int main(int argc, char *argv[]) { int num_PDE_eqns=5, N_levels=3; /* int nsmooth=1; */ int leng, level, N_grid_pts, coarsest_level; /* See Aztec User's Guide for more information on the */ /* variables that follow. */ int proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE]; double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE]; /* data structure for matrix corresponding to the fine grid */ int *data_org = NULL, *update = NULL, *external = NULL; int *update_index = NULL, *extern_index = NULL; int *cpntr = NULL; int *bindx = NULL, N_update, iii; double *val = NULL; double *xxx, *rhs; AZ_MATRIX *Amat; AZ_PRECOND *Pmat = NULL; ML *ml; FILE *fp; int ch,i; struct AZ_SCALING *scaling; double solve_time, setup_time, start_time; ML_Aggregate *ag; int *ivec; #ifdef VBR_VERSION ML_Operator *B, *C, *D; int *vbr_cnptr, *vbr_rnptr, *vbr_indx, *vbr_bindx, *vbr_bnptr, total_blk_rows; int total_blk_cols, blk_space, nz_space; double *vbr_val; struct ML_CSR_MSRdata *csr_data; #endif #ifdef ML_MPI MPI_Init(&argc,&argv); /* get number of processors and the name of this processor */ AZ_set_proc_config(proc_config, MPI_COMM_WORLD); #else AZ_set_proc_config(proc_config, AZ_NOT_MPI); #endif #ifdef binary fp=fopen(".data","rb"); #else fp=fopen(".data","r"); #endif if (fp==NULL) { printf("couldn't open file .data\n"); exit(1); } #ifdef binary fread(&leng, sizeof(int), 1, fp); #else fscanf(fp,"%d",&leng); #endif fclose(fp); N_grid_pts=leng/num_PDE_eqns; /* initialize the list of global indices. NOTE: the list of global */ /* indices must be in ascending order so that subsequent calls to */ /* AZ_find_index() will function properly. */ AZ_read_update(&N_update, &update, proc_config, N_grid_pts, num_PDE_eqns, AZ_linear); AZ_read_msr_matrix(update, &val, &bindx, N_update, proc_config); /* This code is to fix things up so that we are sure we have */ /* all block (including the ghost nodes the same size. */ AZ_block_MSR(&bindx, &val, N_update, num_PDE_eqns, update); AZ_transform(proc_config, &external, bindx, val, update, &update_index, &extern_index, &data_org, N_update, 0, 0, 0, &cpntr, AZ_MSR_MATRIX); Amat = AZ_matrix_create( leng ); #ifndef VBR_VERSION AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL); Amat->matrix_type = data_org[AZ_matrix_type]; data_org[AZ_N_rows] = data_org[AZ_N_internal] + data_org[AZ_N_border]; #else total_blk_rows = N_update/num_PDE_eqns; total_blk_cols = total_blk_rows; blk_space = total_blk_rows*20; nz_space = blk_space*num_PDE_eqns*num_PDE_eqns; vbr_cnptr = (int *) ML_allocate(sizeof(int )*(total_blk_cols+1)); vbr_rnptr = (int *) ML_allocate(sizeof(int )*(total_blk_cols+1)); vbr_bnptr = (int *) ML_allocate(sizeof(int )*(total_blk_cols+2)); vbr_indx = (int *) ML_allocate(sizeof(int )*(blk_space+1)); vbr_bindx = (int *) ML_allocate(sizeof(int )*(blk_space+1)); vbr_val = (double *) ML_allocate(sizeof(double)*(nz_space+1)); for (i = 0; i <= total_blk_cols; i++) vbr_cnptr[i] = num_PDE_eqns; AZ_msr2vbr(vbr_val, vbr_indx, vbr_rnptr, vbr_cnptr, vbr_bnptr, vbr_bindx, bindx, val, total_blk_rows, total_blk_cols, blk_space, nz_space, -1); data_org[AZ_N_rows] = data_org[AZ_N_internal] + data_org[AZ_N_border]; data_org[AZ_N_int_blk] = data_org[AZ_N_internal]/num_PDE_eqns; data_org[AZ_N_bord_blk] = data_org[AZ_N_bord_blk]/num_PDE_eqns; data_org[AZ_N_ext_blk] = data_org[AZ_N_ext_blk]/num_PDE_eqns; data_org[AZ_matrix_type] = AZ_VBR_MATRIX; AZ_set_VBR(Amat, vbr_rnptr, vbr_cnptr, vbr_bnptr, vbr_indx, vbr_bindx, vbr_val, data_org, 0, NULL, AZ_LOCAL); Amat->matrix_type = data_org[AZ_matrix_type]; #endif start_time = AZ_second(); ML_Create(&ml, N_levels); ML_Set_PrintLevel(3); /* set up discretization matrix and matrix vector function */ AZ_ML_Set_Amat(ml, N_levels-1, N_update, N_update, Amat, proc_config); ML_Aggregate_Create( &ag ); ML_Aggregate_Set_Threshold(ag,0.0); ML_Set_SpectralNormScheme_PowerMethod(ml); /* To run SA: a) set damping factor to 1 and use power method ML_Aggregate_Set_DampingFactor(ag, 4./3.); To run NSA: a) set damping factor to 0 ML_Aggregate_Set_DampingFactor(ag, 0.); To run NSR a) set damping factor to 1 and use power method ML_Aggregate_Set_DampingFactor(ag, 1.); ag->Restriction_smoothagg_transpose = ML_FALSE; ag->keep_agg_information=1; ag->keep_P_tentative=1; b) hack code so it calls the energy minimizing restriction line 2973 of ml_agg_genP.c c) turn on the NSR flag in ml_agg_energy_min.cpp To run Emin a) set min_eneryg = 2 and keep_agg_info = 1; ag->minimizing_energy=2; ag->keep_agg_information=1; ag->cheap_minimizing_energy = 0; ag->block_scaled_SA = 1; */ ag->minimizing_energy=2; ag->keep_agg_information=1; ag->block_scaled_SA = 1; ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, num_PDE_eqns, NULL, N_update); ML_Aggregate_Set_MaxCoarseSize( ag, 20); /* ML_Aggregate_Set_RandomOrdering( ag ); ML_Aggregate_Set_DampingFactor(ag, .1); ag->drop_tol_for_smoothing = 1.0e-3; ML_Aggregate_Set_Threshold(ag, 1.0e-3); ML_Aggregate_Set_MaxCoarseSize( ag, 300); */ coarsest_level = ML_Gen_MultiLevelHierarchy_UsingAggregation(ml, N_levels-1, ML_DECREASING, ag); coarsest_level = N_levels - coarsest_level; if ( proc_config[AZ_node] == 0 ) printf("Coarse level = %d \n", coarsest_level); /* set up smoothers */ AZ_defaults(options, params); for (level = N_levels-1; level > coarsest_level; level--) { /* This is the Aztec domain decomp/ilu smoother that we */ /* usually use for this problem. */ /* options[AZ_precond] = AZ_dom_decomp; options[AZ_subdomain_solve] = AZ_ilut; params[AZ_ilut_fill] = 1.0; options[AZ_reorder] = 1; ML_Gen_SmootherAztec(ml, level, options, params, proc_config, status, AZ_ONLY_PRECONDITIONER, ML_PRESMOOTHER,NULL); */ /* Sparse approximate inverse smoother that acutally does both */ /* pre and post smoothing. */ /* ML_Gen_Smoother_ParaSails(ml , level, ML_PRESMOOTHER, nsmooth, parasails_sym, parasails_thresh, parasails_nlevels, parasails_filter, parasails_loadbal, parasails_factorized); parasails_thresh /= 4.; */ /* This is the symmetric Gauss-Seidel smoothing. In parallel, */ /* it is not a true Gauss-Seidel in that each processor */ /* does a Gauss-Seidel on its local submatrix independent of the */ /* other processors. */ /* ML_Gen_Smoother_SymGaussSeidel(ml,level,ML_PRESMOOTHER, nsmooth,1.); ML_Gen_Smoother_SymGaussSeidel(ml,level,ML_POSTSMOOTHER,nsmooth,1.); */ /* Block Gauss-Seidel with block size equal to #DOF per node. */ /* Not a true Gauss-Seidel in that each processor does a */ /* Gauss-Seidel on its local submatrix independent of the other */ /* processors. */ /* ML_Gen_Smoother_BlockGaussSeidel(ml,level,ML_PRESMOOTHER, nsmooth,0.67, num_PDE_eqns); ML_Gen_Smoother_BlockGaussSeidel(ml,level,ML_POSTSMOOTHER, nsmooth, 0.67, num_PDE_eqns); */ ML_Gen_Smoother_SymBlockGaussSeidel(ml,level,ML_POSTSMOOTHER, 1, 1.0, num_PDE_eqns); } ML_Gen_CoarseSolverSuperLU( ml, coarsest_level); ML_Gen_Solver(ml, ML_MGW, N_levels-1, coarsest_level); AZ_defaults(options, params); options[AZ_solver] = AZ_gmres; options[AZ_scaling] = AZ_none; options[AZ_precond] = AZ_user_precond; /* options[AZ_conv] = AZ_r0; */ options[AZ_output] = 1; options[AZ_max_iter] = 1500; options[AZ_poly_ord] = 5; options[AZ_kspace] = 130; params[AZ_tol] = 1.0e-8; /* options[AZ_precond] = AZ_dom_decomp; options[AZ_subdomain_solve] = AZ_ilut; params[AZ_ilut_fill] = 2.0; */ AZ_set_ML_preconditioner(&Pmat, Amat, ml, options); setup_time = AZ_second() - start_time; xxx = (double *) malloc( leng*sizeof(double)); rhs=(double *)malloc(leng*sizeof(double)); for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0; /* Set rhs */ fp = fopen("AZ_capture_rhs.mat","r"); if (fp == NULL) { if (proc_config[AZ_node] == 0) printf("taking random vector for rhs\n"); AZ_random_vector(rhs, data_org, proc_config); AZ_reorder_vec(rhs, data_org, update_index, NULL); } else { fclose(fp); ivec =(int *)malloc((leng+1)*sizeof(int)); AZ_input_msr_matrix("AZ_capture_rhs.mat", update, &rhs, &ivec, N_update, proc_config); free(ivec); AZ_reorder_vec(rhs, data_org, update_index, NULL); } /* Set x */ fp = fopen("AZ_capture_init_guess.mat","r"); if (fp != NULL) { fclose(fp); ivec =(int *)malloc((leng+1)*sizeof(int)); AZ_input_msr_matrix("AZ_capture_init_guess.mat",update, &xxx, &ivec, N_update, proc_config); free(ivec); AZ_reorder_vec(xxx, data_org, update_index, NULL); } /* if Dirichlet BC ... put the answer in */ for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) { if ( (val[i] > .99999999) && (val[i] < 1.0000001)) xxx[i] = rhs[i]; } fp = fopen("AZ_no_multilevel.dat","r"); scaling = AZ_scaling_create(); start_time = AZ_second(); if (fp != NULL) { fclose(fp); options[AZ_precond] = AZ_none; options[AZ_scaling] = AZ_sym_diag; options[AZ_ignore_scaling] = AZ_TRUE; options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); /* options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); */ } else { options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; /* if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); */ } solve_time = AZ_second() - start_time; if (proc_config[AZ_node] == 0) printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time); ML_Aggregate_Destroy(&ag); ML_Destroy(&ml); AZ_free((void *) Amat->data_org); AZ_free((void *) Amat->val); AZ_free((void *) Amat->bindx); AZ_free((void *) update); AZ_free((void *) external); AZ_free((void *) extern_index); AZ_free((void *) update_index); AZ_scaling_destroy(&scaling); if (Amat != NULL) AZ_matrix_destroy(&Amat); if (Pmat != NULL) AZ_precond_destroy(&Pmat); free(xxx); free(rhs); #ifdef ML_MPI MPI_Finalize(); #endif return 0; }
int main(int argc, char *argv[]) { int num_PDE_eqns=1, N_levels=3, nsmooth=2; int leng, level, N_grid_pts, coarsest_level; int leng1,leng2; /* See Aztec User's Guide for more information on the */ /* variables that follow. */ int proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE]; double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE]; /* data structure for matrix corresponding to the fine grid */ double *val = NULL, *xxx, *rhs, solve_time, setup_time, start_time; AZ_MATRIX *Amat; AZ_PRECOND *Pmat = NULL; ML *ml; FILE *fp; int i, j, Nrigid, *garbage, nblocks=0, *blocks = NULL, *block_pde=NULL; struct AZ_SCALING *scaling; ML_Aggregate *ag; double *mode, *rigid=NULL, alpha; char filename[80]; int one = 1; int proc,nprocs; char pathfilename[100]; #ifdef ML_MPI MPI_Init(&argc,&argv); /* get number of processors and the name of this processor */ AZ_set_proc_config(proc_config, MPI_COMM_WORLD); proc = proc_config[AZ_node]; nprocs = proc_config[AZ_N_procs]; #else AZ_set_proc_config(proc_config, AZ_NOT_MPI); proc = 0; nprocs = 1; #endif if (proc_config[AZ_node] == 0) { sprintf(pathfilename,"%s/inputfile",argv[1]); ML_Reader_ReadInput(pathfilename, &context); } else context = (struct reader_context *) ML_allocate(sizeof(struct reader_context)); AZ_broadcast((char *) context, sizeof(struct reader_context), proc_config, AZ_PACK); AZ_broadcast((char *) NULL , 0 , proc_config, AZ_SEND); N_levels = context->N_levels; printf("N_levels %d\n",N_levels); nsmooth = context->nsmooth; num_PDE_eqns = context->N_dofPerNode; printf("num_PDE_eqns %d\n",num_PDE_eqns); ML_Set_PrintLevel(context->output_level); /* read in the number of matrix equations */ leng = 0; if (proc_config[AZ_node] == 0) { sprintf(pathfilename,"%s/data_matrix.txt",argv[1]); fp=fopen(pathfilename,"r"); if (fp==NULL) { printf("**ERR** couldn't open file data_matrix.txt\n"); exit(1); } fscanf(fp,"%d",&leng); fclose(fp); } leng = AZ_gsum_int(leng, proc_config); N_grid_pts=leng/num_PDE_eqns; /* initialize the list of global indices. NOTE: the list of global */ /* indices must be in ascending order so that subsequent calls to */ /* AZ_find_index() will function properly. */ #if 0 if (proc_config[AZ_N_procs] == 1) i = AZ_linear; else i = AZ_file; #endif i = AZ_linear; /* cannot use AZ_input_update for variable blocks (forgot why, but debugged through it)*/ /* make a linear distribution of the matrix */ /* if the linear distribution does not align with the blocks, */ /* this is corrected in ML_AZ_Reader_ReadVariableBlocks */ leng1 = leng/nprocs; leng2 = leng-leng1*nprocs; if (proc >= leng2) { leng2 += (proc*leng1); } else { leng1++; leng2 = proc*leng1; } N_update = leng1; update = (int*)AZ_allocate((N_update+1)*sizeof(int)); if (update==NULL) { (void) fprintf (stderr, "Not enough space to allocate 'update'\n"); fflush(stderr); exit(EXIT_FAILURE); } for (i=0; i<N_update; i++) update[i] = i+leng2; #if 0 /* debug */ printf("proc %d N_update %d\n",proc_config[AZ_node],N_update); fflush(stdout); #endif sprintf(pathfilename,"%s/data_vblocks.txt",argv[1]); ML_AZ_Reader_ReadVariableBlocks(pathfilename,&nblocks,&blocks,&block_pde, &N_update,&update,proc_config); #if 0 /* debug */ printf("proc %d N_update %d\n",proc_config[AZ_node],N_update); fflush(stdout); #endif sprintf(pathfilename,"%s/data_matrix.txt",argv[1]); AZ_input_msr_matrix(pathfilename,update, &val, &bindx, N_update, proc_config); /* This code is to fix things up so that we are sure we have */ /* all blocks (including the ghost nodes) the same size. */ /* not sure, whether this is a good idea with variable blocks */ /* the examples inpufiles (see top of this file) don't need it */ /* anyway */ /* AZ_block_MSR(&bindx, &val, N_update, num_PDE_eqns, update); */ AZ_transform_norowreordering(proc_config, &external, bindx, val, update, &update_index, &extern_index, &data_org, N_update, 0, 0, 0, &cpntr, AZ_MSR_MATRIX); Amat = AZ_matrix_create( leng ); AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL); Amat->matrix_type = data_org[AZ_matrix_type]; data_org[AZ_N_rows] = data_org[AZ_N_internal] + data_org[AZ_N_border]; start_time = AZ_second(); options[AZ_scaling] = AZ_none; ML_Create(&ml, N_levels); /* set up discretization matrix and matrix vector function */ AZ_ML_Set_Amat(ml, 0, N_update, N_update, Amat, proc_config); ML_Set_ResidualOutputFrequency(ml, context->output); ML_Set_Tolerance(ml, context->tol); ML_Aggregate_Create( &ag ); if (ML_strcmp(context->agg_coarsen_scheme,"Mis") == 0) { ML_Aggregate_Set_CoarsenScheme_MIS(ag); } else if (ML_strcmp(context->agg_coarsen_scheme,"Uncoupled") == 0) { ML_Aggregate_Set_CoarsenScheme_Uncoupled(ag); } else if (ML_strcmp(context->agg_coarsen_scheme,"Coupled") == 0) { ML_Aggregate_Set_CoarsenScheme_Coupled(ag); } else if (ML_strcmp(context->agg_coarsen_scheme,"Metis") == 0) { ML_Aggregate_Set_CoarsenScheme_METIS(ag); for (i=0; i<N_levels; i++) ML_Aggregate_Set_NodesPerAggr(ml,ag,i,9); } else if (ML_strcmp(context->agg_coarsen_scheme,"VBMetis") == 0) { /* when no blocks read, use standard metis assuming constant block sizes */ if (!blocks) ML_Aggregate_Set_CoarsenScheme_METIS(ag); else { ML_Aggregate_Set_CoarsenScheme_VBMETIS(ag); ML_Aggregate_Set_Vblocks_CoarsenScheme_VBMETIS(ag,0,N_levels,nblocks, blocks,block_pde,N_update); } for (i=0; i<N_levels; i++) ML_Aggregate_Set_NodesPerAggr(ml,ag,i,9); } else { printf("**ERR** ML: Unknown aggregation scheme %s\n",context->agg_coarsen_scheme); exit(-1); } ML_Aggregate_Set_DampingFactor(ag, context->agg_damping); ML_Aggregate_Set_MaxCoarseSize( ag, context->maxcoarsesize); ML_Aggregate_Set_Threshold(ag, context->agg_thresh); if (ML_strcmp(context->agg_spectral_norm,"Calc") == 0) { ML_Set_SpectralNormScheme_Calc(ml); } else if (ML_strcmp(context->agg_spectral_norm,"Anorm") == 0) { ML_Set_SpectralNormScheme_Anorm(ml); } else { printf("**WRN** ML: Unknown spectral norm scheme %s\n",context->agg_spectral_norm); } /* read in the rigid body modes */ Nrigid = 0; if (proc_config[AZ_node] == 0) { sprintf(filename,"data_nullsp%d.txt",Nrigid); sprintf(pathfilename,"%s/%s",argv[1],filename); while( (fp = fopen(pathfilename,"r")) != NULL) { fclose(fp); Nrigid++; sprintf(filename,"data_nullsp%d.txt",Nrigid); sprintf(pathfilename,"%s/%s",argv[1],filename); } } Nrigid = AZ_gsum_int(Nrigid,proc_config); if (Nrigid != 0) { rigid = (double *) ML_allocate( sizeof(double)*Nrigid*(N_update+1) ); if (rigid == NULL) { printf("Error: Not enough space for rigid body modes\n"); } } /* Set rhs */ sprintf(pathfilename,"%s/data_rhs.txt",argv[1]); fp = fopen(pathfilename,"r"); if (fp == NULL) { rhs=(double *)ML_allocate(leng*sizeof(double)); if (proc_config[AZ_node] == 