Пример #1
0
void exp_td_accurate(double *polyTblh, double *polyTblm, double *polyTbll, 
		     double rh, double rm, double rl, 
		     double tbl1h, double tbl1m, double tbl1l,
		     double tbl2h, double tbl2m, double tbl2l) {
  double highPoly, highPolyMulth, highPolyMultm, highPolyMultl;
  double rhSquareh, rhSquarel, rhSquareHalfh, rhSquareHalfl;
  double rhCubeh, rhCubem, rhCubel;
  double t1h, t1l, t2h, t2l, t3h, t3l, t4h, t4l, t5, t6;
  double lowPolyh, lowPolym, lowPolyl;
  double ph, pm, pl, phnorm, pmnorm, rmlMultPh, rmlMultPl;
  double qh, ql, fullPolyh, fullPolym, fullPolyl;
  double polyWithTbl1h, polyWithTbl1m, polyWithTbl1l;
  double polyAddOneh,polyAddOnem,polyAddOnel;
  double polyWithTablesh, polyWithTablesm, polyWithTablesl;


#if EVAL_PERF
  crlibm_second_step_taken++;
#endif

#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
  highPoly = FMA(FMA(accPolyC7,rh,accPolyC6),rh,accPolyC5);
#else
  highPoly = accPolyC5 + rh * (accPolyC6 + rh * accPolyC7);
#endif

  Mul12(&t1h,&t1l,rh,highPoly);
  Add22(&t2h,&t2l,accPolyC4h,accPolyC4l,t1h,t1l);
  Mul22(&t3h,&t3l,rh,0,t2h,t2l);
  Add22(&t4h,&t4l,accPolyC3h,accPolyC3l,t3h,t3l);

  Mul12(&rhSquareh,&rhSquarel,rh,rh);
  Mul23(&rhCubeh,&rhCubem,&rhCubel,rh,0,rhSquareh,rhSquarel);

  rhSquareHalfh = 0.5 * rhSquareh;
  rhSquareHalfl = 0.5 * rhSquarel;  

  Renormalize3(&lowPolyh,&lowPolym,&lowPolyl,rh,rhSquareHalfh,rhSquareHalfl);

  Mul233(&highPolyMulth,&highPolyMultm,&highPolyMultl,t4h,t4l,rhCubeh,rhCubem,rhCubel);

  Add33(&ph,&pm,&pl,lowPolyh,lowPolym,lowPolyl,highPolyMulth,highPolyMultm,highPolyMultl);

  Add12(phnorm,pmnorm,ph,pm);
  Mul22(&rmlMultPh,&rmlMultPl,rm,rl,phnorm,pmnorm);
  Add22(&qh,&ql,rm,rl,rmlMultPh,rmlMultPl);

  Add233Cond(&fullPolyh,&fullPolym,&fullPolyl,qh,ql,ph,pm,pl);

  Add12(polyAddOneh,t5,1,fullPolyh);
  Add12Cond(polyAddOnem,t6,t5,fullPolym);
  polyAddOnel = t6 + fullPolyl;
  Mul33(&polyWithTbl1h,&polyWithTbl1m,&polyWithTbl1l,tbl1h,tbl1m,tbl1l,polyAddOneh,polyAddOnem,polyAddOnel);
  Mul33(&polyWithTablesh,&polyWithTablesm,&polyWithTablesl,
	tbl2h,tbl2m,tbl2l,
	polyWithTbl1h,polyWithTbl1m,polyWithTbl1l);

  Renormalize3(polyTblh,polyTblm,polyTbll,polyWithTablesh,polyWithTablesm,polyWithTablesl);

}
Пример #2
0
/*************************************************************
 *************************************************************
 *               ROUNDED  TO NEAREST			     *
 *************************************************************
 *************************************************************/
 double log_rn(double x){ 
   db_number xdb, yhdb;
   double yh, yl, ed, ri, logih, logim, logil, yrih, yril, th, zh, zl;
   double ph, pl, pm, log2edh, log2edl, log2edm, logTabPolyh, logTabPolyl, logh, logm, logl;
   int E, index;
   double zhSquare, zhCube, zhSquareHalf;
   double p35, p46, p36;
   double pUpper;
   double zhSquareHalfPlusZl;
   double zhFour;
   double logyh, logym, logyl;
   double loghover, logmover, loglover;


