat_imag) /******************************************************************************* Author: Mike Heroux, SNL, 9222 ======= Return code: double ============ Parameter list: =============== xr,xi: On input, contains the initial guess, real part in xr and imaginary part in xi. br,bi: Right hand side of linear system. options: Determines specific solution method and other parameters. params: Drop tolerance and convergence tolerance info. proc_config: Machine configuration. proc_config[AZ_node] is the node number. proc_config[AZ_N_procs] is the number of processors. Amat_real, Amat_imag: The real and imaginary parts of the complex operator, each stored separately as AZ_MATRIX structures. Overview ======== AZK_residual_norm_no_copy computes the two norm of the residual ||r|| where r = b - A*x. Specifically, writing in terms of real and imaginary parts, we have (rr + i*ri) = (br + i*bi) - (Ar + i*Ai)*(xr + i*xi). The two-norm of the complex vector r is identical to the two-norm of the twice-length real vector formed by concatenating rr = real(r) and ri = imag(r). *******************************************************************************/ { AZ_MATRIX *Amat; /* Structure representing matrix to be solved. */ double *x, *b; /* Solution and right-hand side to linear system. */ int N_equations, i; double *y_tmp, result; /* Transform complex system into komplex system */ AZK_create_linsys_no_copy (xr, xi, br, bi, options, params, proc_config, Amat_real, Amat_imag, &x, &b, &Amat); /* Allocate temp vector y */ N_equations = Amat->data_org[AZ_N_internal] + Amat->data_org[AZ_N_border]; y_tmp = (double *) AZ_allocate(N_equations*sizeof(double)); if (y_tmp == NULL) AZ_perror("AZK_residual_norm_no_copy: Out of memory."); /* Compute y = A*x. */ Amat->matvec(x, y_tmp, Amat, proc_config); /* Compute r = b - A*x (put in y_tmp) */ /*daxpy_(&N_equations, &neg_one, b, &ione, y_tmp, &ione);*/ for (i=0; i<N_equations; i++) y_tmp[i] = y_tmp[i] - b[i]; /* Use Aztec function to compute norm */ result = AZ_gvector_norm(N_equations, 2, y_tmp, proc_config); /* Free memory space */ AZK_destroy_linsys (options, params, proc_config, &x, &b, &Amat); AZ_free((void *) y_tmp); result = sqrt(result); return(result); /* AZK_residual_norm */ }
double AZK_residual_norm(double *xk, double *bk, int *options, double *params, int *proc_config, AZ_MATRIX *Amat_komplex) /******************************************************************************* Author: Mike Heroux, SNL, 9222 ======= Return code: double ============ Parameter list: =============== xk: On input, contains the initial guess. bk: Right hand side of linear system. options: Determines specific solution method and other parameters. params: Drop tolerance and convergence tolerance info. proc_config: Machine configuration. proc_config[AZ_node] is the node number. proc_config[AZ_N_procs] is the number of processors. Amat_komplex: The komplex operator, stored as an AZ_MATRIX structure. Overview ======== AZK_residual_norm computes the two norm of the residual ||r|| where r = b - A*x. Specifically, writing in terms of real and imaginary parts, we have (rr + i*ri) = (br + i*bi) - (Ar + i*Ai)*(xr + i*xi). The two-norm of the complex vector r is identical to the two-norm of the twice-length real vector formed by concatenating rr = real(r) and ri = imag(r). *******************************************************************************/ { int N_equations, i; double *y_tmp, result; /* Allocate temp vector y */ N_equations = Amat_komplex->data_org[AZ_N_internal] + Amat_komplex->data_org[AZ_N_border]; y_tmp = (double *) AZ_allocate(N_equations*sizeof(double)); if (y_tmp == NULL) AZ_perror("AZK_residual_norm: Out of memory."); /* Compute y = A*x. */ Amat_komplex->matvec(xk, y_tmp, Amat_komplex, proc_config); /* Compute r = b - A*x (put in y_tmp) */ /*daxpy_(&N_equations, &neg_one, bk, &ione, y_tmp, &ione);*/ for (i=0; i<N_equations; i++) y_tmp[i] = y_tmp[i] - bk[i]; /* Use Aztec function to compute norm */ result = AZ_gvector_norm(N_equations, 2, y_tmp, proc_config); /* Free memory space */ AZ_free((void *) y_tmp); result = sqrt(result); return(result); /* AZK_residual_norm */ }