0) printf("taking linear vector for rhs\n"); for (i = 0; i < N_update; i++) rhs[i] = (double) update[i]; } else { fclose(fp); if (proc_config[AZ_node] == 0) printf("reading rhs from a file\n"); AZ_input_msr_matrix(pathfilename, update, &rhs, &garbage, N_update, proc_config); } AZ_reorder_vec(rhs, data_org, update_index, NULL); for (i = 0; i < Nrigid; i++) { sprintf(filename,"data_nullsp%d.txt",i); sprintf(pathfilename,"%s/%s",argv[1],filename); AZ_input_msr_matrix(pathfilename, update, &mode, &garbage, N_update, proc_config); AZ_reorder_vec(mode, data_org, update_index, NULL); #if 0 /* test the given rigid body mode, output-vector should be ~0 */ Amat->matvec(mode, rigid, Amat, proc_config); for (j = 0; j < N_update; j++) printf("this is %d %e\n",j,rigid[j]); #endif for (j = 0; j < i; j++) { alpha = -AZ_gdot(N_update, mode, &(rigid[j*N_update]), proc_config)/ AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config); DAXPY_F77(&N_update, &alpha, &(rigid[j*N_update]), &one, mode, &one); } /* rhs orthogonalization */ alpha = -AZ_gdot(N_update, mode, rhs, proc_config)/ AZ_gdot(N_update, mode, mode, proc_config); DAXPY_F77(&N_update, &alpha, mode, &one, rhs, &one); for (j = 0; j < N_update; j++) rigid[i*N_update+j] = mode[j]; free(mode); free(garbage); } for (j = 0; j < Nrigid; j++) { alpha = -AZ_gdot(N_update, rhs, &(rigid[j*N_update]), proc_config)/ AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config); DAXPY_F77(&N_update, &alpha, &(rigid[j*N_update]), &one, rhs, &one); } #if 0 /* for testing the default nullsp */ ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, 6, NULL, N_update); #else if (Nrigid != 0) { ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, Nrigid, rigid, N_update); } #endif if (rigid) ML_free(rigid); ag->keep_agg_information = 1; coarsest_level = ML_Gen_MGHierarchy_UsingAggregation(ml, 0, ML_INCREASING, ag); coarsest_level--; if ( proc_config[AZ_node] == 0 ) printf("Coarse level = %d \n", coarsest_level); #if 0 /* set up smoothers */ if (!blocks) blocks = (int *) ML_allocate(sizeof(int)*N_update); #endif for (level = 0; level < coarsest_level; level++) { num_PDE_eqns = ml->Amat[level].num_PDEs; /* Sparse approximate inverse smoother that acutally does both */ /* pre and post smoothing. */ if (ML_strcmp(context->smoother,"Parasails") == 0) { ML_Gen_Smoother_ParaSails(ml , level, ML_PRESMOOTHER, nsmooth, parasails_sym, parasails_thresh, parasails_nlevels, parasails_filter, (int) parasails_loadbal, parasails_factorized); } /* This is the symmetric Gauss-Seidel smoothing that we usually use. */ /* In parallel, it is not a true Gauss-Seidel in that each processor */ /* does a Gauss-Seidel on its local submatrix independent of the */ /* other processors. */ else if (ML_strcmp(context->smoother,"GaussSeidel") == 0) { ML_Gen_Smoother_GaussSeidel(ml , level, ML_BOTH, nsmooth,1.); } else if (ML_strcmp(context->smoother,"SymGaussSeidel") == 0) { ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_BOTH, nsmooth,1.); } else if (ML_strcmp(context->smoother,"Poly") == 0) { ML_Gen_Smoother_Cheby(ml, level, ML_BOTH, 30., nsmooth); } else if (ML_strcmp(context->smoother,"BlockGaussSeidel") == 0) { ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_BOTH, nsmooth,1., num_PDE_eqns); } else if (ML_strcmp(context->smoother,"VBSymGaussSeidel") == 0) { if (blocks) ML_free(blocks); if (block_pde) ML_free(block_pde); blocks = NULL; block_pde = NULL; nblocks = 0; ML_Aggregate_Get_Vblocks_CoarsenScheme_VBMETIS(ag,level,N_levels,&nblocks, &blocks,&block_pde); if (blocks==NULL) ML_Gen_Blocks_Aggregates(ag, level, &nblocks, &blocks); ML_Gen_Smoother_VBlockSymGaussSeidel(ml , level, ML_BOTH, nsmooth,1., nblocks, blocks); } /* This is a true Gauss Seidel in parallel. This seems to work for */ /* elasticity problems. However, I don't believe that this is very */ /* efficient in parallel. */ /* nblocks = ml->Amat[level].invec_leng; for (i =0; i < nblocks; i++) blocks[i] = i; ML_Gen_Smoother_VBlockSymGaussSeidelSequential(ml , level, ML_PRESMOOTHER, nsmooth, 1., nblocks, blocks); ML_Gen_Smoother_VBlockSymGaussSeidelSequential(ml, level, ML_POSTSMOOTHER, nsmooth, 1., nblocks, blocks); */ /* Jacobi Smoothing */ else if (ML_strcmp(context->smoother,"Jacobi") == 0) { ML_Gen_Smoother_Jacobi(ml , level, ML_PRESMOOTHER, nsmooth,.4); ML_Gen_Smoother_Jacobi(ml , level, ML_POSTSMOOTHER, nsmooth,.4); } /* This does a block Gauss-Seidel (not true GS in parallel) */ /* where each processor has 'nblocks' blocks. */ /* */ else if (ML_strcmp(context->smoother,"Metis") == 0) { if (blocks) ML_free(blocks); if (block_pde) ML_free(block_pde); nblocks = 250; ML_Gen_Blocks_Metis(ml, level, &nblocks, &blocks); ML_Gen_Smoother_VBlockSymGaussSeidel(ml , level, ML_BOTH, nsmooth,1., nblocks, blocks); } else { printf("unknown smoother %s\n",context->smoother); exit(1); } } /* set coarse level solver */ nsmooth = context->coarse_its; /* Sparse approximate inverse smoother that acutally does both */ /* pre and post smoothing. */ if (ML_strcmp(context->coarse_solve,"Parasails") == 0) { ML_Gen_Smoother_ParaSails(ml , coarsest_level, ML_PRESMOOTHER, nsmooth, parasails_sym, parasails_thresh, parasails_nlevels, parasails_filter, (int) parasails_loadbal, parasails_factorized); } else if (ML_strcmp(context->coarse_solve,"GaussSeidel") == 0) { ML_Gen_Smoother_GaussSeidel(ml , coarsest_level, ML_BOTH, nsmooth,1.); } else if (ML_strcmp(context->coarse_solve,"Poly") == 0) { ML_Gen_Smoother_Cheby(ml, coarsest_level, ML_BOTH, 30., nsmooth); } else if (ML_strcmp(context->coarse_solve,"SymGaussSeidel") == 0) { ML_Gen_Smoother_SymGaussSeidel(ml , coarsest_level, ML_BOTH, nsmooth,1.); } else if (ML_strcmp(context->coarse_solve,"BlockGaussSeidel") == 0) { ML_Gen_Smoother_BlockGaussSeidel(ml, coarsest_level, ML_BOTH, nsmooth,1., num_PDE_eqns); } else if (ML_strcmp(context->coarse_solve,"Aggregate") == 0) { if (blocks) ML_free(blocks); if (block_pde) ML_free(block_pde); ML_Gen_Blocks_Aggregates(ag, coarsest_level, &nblocks, &blocks); ML_Gen_Smoother_VBlockSymGaussSeidel(ml , coarsest_level, ML_BOTH, nsmooth,1., nblocks, blocks); } else if (ML_strcmp(context->coarse_solve,"Jacobi") == 0) { ML_Gen_Smoother_Jacobi(ml , coarsest_level, ML_BOTH, nsmooth,.5); } else if (ML_strcmp(context->coarse_solve,"Metis") == 0) { if (blocks) ML_free(blocks); if (block_pde) ML_free(block_pde); nblocks = 250; ML_Gen_Blocks_Metis(ml, coarsest_level, &nblocks, &blocks); ML_Gen_Smoother_VBlockSymGaussSeidel(ml , coarsest_level, ML_BOTH, nsmooth,1., nblocks, blocks); } else if (ML_strcmp(context->coarse_solve,"SuperLU") == 0) { ML_Gen_CoarseSolverSuperLU( ml, coarsest_level); } else if (ML_strcmp(context->coarse_solve,"Amesos") == 0) { ML_Gen_Smoother_Amesos(ml,coarsest_level,ML_AMESOS_KLU,-1, 0.0); } else { printf("unknown coarse grid solver %s\n",context->coarse_solve); exit(1); } ML_Gen_Solver(ml, ML_MGV, 0, coarsest_level); AZ_defaults(options, params); if (ML_strcmp(context->krylov,"Cg") == 0) { options[AZ_solver] = AZ_cg; } else if (ML_strcmp(context->krylov,"Bicgstab") == 0) { options[AZ_solver] = AZ_bicgstab; } else if (ML_strcmp(context->krylov,"Tfqmr") == 0) { options[AZ_solver] = AZ_tfqmr; } else if (ML_strcmp(context->krylov,"Gmres") == 0) { options[AZ_solver] = AZ_gmres; } else { printf("unknown krylov method %s\n",context->krylov); } if (blocks) ML_free(blocks); if (block_pde) ML_free(block_pde); options[AZ_scaling] = AZ_none; options[AZ_precond] = AZ_user_precond; options[AZ_conv] = AZ_r0; options[AZ_output] = 1; options[AZ_max_iter] = context->max_outer_its; options[AZ_poly_ord] = 5; options[AZ_kspace] = 130; params[AZ_tol] = context->tol; options[AZ_output] = context->output; ML_free(context); AZ_set_ML_preconditioner(&Pmat, Amat, ml, options); setup_time = AZ_second() - start_time; xxx = (double *) malloc( leng*sizeof(double)); for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0; /* Set x */ /* there is no initguess supplied with these examples for the moment.... */ fp = fopen("initguessfile","r"); if (fp != NULL) { fclose(fp); if (proc_config[AZ_node]== 0) printf("reading initial guess from file\n"); AZ_input_msr_matrix("data_initguess.txt", update, &xxx, &garbage, N_update, proc_config); options[AZ_conv] = AZ_expected_values; } else if (proc_config[AZ_node]== 0) printf("taking 0 initial guess \n"); AZ_reorder_vec(xxx, data_org, update_index, NULL); /* if Dirichlet BC ... put the answer in */ for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) { if ( (val[i] > .99999999) && (val[i] < 1.0000001)) xxx[i] = rhs[i]; } fp = fopen("AZ_no_multilevel.dat","r"); scaling = AZ_scaling_create(); start_time = AZ_second(); if (fp != NULL) { fclose(fp); options[AZ_precond] = AZ_none; options[AZ_scaling] = AZ_sym_diag; options[AZ_ignore_scaling] = AZ_TRUE; options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); /* options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); */ } else { options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; /* if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); */ } solve_time = AZ_second() - start_time; if (proc_config[AZ_node] == 0) printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time); if (proc_config[AZ_node] == 0) printf("Printing out a few entries of the solution ...