   E=0;
   xdb.d=x;

   /* Filter cases */
   if (xdb.i[HI] < 0x00100000){        /* x < 2^(-1022)    */
     if (((xdb.i[HI] & 0x7fffffff)|xdb.i[LO])==0){
       return -1.0/0.0;     
     }                    		   /* log(+/-0) = -Inf */
     if (xdb.i[HI] < 0){ 
       return (x-x)/0.0;                    /* log(-x) = Nan    */
     }
     /* Subnormal number */
     E = -52; 		
     xdb.d *= two52; 	  /* make x a normal number    */ 
   }
    
   if (xdb.i[HI] >= 0x7ff00000){
     return  x+x;				 /* Inf or Nan       */
   }
   
   
   /* Extract exponent and mantissa 
      Do range reduction,
      yielding to E holding the exponent and
      y the mantissa between sqrt(2)/2 and sqrt(2)
   */
   E += (xdb.i[HI]>>20)-1023;             /* extract the exponent */
   index = (xdb.i[HI] & 0x000fffff);
   xdb.i[HI] =  index | 0x3ff00000;	/* do exponent = 0 */
   index = (index + (1<<(20-L-1))) >> (20-L);
 
   /* reduce  such that sqrt(2)/2 < xdb.d < sqrt(2) */
   if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
     xdb.i[HI] -= 0x00100000; 
     E++;
   }

   yhdb.i[HI] = xdb.i[HI];
   yhdb.i[LO] = 0;
   yh = yhdb.d;
   yl = xdb.d - yh;

   index = index & INDEXMASK;
   /* Cast integer E into double ed for multiplication later */
   ed = (double) E;

   /* 
      Read tables:
      Read one float for ri
      Read the first two doubles for -log(r_i) (out of three)

      Organization of the table:

      one struct entry per index, the struct entry containing 
      r, logih, logim and logil in this order
   */
   

   ri = argredtable[index].ri;
   /* 
      Actually we don't need the logarithm entries now
      Move the following two lines to the eventual reconstruction
      As long as we don't have any if in the following code, we can overlap 
      memory access with calculations 
   */
   logih = argredtable[index].logih;
   logim = argredtable[index].logim;

   /* Do range reduction:

      zh + zl = y * ri - 1.0 exactly

      Exactness is assured by use of two part yh + yl and 21 bit ri and Add12

      Discard zl for higher monome degrees
   */

   yrih = yh * ri;
   yril = yl * ri;
   th = yrih - 1.0; 
   Add12Cond(zh, zl, th, yril); 

   /* Polynomial approximation */

  zhSquare = zh * zh; /* 1 */

  p35 = p_coeff_3h + zhSquare * p_coeff_5h; /* 3 */
  p46 = p_coeff_4h + zhSquare * p_coeff_6h; /* 3 */
  zhCube = zhSquare * zh;   /* 2 */
  zhSquareHalf = p_coeff_2h * zhSquare; /* 2 */
  zhFour = zhSquare * zhSquare; /* 2 */

  p36 = zhCube * p35 + zhFour * p46; /* 4 */
  zhSquareHalfPlusZl = zhSquareHalf + zl; /* 3 */

  pUpper = zhSquareHalfPlusZl + p36; /* 5 */
  
  Add12(ph,pl,zh,pUpper); /* 8 */

   /* Reconstruction 

      Read logih and logim in the tables (already done)
      
      Compute log(x) = E * log(2) + log(1+z) - log(ri)
      i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta

      Carry out everything in double double precision

   */
   
   /* 
      We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
      Multiplication of ed (double E) and log2h is thus exact
      The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
      is enough for the accurate phase
      The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
      Nevertheless the storage with trailing zeros implies an overlap of the tabulated
      triple double values. We have to take it into account for the accurate phase 
      basic procedures for addition and multiplication
      The OCcondition on the next Add12 is verified as log2m is smaller than log2h 
      and both are scaled by ed
   */

   Add12(log2edh, log2edl, log2h * ed, log2m * ed);

   /* Add logih and logim to ph and pl */

   Add22(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);

   /* Add log2edh + log2edl to logTabPolyh + logTabPolyl */

   Add22(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);

   /* Rounding test and possible return or call to the accurate function */

   if(logh == (logh + (logm * RNROUNDCST)))
     return logh;
   else 
     {

       logil = argredtable[index].logil;

       p_accu(&ph, &pm, &pl, zh, zl);

       Add33(&logyh, &logym, &logyl, logih, logim, logil, ph, pm, pl);

       log2edh = log2h * ed;
       log2edm = log2m * ed;
       log2edl = log2l * ed;

       Add33(&loghover, &logmover, &loglover, log2edh, log2edm, log2edl, logyh, logym, logyl);

       Renormalize3(&logh,&logm,&logl,loghover,logmover,loglover);
                     
       ReturnRoundToNearest3(logh, logm, logl);

     } /* Accurate phase launched */
}
Пример #3
0
 interval j_log(interval x)
 {
   interval res;
   int roundable;
   int cs_inf=0; int cs_sup=0;
   double x_inf,x_sup;
   x_inf=LOW(x);
   x_sup=UP(x);
   double res_inf, res_sup, res_simple_inf, res_simple_sup;

   db_number xdb_sup;
   double y_sup, ed_sup, ri_sup, logih_sup, logim_sup, yrih_sup, yril_sup, th_sup, zh_sup, zl_sup;
   double polyHorner_sup, zhSquareh_sup, zhSquarel_sup, polyUpper_sup, zhSquareHalfh_sup, zhSquareHalfl_sup;
   double t1h_sup, t1l_sup, t2h_sup, t2l_sup, ph_sup, pl_sup, log2edh_sup, log2edl_sup, logTabPolyh_sup, logTabPolyl_sup, logh_sup, logm_sup, logl_sup, roundcst;
   int E_sup, index_sup;
   

   db_number xdb_inf;
   double y_inf, ed_inf, ri_inf, logih_inf, logim_inf, yrih_inf, yril_inf, th_inf, zh_inf, zl_inf;
   double polyHorner_inf, zhSquareh_inf, zhSquarel_inf, polyUpper_inf, zhSquareHalfh_inf, zhSquareHalfl_inf;
   double t1h_inf, t1l_inf, t2h_inf, t2l_inf, ph_inf, pl_inf, log2edh_inf, log2edl_inf, logTabPolyh_inf, logTabPolyl_inf, logh_inf, logm_inf, logl_inf;
   int E_inf, index_inf;

   E_inf=0;
   xdb_inf.d=x_inf;
   E_sup=0;
   xdb_sup.d=x_sup;