\n"); for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 7) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 23) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 47) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 101) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 171) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} ML_Aggregate_Destroy(&ag); ML_Destroy(&ml); AZ_free((void *) Amat->data_org); AZ_free((void *) Amat->val); AZ_free((void *) Amat->bindx); AZ_free((void *) update); AZ_free((void *) external); AZ_free((void *) extern_index); AZ_free((void *) update_index); AZ_scaling_destroy(&scaling); if (Amat != NULL) AZ_matrix_destroy(&Amat); if (Pmat != NULL) AZ_precond_destroy(&Pmat); free(xxx); free(rhs); #ifdef ML_MPI MPI_Finalize(); #endif return 0; }
int main(int argc, char *argv[]) { int num_PDE_eqns=3, N_levels=3, nsmooth=1; int leng, level, N_grid_pts, coarsest_level; /* See Aztec User's Guide for more information on the */ /* variables that follow. */ int proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE]; double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE]; /* data structure for matrix corresponding to the fine grid */ int *data_org = NULL, *update = NULL, *external = NULL; int *update_index = NULL, *extern_index = NULL; int *cpntr = NULL; int *bindx = NULL, N_update, iii; double *val = NULL; double *xxx, *rhs; AZ_MATRIX *Amat; AZ_PRECOND *Pmat = NULL; ML *ml; FILE *fp; int ch,i,j, Nrigid, *garbage; struct AZ_SCALING *scaling; double solve_time, setup_time, start_time, *mode, *rigid; ML_Aggregate *ag; int nblocks, *blocks; char filename[80]; double alpha; int one = 1; #ifdef ML_MPI MPI_Init(&argc,&argv); /* get number of processors and the name of this processor */ AZ_set_proc_config(proc_config, MPI_COMM_WORLD); #else AZ_set_proc_config(proc_config, AZ_NOT_MPI); #endif leng = 0; if (proc_config[AZ_node] == 0) { #ifdef binary fp=fopen(".data","rb"); #else fp=fopen(".data","r"); #endif if (fp==NULL) { printf("couldn't open file .data\n"); exit(1); } #ifdef binary fread(&leng, sizeof(int), 1, fp); #else fscanf(fp,"%d",&leng); #endif fclose(fp); } leng = AZ_gsum_int(leng, proc_config); N_grid_pts=leng/num_PDE_eqns; /* initialize the list of global indices. NOTE: the list of global */ /* indices must be in ascending order so that subsequent calls to */ /* AZ_find_index() will function properly. */ AZ_read_update(&N_update, &update, proc_config, N_grid_pts, num_PDE_eqns, AZ_linear); AZ_read_msr_matrix(update, &val, &bindx, N_update, proc_config); AZ_transform(proc_config, &external, bindx, val, update, &update_index, &extern_index, &data_org, N_update, 0, 0, 0, &cpntr, AZ_MSR_MATRIX); Amat = AZ_matrix_create( leng ); AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL); Amat->matrix_type = data_org[AZ_matrix_type]; data_org[AZ_N_rows] = data_org[AZ_N_internal] + data_org[AZ_N_border]; start_time = AZ_second(); AZ_defaults(options, params); /* scaling = AZ_scaling_create(); xxx = (double *) calloc( leng,sizeof(double)); rhs=(double *)calloc(leng,sizeof(double)); options[AZ_scaling] = AZ_sym_diag; options[AZ_precond] = AZ_none; options[AZ_max_iter] = 30; options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); don't forget vector rescaling ... free(xxx); free(rhs); */ options[AZ_scaling] = AZ_none; ML_Create(&ml, N_levels); /* set up discretization matrix and matrix vector function */ AZ_ML_Set_Amat(ml, N_levels-1, N_update, N_update, Amat, proc_config); ML_Aggregate_Create( &ag ); Nrigid = 0; if (proc_config[AZ_node] == 0) { sprintf(filename,"rigid_body_mode%d",Nrigid+1); while( (fp = fopen(filename,"r")) != NULL) { fclose(fp); Nrigid++; sprintf(filename,"rigid_body_mode%d",Nrigid+1); } } Nrigid = AZ_gsum_int(Nrigid,proc_config); if (Nrigid != 0) { rigid = (double *) ML_allocate( sizeof(double)*Nrigid*(N_update+1) ); if (rigid == NULL) { printf("Error: Not enough space for rigid body modes\n"); } } rhs=(double *)malloc(leng*sizeof(double)); AZ_random_vector(rhs, data_org, proc_config); for (i = 0; i < Nrigid; i++) { sprintf(filename,"rigid_body_mode%d",i+1); AZ_input_msr_matrix(filename, update, &mode, &garbage, N_update, proc_config); /* AZ_sym_rescale_sl(mode, Amat->data_org, options, proc_config, scaling); */ /* Amat->matvec(mode, rigid, Amat, proc_config); for (j = 0; j < N_update; j++) printf("this is %d %e\n",j,rigid[j]); */ for (j = 0; j < i; j++) { alpha = -AZ_gdot(N_update, mode, &(rigid[j*N_update]), proc_config)/AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config); daxpy_(&N_update, &alpha, &(rigid[j*N_update]), &one, mode, &one); printf("alpha1 is %e\n",alpha); } alpha = -AZ_gdot(N_update, mode, rhs, proc_config)/AZ_gdot(N_update, mode, mode, proc_config); printf("alpha2 is %e\n",alpha); daxpy_(&N_update, &alpha, mode, &one, rhs, &one); for (j = 0; j < N_update; j++) rigid[i*N_update+j] = mode[j]; free(mode); free(garbage); } for (j = 0; j < Nrigid; j++) { alpha = -AZ_gdot(N_update, rhs, &(rigid[j*N_update]), proc_config)/AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config); daxpy_(&N_update, &alpha, &(rigid[j*N_update]), &one, rhs, &one); printf("alpha4 is %e\n",alpha); } for (i = 0; i < Nrigid; i++) { alpha = -AZ_gdot(N_update, &(rigid[i*N_update]), rhs, proc_config); printf("alpha is %e\n",alpha); } if (Nrigid != 0) { ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, Nrigid, rigid, N_update); /* free(rigid); */ } coarsest_level = ML_Gen_MGHierarchy_UsingAggregation(ml, N_levels-1, ML_DECREASING, ag); coarsest_level = N_levels - coarsest_level; /* ML_Operator_Print(&(ml->Pmat[N_levels-2]), "Pmat"); exit(1); */ if ( proc_config[AZ_node] == 0 ) printf("Coarse level = %d \n", coarsest_level); /* set up smoothers */ for (level = N_levels-1; level > coarsest_level; level--) { j = 10; if (level == N_levels-1) j = 10; options[AZ_solver] = AZ_cg; options[AZ_precond]=AZ_sym_GS; options[AZ_subdomain_solve]=AZ_icc; /* options[AZ_precond] = AZ_none; */ options[AZ_poly_ord] = 5; ML_Gen_SmootherAztec(ml, level, options, params, proc_config, status, j, ML_PRESMOOTHER,NULL); ML_Gen_SmootherAztec(ml, level, options, params, proc_config, status, j, ML_POSTSMOOTHER,NULL); /* ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth,1.0); ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth,1.0); */ /* nblocks = ML_Aggregate_Get_AggrCount( ag, level ); ML_Aggregate_Get_AggrMap( ag, level, &blocks); ML_Gen_Smoother_VBlockSymGaussSeidel( ml , level, ML_BOTH, nsmooth, 1.0, nblocks, blocks); ML_Gen_Smoother_VBlockSymGaussSeidel( ml , level, ML_POSTSMOOTHER, nsmooth, 1.0, nblocks, blocks); */ /* ML_Gen_Smoother_VBlockJacobi( ml , level, ML_PRESMOOTHER, nsmooth, .5, nblocks, blocks); ML_Gen_Smoother_VBlockJacobi( ml , level, ML_POSTSMOOTHER, nsmooth,.5, nblocks, blocks); */ /* ML_Gen_Smoother_GaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth); ML_Gen_Smoother_GaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth); */ /* need to change this when num_pdes is different on different levels */ /* if (level == N_levels-1) { ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth, 0.5, num_PDE_eqns); ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth, 0.5, num_PDE_eqns); } else { ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth, 0.5, 2*num_PDE_eqns); ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth, 0.5, 2*num_PDE_eqns); } */ /* */ /* ML_Gen_SmootherJacobi(ml , level, ML_PRESMOOTHER, nsmooth, .67); ML_Gen_SmootherJacobi(ml , level, ML_POSTSMOOTHER, nsmooth, .67 ); */ } /* ML_Gen_CoarseSolverSuperLU( ml, coarsest_level); */ /* ML_Gen_SmootherSymGaussSeidel(ml , coarsest_level, ML_PRESMOOTHER, 2*nsmooth,1.); */ /* ML_Gen_SmootherBlockGaussSeidel(ml , level, ML_PRESMOOTHER, 50*nsmooth, 1.0, 2*num_PDE_eqns); */ ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_PRESMOOTHER, 2*nsmooth, 1.0, num_PDE_eqns); ML_Gen_Solver(ml, ML_MGV, N_levels-1, coarsest_level); AZ_defaults(options, params); options[AZ_solver] = AZ_GMRESR; options[AZ_scaling] = AZ_none; options[AZ_precond] = AZ_user_precond; options[AZ_conv] = AZ_rhs; options[AZ_output] = 1; options[AZ_max_iter] = 1500; options[AZ_poly_ord] = 5; options[AZ_kspace] = 130; params[AZ_tol] = 1.0e-8; AZ_set_ML_preconditioner(&Pmat, Amat, ml, options); setup_time = AZ_second() - start_time; xxx = (double *) malloc( leng*sizeof(double)); /* Set rhs */ fp = fopen("AZ_capture_rhs.dat","r"); if (fp == NULL) { if (proc_config[AZ_node] == 0) printf("taking random vector for rhs\n"); /* AZ_random_vector(rhs, data_org, proc_config); AZ_reorder_vec(rhs, data_org, update_index, NULL); AZ_random_vector(xxx, data_org, proc_config); AZ_reorder_vec(xxx, data_org, update_index, NULL); Amat->matvec(xxx, rhs, Amat, proc_config); */ } else { ch = getc(fp); if (ch == 'S') { while ( (ch = getc(fp)) != '\n') ; } else ungetc(ch,fp); for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) fscanf(fp,"%lf",&(rhs[i])); fclose(fp); } for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0; /* Set x */ fp = fopen("AZ_capture_init_guess.dat","r"); if (fp != NULL) { ch = getc(fp); if (ch == 'S') { while ( (ch = getc(fp)) != '\n') ; } else ungetc(ch,fp); for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) fscanf(fp,"%lf",&(xxx[i])); fclose(fp); options[AZ_conv] = AZ_expected_values; } /* if Dirichlet BC ... put the answer in */ for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) { if ( (val[i] > .99999999) && (val[i] < 1.0000001)) xxx[i] = rhs[i]; } fp = fopen("AZ_no_multilevel.dat","r"); scaling = AZ_scaling_create(); start_time = AZ_second(); if (fp != NULL) { fclose(fp); options[AZ_precond] = AZ_none; options[AZ_scaling] = AZ_sym_diag; options[AZ_ignore_scaling] = AZ_TRUE; options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); /* options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); */ } else { options[AZ_keep_info] = 1; /* options[AZ_max_iter] = 40; */ AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); for (j = 0; j < Nrigid; j++) { alpha = -AZ_gdot(N_update, xxx, &(rigid[j*N_update]), proc_config)/AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config); daxpy_(&N_update, &alpha, &(rigid[j*N_update]), &one, xxx, &one); printf("alpha5 is %e\n",alpha); } AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; /* if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); */ } solve_time = AZ_second() - start_time; if (proc_config[AZ_node] == 0) printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time); ML_Aggregate_Destroy(&ag); ML_Destroy(&ml); AZ_free((void *) Amat->data_org); AZ_free((void *) Amat->val); AZ_free((void *) Amat->bindx); AZ_free((void *) update); AZ_free((void *) external); AZ_free((void *) extern_index); AZ_free((void *) update_index); if (Amat != NULL) AZ_matrix_destroy(&Amat); if (Pmat != NULL) AZ_precond_destroy(&Pmat); free(xxx); free(rhs); #ifdef ML_MPI MPI_Finalize(); #endif return 0; }
int main(int argc, char *argv[]) { int num_PDE_eqns=6, N_levels=4, nsmooth=2; int leng, level, N_grid_pts, coarsest_level; /* See Aztec User's Guide for more information on the */ /* variables that follow. */ int proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE]; double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE]; /* data structure for matrix corresponding to the fine grid */ double *val = NULL, *xxx, *rhs, solve_time, setup_time, start_time; AZ_MATRIX *Amat; AZ_PRECOND *Pmat = NULL; ML *ml; FILE *fp; int i, j, Nrigid, *garbage = NULL; #ifdef ML_partition int nblocks; int *block_list = NULL; int k; #endif struct AZ_SCALING *scaling; ML_Aggregate *ag; double *mode, *rigid; char filename[80]; double alpha; int allocated = 0; int old_prec, old_sol; double old_tol; /* double *Amode, beta, biggest; int big_ind = -1, ii; */ ML_Operator *Amatrix; int *rowi_col = NULL, rowi_N, count2, ccc; double *rowi_val = NULL; double max_diag, min_diag, max_sum, sum; int nBlocks, *blockIndices, Ndof; #ifdef ML_partition FILE *fp2; int count; if (argc != 2) { printf("Usage: ml_read_elas num_processors\n"); exit(1); } else sscanf(argv[1],"%d",&nblocks); #endif #ifdef HAVE_MPI MPI_Init(&argc,&argv); /* get number of processors and the name of this processor */ AZ_set_proc_config(proc_config, MPI_COMM_WORLD); #else AZ_set_proc_config(proc_config, AZ_NOT_MPI); #endif /* read in the number of matrix equations */ leng = 0; if (proc_config[AZ_node] == 0) { # ifdef binary fp=fopen(".data","rb"); # else fp=fopen(".data","r"); # endif if (fp==NULL) { printf("couldn't open file .data\n"); exit(1); } # ifdef binary fread(&leng, sizeof(int), 1, fp); # else fscanf(fp,"%d",&leng); # endif fclose(fp); } leng = AZ_gsum_int(leng, proc_config); N_grid_pts=leng/num_PDE_eqns; /* initialize the list of global indices. NOTE: the list of global */ /* indices must be in ascending order so that subsequent calls to */ /* AZ_find_index() will function properly. */ if (proc_config[AZ_N_procs] == 1) i = AZ_linear; else i = AZ_file; AZ_read_update(&N_update, &update, proc_config, N_grid_pts, num_PDE_eqns,i); AZ_read_msr_matrix(update, &val, &bindx, N_update, proc_config); /* This code is to fix things up so that we are sure we have */ /* all block (including the ghost nodes the same size. */ AZ_block_MSR(&bindx, &val, N_update, num_PDE_eqns, update); AZ_transform_norowreordering(proc_config, &external, bindx, val, update, &update_index, &extern_index, &data_org, N_update, 0, 0, 0, &cpntr, AZ_MSR_MATRIX); Amat = AZ_matrix_create( leng ); AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL); Amat->matrix_type = data_org[AZ_matrix_type]; data_org[AZ_N_rows] = data_org[AZ_N_internal] + data_org[AZ_N_border]; #ifdef SCALE_ME ML_MSR_sym_diagonal_scaling(Amat, proc_config, &scaling_vect); #endif start_time = AZ_second(); options[AZ_scaling] = AZ_none; ML_Create(&ml, N_levels); ML_Set_PrintLevel(10); /* set up discretization matrix and matrix vector function */ AZ_ML_Set_Amat(ml, N_levels-1, N_update, N_update, Amat, proc_config); #ifdef ML_partition /* this code is meant to partition the matrices so that things can be */ /* run in parallel later. */ /* It is meant to be run on only one processor. */ #ifdef MB_MODIF fp2 = fopen(".update","w"); #else fp2 = fopen("partition_file","w"); #endif ML_Operator_AmalgamateAndDropWeak(&(ml->Amat[N_levels-1]), num_PDE_eqns, 0.0); ML_Gen_Blocks_Metis(ml, N_levels-1, &nblocks, &block_list); for (i = 0; i < nblocks; i++) { count = 0; for (j = 0; j < ml->Amat[N_levels-1].outvec_leng; j++) { if (block_list[j] == i) count++; } fprintf(fp2," %d\n",count*num_PDE_eqns); for (j = 0; j < ml->Amat[N_levels-1].outvec_leng; j++) { if (block_list[j] == i) { for (k = 0; k < num_PDE_eqns; k++) fprintf(fp2,"%d\n",j*num_PDE_eqns+k); } } } fclose(fp2); ML_Operator_UnAmalgamateAndDropWeak(&(ml->Amat[N_levels-1]),num_PDE_eqns,0.0); #ifdef MB_MODIF printf(" partition file dumped in .update\n"); #endif exit(1); #endif ML_Aggregate_Create( &ag ); /* ML_Aggregate_Set_CoarsenScheme_MIS(ag); */ #ifdef MB_MODIF ML_Aggregate_Set_DampingFactor(ag,1.50); #else ML_Aggregate_Set_DampingFactor(ag,1.5); #endif