   if (__builtin_expect(
      (x_inf == 1.0) || (!(x_inf<=x_sup)) || (xdb_sup.i[HI] < 0) 
   || (xdb_inf.i[HI] < 0x00100000) || (((xdb_inf.i[HI] & 0x7fffffff)|xdb_inf.i[LO])==0) 
   || (xdb_inf.i[HI] < 0)
   || (xdb_inf.i[HI] >= 0x7ff00000)
   || (x_sup == 1.0)
   || (xdb_sup.i[HI] < 0x00100000)
   || (((xdb_sup.i[HI] & 0x7fffffff)|xdb_sup.i[LO])==0)
   || (xdb_sup.i[HI] < 0)
   || (xdb_sup.i[HI] >= 0x7ff00000)
   || ((xdb_inf.d<00) && (xdb_sup.d>0) )
   ,FALSE))
   {
     if (!(x_inf<=x_sup)) RETURN_EMPTY_INTERVAL;
     if (xdb_sup.i[HI] < 0) RETURN_EMPTY_INTERVAL;
     if ((xdb_inf.d<00) && (xdb_sup.d>0) )
     {
       ASSIGN_LOW(res,-1.0/0.0);
       ASSIGN_UP(res,log_ru(UP(x)));
       return res;
     }
     ASSIGN_LOW(res,log_rd(LOW(x)));
     ASSIGN_UP(res,log_ru(UP(x)));
     return res;
   }
   /* Extract exponent and mantissa 
      Do range reduction,
      yielding to E holding the exponent and
      y the mantissa between sqrt(2)/2 and sqrt(2)
   */
   E_inf += (xdb_inf.i[HI]>>20)-1023;             /* extract the exponent */
   E_sup += (xdb_sup.i[HI]>>20)-1023;             /* extract the exponent */
   index_inf = (xdb_inf.i[HI] & 0x000fffff);
   index_sup = (xdb_sup.i[HI] & 0x000fffff);
   xdb_inf.i[HI] =  index_inf | 0x3ff00000;	/* do exponent = 0 */
   xdb_sup.i[HI] =  index_sup | 0x3ff00000;	/* do exponent = 0 */
   index_inf = (index_inf + (1<<(20-L-1))) >> (20-L);
   index_sup = (index_sup + (1<<(20-L-1))) >> (20-L);
   /* reduce  such that sqrt(2)/2 < xdb.d < sqrt(2) */
   if (index_inf >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
     xdb_inf.i[HI] -= 0x00100000; 
     E_inf++;
   }
   /* reduce  such that sqrt(2)/2 < xdb.d < sqrt(2) */
   if (index_sup >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
     xdb_sup.i[HI] -= 0x00100000; 
     E_sup++;
   }
   y_inf = xdb_inf.d;
   y_sup = xdb_sup.d;
   index_inf = index_inf & INDEXMASK;
   index_sup = index_sup & INDEXMASK;
   /* Cast integer E into double ed for multiplication later */
   ed_inf = (double) E_inf;
   ed_sup = (double) E_sup;
   /* 
      Read tables:
      Read one float for ri
      Read the first two doubles for -log(r_i) (out of three)
      Organization of the table:
      one struct entry per index, the struct entry containing 
      r, logih, logim and logil in this order
   */
   ri_inf = argredtable[index_inf].ri;
   ri_sup = argredtable[index_sup].ri;
   /* 
      Actually we don't need the logarithm entries now
      Move the following two lines to the eventual reconstruction
      As long as we don't have any if in the following code, we can overlap 
      memory access with calculations 
   */
   logih_inf = argredtable[index_inf].logih;
   logih_sup = argredtable[index_sup].logih;
   logim_inf = argredtable[index_inf].logim;
   logim_sup = argredtable[index_sup].logim;
   /* Do range reduction:
      zh + zl = y * ri - 1.0 correctly
      Correctness is assured by use of Mul12 and Add12
      even if we don't force ri to have its' LSBs set to zero
      Discard zl for higher monome degrees
   */

   Mul12(&yrih_inf, &yril_inf, y_inf, ri_inf);
   Mul12(&yrih_sup, &yril_sup, y_sup, ri_sup);
   th_inf = yrih_inf - 1.0; 
   th_sup = yrih_sup - 1.0; 
   /* Do range reduction:
      zh + zl = y * ri - 1.0 correctly
      Correctness is assured by use of Mul12 and Add12
      even if we don't force ri to have its' LSBs set to zero
      Discard zl for higher monome degrees
   */


   Add12Cond(zh_inf, zl_inf, th_inf, yril_inf); 
   Add12Cond(zh_sup, zl_sup, th_sup, yril_sup); 
   /* 
      Polynomial evaluation
      Use a 7 degree polynomial
      Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
      Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zl
      using an ad hoc method
   */



#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
   polyHorner_inf = FMA(FMA(FMA(FMA(c7,zh_inf,c6),zh_inf,c5),zh_inf,c4),zh_inf,c3);
   polyHorner_sup = FMA(FMA(FMA(FMA(c7,zh_sup,c6),zh_sup,c5),zh_sup,c4),zh_sup,c3);
#else
   polyHorner_inf = c3 + zh_inf * (c4 + zh_inf * (c5 + zh_inf * (c6 + zh_inf * c7)));
   polyHorner_sup = c3 + zh_sup * (c4 + zh_sup * (c5 + zh_sup * (c6 + zh_sup * c7)));
#endif