ML_Aggregate_Set_CoarsenScheme_METIS(ag); ML_Aggregate_Set_NodesPerAggr( ml, ag, -1, 35); /* ML_Aggregate_Set_Phase3AggregateCreationAggressiveness(ag, 10.001); */ ML_Aggregate_Set_Threshold(ag, 0.0); ML_Aggregate_Set_MaxCoarseSize( ag, 300); /* read in the rigid body modes */ Nrigid = 0; /* to ensure compatibility with RBM dumping software */ if (proc_config[AZ_node] == 0) { sprintf(filename,"rigid_body_mode%02d",Nrigid+1); while( (fp = fopen(filename,"r")) != NULL) { which_filename = 1; fclose(fp); Nrigid++; sprintf(filename,"rigid_body_mode%02d",Nrigid+1); } sprintf(filename,"rigid_body_mode%d",Nrigid+1); while( (fp = fopen(filename,"r")) != NULL) { fclose(fp); Nrigid++; sprintf(filename,"rigid_body_mode%d",Nrigid+1); } } Nrigid = AZ_gsum_int(Nrigid,proc_config); if (Nrigid != 0) { rigid = (double *) ML_allocate( sizeof(double)*Nrigid*(N_update+1) ); if (rigid == NULL) { printf("Error: Not enough space for rigid body modes\n"); } } rhs = (double *) malloc(leng*sizeof(double)); xxx = (double *) malloc(leng*sizeof(double)); for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0; for (i = 0; i < Nrigid; i++) { if (which_filename == 1) sprintf(filename,"rigid_body_mode%02d",i+1); else sprintf(filename,"rigid_body_mode%d",i+1); AZ_input_msr_matrix(filename,update,&mode,&garbage,N_update,proc_config); AZ_reorder_vec(mode, data_org, update_index, NULL); /* here is something to stick a rigid body mode as the initial */ /* The idea is to solve A x = 0 without smoothing with a two */ /* level method. If everything is done properly, we should */ /* converge in 2 iterations. */ /* Note: we must also zero out components of the rigid body */ /* mode that correspond to Dirichlet bcs. */ if (i == -4) { for (iii = 0; iii < leng; iii++) xxx[iii] = mode[iii]; ccc = 0; Amatrix = &(ml->Amat[N_levels-1]); for (iii = 0; iii < Amatrix->outvec_leng; iii++) { ML_get_matrix_row(Amatrix,1,&iii,&allocated,&rowi_col,&rowi_val, &rowi_N, 0); count2 = 0; for (j = 0; j < rowi_N; j++) if (rowi_val[j] != 0.) count2++; if (count2 <= 1) { xxx[iii] = 0.; ccc++; } } free(rowi_col); free(rowi_val); allocated = 0; rowi_col = NULL; rowi_val = NULL; } /* * Rescale matrix/rigid body modes and checking * AZ_sym_rescale_sl(mode, Amat->data_org, options, proc_config, scaling); Amat->matvec(mode, rigid, Amat, proc_config); for (j = 0; j < N_update; j++) printf("this is %d %e\n",j,rigid[j]); */ /* Here is some code to check that the rigid body modes are */ /* really rigid body modes. The idea is to multiply by A and */ /* then to zero out things that we "think" are boundaries. */ /* In this hardwired example, things near boundaries */ /* correspond to matrix rows that do not have 81 nonzeros. */ /* Amode = (double *) malloc(leng*sizeof(double)); Amat->matvec(mode, Amode, Amat, proc_config); j = 0; biggest = 0.0; for (ii = 0; ii < N_update; ii++) { if ( Amat->bindx[ii+1] - Amat->bindx[ii] != 80) { Amode[ii] = 0.; j++; } else { if ( fabs(Amode[ii]) > biggest) { biggest=fabs(Amode[ii]); big_ind = ii; } } } printf("%d entries zeroed out of %d elements\n",j,N_update); alpha = AZ_gdot(N_update, Amode, Amode, proc_config); beta = AZ_gdot(N_update, mode, mode, proc_config); printf("||A r||^2 =%e, ||r||^2 = %e, ratio = %e\n", alpha,beta,alpha/beta); printf("the biggest is %e at row %d\n",biggest,big_ind); free(Amode); */ /* orthogonalize mode with respect to previous modes. */ for (j = 0; j < i; j++) { alpha = -AZ_gdot(N_update, mode, &(rigid[j*N_update]), proc_config)/ AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config); /* daxpy_(&N_update,&alpha,&(rigid[j*N_update]), &one, mode, &one); */ } #ifndef MB_MODIF printf(" after mb %e %e %e\n",mode[0],mode[1],mode[2]); #endif for (j = 0; j < N_update; j++) rigid[i*N_update+j] = mode[j]; free(mode); free(garbage); garbage = NULL; } if (Nrigid != 0) { ML_Aggregate_Set_BlockDiagScaling(ag); ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, Nrigid, rigid, N_update); free(rigid); } #ifdef SCALE_ME ML_Aggregate_Scale_NullSpace(ag, scaling_vect, N_update); #endif coarsest_level = ML_Gen_MGHierarchy_UsingAggregation(ml, N_levels-1, ML_DECREASING, ag); AZ_defaults(options, params); coarsest_level = N_levels - coarsest_level; if ( proc_config[AZ_node] == 0 ) printf("Coarse level = %d \n", coarsest_level); /* set up smoothers */ for (level = N_levels-1; level > coarsest_level; level--) { /* ML_Gen_Smoother_BlockGaussSeidel(ml, level,ML_BOTH, 1, 1., num_PDE_eqns); */ /* Sparse approximate inverse smoother that acutally does both */ /* pre and post smoothing. */ /* ML_Gen_Smoother_ParaSails(ml , level, ML_PRESMOOTHER, nsmooth, parasails_sym, parasails_thresh, parasails_nlevels, parasails_filter, parasails_loadbal, parasails_factorized); */ /* This is the symmetric Gauss-Seidel smoothing that we usually use. */ /* In parallel, it is not a true Gauss-Seidel in that each processor */ /* does a Gauss-Seidel on its local submatrix independent of the */ /* other processors. */ /* ML_Gen_Smoother_Cheby(ml, level, ML_BOTH, 30., nsmooth); */ Ndof = ml->Amat[level].invec_leng; ML_Gen_Blocks_Aggregates(ag, level, &nBlocks, &blockIndices); ML_Gen_Smoother_BlockDiagScaledCheby(ml, level, ML_BOTH, 30.,nsmooth, nBlocks, blockIndices); /* ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_BOTH, nsmooth,1.); */ /* This is a true Gauss Seidel in parallel. This seems to work for */ /* elasticity problems. However, I don't believe that this is very */ /* efficient in parallel. */ /* nblocks = ml->Amat[level].invec_leng/num_PDE_eqns; blocks = (int *) ML_allocate(sizeof(int)*N_update); for (i =0; i < ml->Amat[level].invec_leng; i++) blocks[i] = i/num_PDE_eqns; ML_Gen_Smoother_VBlockSymGaussSeidelSequential(ml , level, ML_PRESMOOTHER, nsmooth, 1., nblocks, blocks); ML_Gen_Smoother_VBlockSymGaussSeidelSequential(ml, level, ML_POSTSMOOTHER, nsmooth, 1., nblocks, blocks); free(blocks); */ /* Block Jacobi Smoothing */ /* nblocks = ml->Amat[level].invec_leng/num_PDE_eqns; blocks = (int *) ML_allocate(sizeof(int)*N_update); for (i =0; i < ml->Amat[level].invec_leng; i++) blocks[i] = i/num_PDE_eqns; ML_Gen_Smoother_VBlockJacobi(ml , level, ML_BOTH, nsmooth, ML_ONE_STEP_CG, nblocks, blocks); free(blocks); */ /* Jacobi Smoothing */ /* ML_Gen_Smoother_Jacobi(ml , level, ML_PRESMOOTHER, nsmooth, ML_ONE_STEP_CG); ML_Gen_Smoother_Jacobi(ml , level, ML_POSTSMOOTHER, nsmooth,ML_ONE_STEP_CG); */ /* This does a block Gauss-Seidel (not true GS in parallel) */ /* where each processor has 'nblocks' blocks. */ /* nblocks = 250; ML_Gen_Blocks_Metis(ml, level, &nblocks, &blocks); ML_Gen_Smoother_VBlockJacobi(ml , level, ML_BOTH, nsmooth,ML_ONE_STEP_CG, nblocks, blocks); free(blocks); */ num_PDE_eqns = 6; } /* Choose coarse grid solver: mls, superlu, symGS, or Aztec */ /* ML_Gen_Smoother_Cheby(ml, coarsest_level, ML_BOTH, 30., nsmooth); ML_Gen_CoarseSolverSuperLU( ml, coarsest_level); */ /* ML_Gen_Smoother_SymGaussSeidel(ml , coarsest_level, ML_BOTH, nsmooth,1.); */ old_prec = options[AZ_precond]; old_sol = options[AZ_solver]; old_tol = params[AZ_tol]; params[AZ_tol] = 1.0e-9; params[AZ_tol] = 1.0e-5; options[AZ_precond] = AZ_Jacobi; options[AZ_solver] = AZ_cg; options[AZ_poly_ord] = 1; options[AZ_conv] = AZ_r0; options[AZ_orth_kvecs] = AZ_TRUE; j = AZ_gsum_int(ml->Amat[coarsest_level].outvec_leng, proc_config); options[AZ_keep_kvecs] = j - 6; options[AZ_max_iter] = options[AZ_keep_kvecs]; ML_Gen_SmootherAztec(ml, coarsest_level, options, params, proc_config, status, options[AZ_keep_kvecs], ML_PRESMOOTHER, NULL); options[AZ_conv] = AZ_noscaled; options[AZ_keep_kvecs] = 0; options[AZ_orth_kvecs] = 0; options[AZ_precond] = old_prec; options[AZ_solver] = old_sol; params[AZ_tol] = old_tol; /* */ #ifdef RST_MODIF ML_Gen_Solver(ml, ML_MGV, N_levels-1, coarsest_level); #else #ifdef MB_MODIF ML_Gen_Solver(ml, ML_SAAMG, N_levels-1, coarsest_level); #else ML_Gen_Solver(ml, ML_MGFULLV, N_levels-1, coarsest_level); #endif #endif options[AZ_solver] = AZ_GMRESR; options[AZ_solver] = AZ_cg; options[AZ_scaling] = AZ_none; options[AZ_precond] = AZ_user_precond; options[AZ_conv] = AZ_r0; options[AZ_conv] = AZ_noscaled; options[AZ_output] = 1; options[AZ_max_iter] = 500; options[AZ_poly_ord] = 5; options[AZ_kspace] = 40; params[AZ_tol] = 4.8e-6; AZ_set_ML_preconditioner(&Pmat, Amat, ml, options); setup_time = AZ_second() - start_time; /* Set rhs */ fp = fopen("AZ_capture_rhs.dat","r"); if (fp == NULL) { AZ_random_vector(rhs, data_org, proc_config); if (proc_config[AZ_node] == 0) printf("taking random vector for rhs\n"); for (i = 0; i < -N_update; i++) { rhs[i] = (double) update[i]; rhs[i] = 7.; } } else { if (proc_config[AZ_node]== 0) printf("reading rhs guess from file\n"); AZ_input_msr_matrix("AZ_capture_rhs.dat", update, &rhs, &garbage, N_update, proc_config); free(garbage); } AZ_reorder_vec(rhs, data_org, update_index, NULL); printf("changing rhs by multiplying with A\n"); Amat->matvec(rhs, xxx, Amat, proc_config); for (i = 0; i < N_update; i++) rhs[i] = xxx[i]; fp = fopen("AZ_capture_init_guess.dat","r"); if (fp != NULL) { fclose(fp); if (proc_config[AZ_node]== 0) printf("reading initial guess from file\n"); AZ_input_msr_matrix("AZ_capture_init_guess.dat", update, &xxx, &garbage, N_update, proc_config); free(garbage); xxx = (double *) realloc(xxx, sizeof(double)*( Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border] + Amat->data_org[AZ_N_external])); } AZ_reorder_vec(xxx, data_org, update_index, NULL); /* if Dirichlet BC ... put the answer in */ /* for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) { if ( (val[i] > .99999999) && (val[i] < 1.0000001)) xxx[i] = rhs[i]; } */ fp = fopen("AZ_no_multilevel.dat","r"); scaling = AZ_scaling_create(); start_time = AZ_second(); if (fp != NULL) { fclose(fp); options[AZ_precond] = AZ_none; options[AZ_scaling] = AZ_sym_diag; options[AZ_ignore_scaling] = AZ_TRUE; options[AZ_keep_info] = 1; AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); /* options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); */ } else { options[AZ_keep_info] = 1; options[AZ_conv] = AZ_noscaled; options[AZ_conv] = AZ_r0; params[AZ_tol] = 1.0e-7; /* ML_Iterate(ml, xxx, rhs); */ alpha = sqrt(AZ_gdot(N_update, xxx, xxx, proc_config)); printf("init guess = %e\n",alpha); alpha = sqrt(AZ_gdot(N_update, rhs, rhs, proc_config)); printf("rhs = %e\n",alpha); #ifdef SCALE_ME ML_MSR_scalerhs(rhs, scaling_vect, data_org[AZ_N_internal] + data_org[AZ_N_border]); ML_MSR_scalesol(xxx, scaling_vect, data_org[AZ_N_internal] + data_org[AZ_N_border]); #endif max_diag = 0.; min_diag = 1.e30; max_sum = 0.; for (i = 0; i < N_update; i++) { if (Amat->val[i] < 0.) printf("woops negative diagonal A(%d,%d) = %e\n", i,i,Amat->val[i]); if (Amat->val[i] > max_diag) max_diag = Amat->val[i]; if (Amat->val[i] < min_diag) min_diag = Amat->val[i]; sum = fabs(Amat->val[i]); for (j = Amat->bindx[i]; j < Amat->bindx[i+1]; j++) { sum += fabs(Amat->val[j]); } if (sum > max_sum) max_sum = sum; } printf("Largest diagonal = %e, min diag = %e large abs row sum = %e\n", max_diag, min_diag, max_sum); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); options[AZ_pre_calc] = AZ_reuse; options[AZ_conv] = AZ_expected_values; /* if (proc_config[AZ_node] == 0) printf("\n-------- Second solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); if (proc_config[AZ_node] == 0) printf("\n-------- Third solve with improved convergence test -----\n"); AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); */ } solve_time = AZ_second() - start_time; if (proc_config[AZ_node] == 0) printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time); if (proc_config[AZ_node] == 0) printf("Printing out a few entries of the solution ...\n"); for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 7) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 23) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 47) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 101) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} j = AZ_gsum_int(7, proc_config); /* sync processors */ for (j=0;j<Amat->data_org[AZ_N_internal]+ Amat->data_org[AZ_N_border];j++) if (update[j] == 171) {printf("solution(gid = %d) = %10.4e\n", update[j],xxx[update_index[j]]); fflush(stdout);} ML_Aggregate_Destroy(&ag); ML_Destroy(&ml); AZ_free((void *) Amat->data_org); AZ_free((void *) Amat->val); AZ_free((void *) Amat->bindx); AZ_free((void *) update); AZ_free((void *) external); AZ_free((void *) extern_index); AZ_free((void *) update_index); AZ_scaling_destroy(&scaling); if (Amat != NULL) AZ_matrix_destroy(&Amat); if (Pmat != NULL) AZ_precond_destroy(&Pmat); free(xxx); free(rhs); #ifdef HAVE_MPI MPI_Finalize(); #endif return 0; }
int test_AZ_iterate_AZ_pre_calc_AZ_reuse(Epetra_Comm& Comm, int* options, bool verbose) { (void)Comm; if (verbose) { cout << "testing AZ_keep_info/AZ_reuse with 'old' Aztec (solver " <<options[AZ_solver] <<", precond "<<options[AZ_precond]<<"/" << options[AZ_subdomain_solve]<<")"<<endl; } int* proc_config = new int[AZ_PROC_SIZE]; #ifdef EPETRA_MPI AZ_set_proc_config(proc_config, MPI_COMM_WORLD); AZ_set_comm(proc_config, MPI_COMM_WORLD); #else AZ_set_proc_config(proc_config, 0); #endif //We're going to create 2 Aztec matrices, one MSR and one VBR. We're going //to do 2 solves with each, reusing the preconditioner for the second solve. int *external, *update_index, *external_index; int *external2, *update_index2, *external_index2; int i, N = 5; AZ_MATRIX* Amsr = NULL; AZ_MATRIX* Avbr = NULL; int err = create_and_transform_simple_matrix(AZ_MSR_MATRIX, N, 3.0, proc_config, Amsr, external, update_index, external_index); err += create_and_transform_simple_matrix(AZ_VBR_MATRIX, N, 3.0, proc_config, Avbr, external2, update_index2, external_index2); int* az_options = new int[AZ_OPTIONS_SIZE]; double* params = new double[AZ_PARAMS_SIZE]; double* status = new double[AZ_STATUS_SIZE]; AZ_defaults(az_options, params); az_options[AZ_solver] = options[AZ_solver]; az_options[AZ_precond] = options[AZ_precond]; az_options[AZ_subdomain_solve] = options[AZ_subdomain_solve]; az_options[AZ_scaling] = AZ_sym_diag; if (verbose) { az_options[AZ_output] = AZ_warnings; } else { az_options[AZ_output] = 0; } int N_update = N+Amsr->data_org[AZ_N_border]; double* x = new double[N_update]; double* b = new double[N_update]; for(i=0; i<N_update; ++i) { x[i] = 0.0; b[i] = 1.0; } AZ_PRECOND* Pmsr = AZ_precond_create(Amsr, AZ_precondition, NULL); AZ_SCALING* Smsr = AZ_scaling_create(); AZ_PRECOND* Pvbr = AZ_precond_create(Avbr, AZ_precondition, NULL); AZ_SCALING* Svbr = AZ_scaling_create(); // Amsr->data_org[AZ_name] = 1; // Avbr->data_org[AZ_name] = 2; //First solve with the first matrix (Amsr). if (verbose) cout << "solve Amsr, name: "<<Amsr->data_org[AZ_name]<<endl; call_AZ_iterate(Amsr, Pmsr, Smsr, x, b, az_options, params, status, proc_config, 1, AZ_calc, verbose); //First solve with the second matrix (Avbr). if (verbose) cout << "solve Avbr, name: " <<Avbr->data_org[AZ_name]<<endl; call_AZ_iterate(Avbr, Pvbr, Svbr, x, b, az_options, params, status, proc_config, 0, AZ_calc, verbose); //Second solve with Amsr, reusing preconditioner if (verbose) cout << "solve Amsr (first reuse)"<<endl; call_AZ_iterate(Amsr, Pmsr, Smsr, x, b, az_options, params, status, proc_config, 1, AZ_reuse, verbose); //Second solve with Avbr, not reusing preconditioner if (verbose) cout << "solve Avbr (keepinfo==0), name: " <<Avbr->data_org[AZ_name]<<endl; call_AZ_iterate(Avbr, Pvbr, Svbr, x, b, az_options, params, status, proc_config, 0, AZ_calc, verbose); if (verbose) std::cout << "calling AZ_free_memory..."<<std::endl; AZ_free_memory(Amsr->data_org[AZ_name]); AZ_free_memory(Avbr->data_org[AZ_name]); //solve with Amsr again, not reusing preconditioner if (verbose) cout << "solve Amsr (keepinfo==0)"<<endl; call_AZ_iterate(Amsr, Pmsr, Smsr, x, b, az_options, params, status, proc_config, 0, AZ_calc, verbose); //Second solve with Avbr, this time with keepinfo==1 if (verbose) cout << "solve Avbr (keepinfo==1), name: " <<Avbr->data_org[AZ_name]<<endl; call_AZ_iterate(Avbr, Pvbr, Svbr, x, b, az_options, params, status, proc_config, 1, AZ_calc, verbose); //Second solve with Amsr, not reusing preconditioner if (verbose) cout << "solve Amsr (keepinfo==0, calc)"<<endl; call_AZ_iterate(Amsr, Pmsr, Smsr, x, b, az_options, params, status, proc_config, 0, AZ_calc, verbose); //Second solve with Avbr, not reusing preconditioner if (verbose) cout << "solve Avbr (keepinfo==1, reuse), name: "<<Avbr->data_org[AZ_name]<<endl; call_AZ_iterate(Avbr, Pvbr, Svbr, x, b, az_options, params, status, proc_config, 1, AZ_reuse, verbose); AZ_free_memory(Amsr->data_org[AZ_name]); AZ_free_memory(Avbr->data_org[AZ_name]); AZ_scaling_destroy(&Smsr); AZ_precond_destroy(&Pmsr); AZ_scaling_destroy(&Svbr); AZ_precond_destroy(&Pvbr); destroy_matrix(Amsr); destroy_matrix(Avbr); delete [] x; delete [] b; delete [] az_options; delete [] params; delete [] status; delete [] proc_config; free(update_index); free(external); free(external_index); free(update_index2); free(external2); free(external_index2); return(0); }
int test_azoo_scaling(Epetra_CrsMatrix& A, Epetra_Vector& x, Epetra_Vector& b, bool verbose) { Epetra_Vector vec1(x); Epetra_Vector vec2(x); Epetra_Vector diag(x); Epetra_Vector vec3(x); Epetra_Vector vec4(x); Epetra_Vector rhs(x); Epetra_Vector soln_none(x); Epetra_Vector soln_jacobi(x); Epetra_Vector soln_rowsum(x); Epetra_Vector soln_symdiag(x); vec1.PutScalar(1.0); A.Multiply(false, vec1, vec2); A.ExtractDiagonalCopy(diag); double* diag_vals = NULL; diag.ExtractView(&diag_vals); int* options = new int[AZ_OPTIONS_SIZE]; double* params = new double[AZ_PARAMS_SIZE]; AZ_defaults(options, params); options[AZ_output] = verbose ? 1 : AZ_none; options[AZ_scaling] = AZ_Jacobi; AztecOO::MatrixData mdata(&A); AZ_MATRIX* Amat = AZ_matrix_create(vec1.Map().NumMyElements()); AZ_set_MATFREE(Amat, (void*)(&mdata), Epetra_Aztec_matvec); AZ_SCALING* scaling = AZ_scaling_create(); double* xvals = NULL, *bvals = NULL; x.ExtractView(&xvals); b.ExtractView(&bvals); int err = AztecOO_scale_epetra(AZ_SCALE_MAT_RHS_SOL, Amat, options, bvals, xvals, NULL, scaling); if (err != 0) { if (verbose) { cout << "AztecOO_scale_epetra returned err="<<err<<endl; } return(err); } A.Multiply(false, vec1, vec3); vec4.Multiply(1.0, diag, vec3, 0.0); double vec2nrm, vec4nrm; vec2.Norm2(&vec2nrm); vec4.Norm2(&vec4nrm); if (fabs(vec2nrm - vec4nrm) > 1.e-6) { return(-1); } //now call the scaling function again, just to allow for //testing memory-leak issues. err = AztecOO_scale_epetra(AZ_SCALE_MAT_RHS_SOL, Amat, options, bvals, xvals, NULL, scaling); if (err != 0) { if (verbose) { cout << "AztecOO_scale_epetra returned err="<<err<<endl; } return(err); } AztecOO_scale_epetra(AZ_DESTROY_SCALING_DATA, Amat, options, bvals, xvals, NULL, scaling); x.PutScalar(1.0); Epetra_CrsMatrix* Atmp = create_and_fill_crs_matrix(A.RowMap()); Atmp->Multiply(false, x, rhs); x.PutScalar(0.0); AztecOO azoo(&A, &x, &b); azoo.SetAztecOption(AZ_scaling, AZ_Jacobi); if (verbose) { azoo.SetAztecOption(AZ_output, 1); } else { azoo.SetAztecOption(AZ_output, AZ_none); } azoo.Iterate(100, 1.e-6); delete Atmp; Epetra_CrsMatrix* Atmp1 = create_and_fill_crs_matrix(A.RowMap()); x.PutScalar(1.0); Atmp1->Multiply(false, x, rhs); soln_rowsum.PutScalar(0.0); AztecOO azoo1(Atmp1, &soln_rowsum, &rhs); azoo1.SetAztecOption(AZ_scaling, AZ_row_sum); azoo1.Iterate(100, 1.e-8); delete Atmp1; Epetra_CrsMatrix* Atmp2 = create_and_fill_crs_matrix(A.RowMap()); x.PutScalar(1.0); Atmp2->Multiply(false, x, rhs); soln_symdiag.PutScalar(0.0); AztecOO azoo2(Atmp2, &soln_symdiag, &rhs); azoo2.SetAztecOption(AZ_scaling, AZ_sym_diag); azoo2.Iterate(100, 1.e-8); delete Atmp2; Epetra_CrsMatrix* Atmp3 = create_and_fill_crs_matrix(A.RowMap()); x.PutScalar(1.0); Atmp3->Multiply(false, x, rhs); soln_none.PutScalar(0.0); AztecOO azoo3(Atmp3, &soln_none, &rhs); azoo3.SetAztecOption(AZ_scaling, AZ_none); azoo3.Iterate(100, 1.e-8); delete Atmp3; Epetra_CrsMatrix* Atmp4 = create_and_fill_crs_matrix(A.RowMap()); x.PutScalar(1.0); Atmp4->Multiply(false, x, rhs); soln_jacobi.PutScalar(0.0); AztecOO azoo4(Atmp4, &soln_jacobi, &rhs); azoo4.SetAztecOption(AZ_scaling, AZ_Jacobi); azoo4.Iterate(100, 1.e-8); delete Atmp4; //at this point, soln_none, soln_jacobi, soln_rowsum and soln_symdiag //should be the same or at least close to the same, since the //matrix used in the solution has well-behaved coefficients. //form vec1 = soln_none - soln_rowsum vec1.PutScalar(0.0); vec1.Update(1.0, soln_none, 0.0); vec1.Update(-1.0, soln_rowsum, 1.0); double norm_check1= 0.0; vec1.Norm2(&norm_check1); //form vec2 = soln_none - soln_symdiag vec2.PutScalar(0.0); vec2.Update(1.0, soln_none, 0.0); vec2.Update(-1.0, soln_symdiag, 1.0); double norm_check2= 0.0; vec2.Norm2(&norm_check2); //form vec3 = soln_none - soln_jacobi vec3.PutScalar(0.0); vec3.Update(1.0, soln_none, 0.0); vec3.Update(-1.0, soln_jacobi, 1.0); double norm_check3= 0.0; vec3.Norm2(&norm_check3); if (std::abs(norm_check1) > 1.e-6) { if (verbose) { cerr << "AZ_row_sum scaling produced bad soln" << endl; } return(-1); } if (std::abs(norm_check2) > 1.e-6) { if (verbose) { cerr << "AZ_sym_diag scaling produced bad soln" << endl; } return(-1); } if (std::abs(norm_check3) > 1.e-6) { if (verbose) { cerr << "AZ_Jacobi scaling produced bad soln" << endl; } return(-1); } options[AZ_pre_calc] = AZ_reuse; err = AztecOO_scale_epetra(AZ_SCALE_MAT_RHS_SOL, Amat, options, bvals, xvals, NULL, scaling); if (err == 0) { if (verbose) { cerr << "AztecOO_scale_epetra failed to return err when" << " asked to reuse non-existent scaling data."<<endl; } return(-1); } options[AZ_keep_info] = 1; options[AZ_pre_calc] = AZ_calc; err = AztecOO_scale_epetra(AZ_SCALE_MAT_RHS_SOL, Amat, options, bvals, xvals, NULL, scaling); if (err != 0) { if (verbose) { cerr << "AztecOO_scale_epetra returned err=="<<err<<endl; } return(err); } options[AZ_keep_info] = 0; options[AZ_pre_calc] = AZ_reuse; err = AztecOO_scale_epetra(AZ_SCALE_MAT_RHS_SOL, Amat, options, bvals, xvals, NULL, scaling); if (err != 0) { if (verbose) { cerr << "AztecOO_scale_epetra returned err=="<<err <<" when asked to reuse scaling data"<<endl; } return(err); } options[AZ_pre_calc] = AZ_calc; err = AztecOO_scale_epetra(AZ_DESTROY_SCALING_DATA, Amat, options, bvals, xvals, NULL, scaling); if (err != 0) { if (verbose) { std::cerr << "AztecOO_scale_epetra returned err=="<<err << " when asked to destroy scaling data."<<std::endl; } return(err); } AZ_matrix_destroy(&Amat); delete [] options; delete [] params; AZ_scaling_destroy(&scaling); AZ_manage_memory(0, AZ_CLEAR_ALL, 0, 0, 0); return(0); }
int test_AZ_iterate_then_AZ_scale_f(Epetra_Comm& Comm, bool verbose) { (void)Comm; if (verbose) { cout << "testing AZ_iterate/AZ_scale_f with 'old' Aztec"<<endl; } int* proc_config = new int[AZ_PROC_SIZE]; #ifdef EPETRA_MPI AZ_set_proc_config(proc_config, MPI_COMM_WORLD); AZ_set_comm(proc_config, MPI_COMM_WORLD); #else AZ_set_proc_config(proc_config, 0); #endif int *external, *update_index, *external_index; int i, N = 5; AZ_MATRIX* Amat = NULL; int err = create_and_transform_simple_matrix(AZ_MSR_MATRIX, N, 3.0, proc_config, Amat, external, update_index, external_index); if (err != 0) { return(err); } int* options = new int[AZ_OPTIONS_SIZE]; double* params = new double[AZ_PARAMS_SIZE]; double* status = new double[AZ_STATUS_SIZE]; AZ_defaults(options, params); options[AZ_scaling] = AZ_sym_diag; if (verbose) { options[AZ_output] = AZ_warnings; } else { options[AZ_output] = 0; } int N_update = N+Amat->data_org[AZ_N_border]; double* x = new double[N_update]; double* b = new double[N_update]; for(i=0; i<N_update; ++i) { x[i] = 0.0; b[i] = 1.0; } AZ_PRECOND* Pmat = AZ_precond_create(Amat, AZ_precondition, NULL); AZ_SCALING* Scal = AZ_scaling_create(); options[AZ_keep_info] = 1; AZ_iterate(x, b, options, params, status, proc_config, Amat, Pmat, Scal); //now set options[AZ_pre_calc] = AZ_reuse and try to call AZ_scale_f. options[AZ_pre_calc] = AZ_reuse; AZ_scale_f(AZ_SCALE_MAT_RHS_SOL, Amat, options, b, x, proc_config, Scal); AZ_scaling_destroy(&Scal); AZ_precond_destroy(&Pmat); destroy_matrix(Amat); delete [] x; delete [] b; delete [] options; delete [] params; delete [] status; delete [] proc_config; free(update_index); free(external); free(external_index); return(0); }