   Mul12(&zhSquareh_inf, &zhSquarel_inf, zh_inf, zh_inf);
   Mul12(&zhSquareh_sup, &zhSquarel_sup, zh_sup, zh_sup);
   polyUpper_inf = polyHorner_inf * (zh_inf * zhSquareh_inf);
   polyUpper_sup = polyHorner_sup * (zh_sup * zhSquareh_sup);
   zhSquareHalfh_inf = zhSquareh_inf * -0.5;
   zhSquareHalfh_sup = zhSquareh_sup * -0.5;
   zhSquareHalfl_inf = zhSquarel_inf * -0.5;
   zhSquareHalfl_sup = zhSquarel_sup * -0.5;
   Add12(t1h_inf, t1l_inf, polyUpper_inf, -1 * (zh_inf * zl_inf));
   Add12(t1h_sup, t1l_sup, polyUpper_sup, -1 * (zh_sup * zl_sup));
   Add22(&t2h_inf, &t2l_inf, zh_inf, zl_inf, zhSquareHalfh_inf, zhSquareHalfl_inf);
   Add22(&t2h_sup, &t2l_sup, zh_sup, zl_sup, zhSquareHalfh_sup, zhSquareHalfl_sup);
   Add22(&ph_inf, &pl_inf, t2h_inf, t2l_inf, t1h_inf, t1l_inf);
   Add22(&ph_sup, &pl_sup, t2h_sup, t2l_sup, t1h_sup, t1l_sup);
   /* Reconstruction 

      Read logih and logim in the tables (already done)
     
      Compute log(x) = E * log(2) + log(1+z) - log(ri)
      i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta

      Carry out everything in double double precision

   */
   
   /* 
      We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
      Multiplication of ed (double E) and log2h is thus correct
      The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
      is enough for the accurate phase
      The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
      Nevertheless the storage with trailing zeros implies an overlap of the tabulated
      triple double values. We have to take it into account for the accurate phase 
      basic procedures for addition and multiplication
      The condition on the next Add12 is verified as log2m is smaller than log2h 
      and both are scaled by ed
   */

   Add12(log2edh_inf, log2edl_inf, log2h * ed_inf, log2m * ed_inf);

   /* 
      We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
      Multiplication of ed (double E) and log2h is thus correct
      The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
      is enough for the accurate phase
      The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
      Nevertheless the storage with trailing zeros implies an overlap of the tabulated
      triple double values. We have to take it into account for the accurate phase 
      basic procedures for addition and multiplication
      The condition on the next Add12 is verified as log2m is smaller than log2h 
      and both are scaled by ed
   */

   Add12(log2edh_sup, log2edl_sup, log2h * ed_sup, log2m * ed_sup);


   /* Add logih and logim to ph and pl 

      We must use conditioned Add22 as logih can move over ph
   */

   Add22Cond(&logTabPolyh_inf, &logTabPolyl_inf, logih_inf, logim_inf, ph_inf, pl_inf);

   /* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
  
   Add22Cond(&logh_inf, &logm_inf, log2edh_inf, log2edl_inf, logTabPolyh_inf, logTabPolyl_inf);

   /* Add logih and logim to ph and pl 

      We must use conditioned Add22 as logih can move over ph
   */

   Add22Cond(&logTabPolyh_sup, &logTabPolyl_sup, logih_sup, logim_sup, ph_sup, pl_sup);

   /* Add log2edh + log2edl to logTabPolyh + logTabPolyl */

   Add22Cond(&logh_sup, &logm_sup, log2edh_sup, log2edl_sup, logTabPolyh_sup, logTabPolyl_sup);


   /* Rounding test and eventual return or call to the accurate function */

   roundcst = RDROUNDCST1;

   if(cs_inf) { res_inf=res_simple_inf; }
   if(cs_sup) { res_sup=res_simple_sup; }
   //TEST_AND_COPY_RDRU_LOG(roundable,res_inf,logh_inf,logm_inf,res_sup,logh_sup,logm_sup,roundcst);

//#define TEST_AND_COPY_RDRU_LOG(__cond__, __res_inf__, __yh_inf__, __yl_inf__, __res_sup__, __yh_sup__, __yl_sup__, __eps__)  
                                                                      
  db_number yh_inf, yl_inf, u53_inf, yh_sup, yl_sup, u53_sup;                    
  int yh_inf_neg, yl_inf_neg, yh_sup_neg, yl_sup_neg;                             
  int rd_ok, ru_ok;                                                        
  double save_res_inf=res_inf;                                              
  yh_inf.d = logh_inf;    yl_inf.d = logm_inf;
  yh_inf_neg = (yh_inf.i[HI] & 0x80000000);                                    
  yl_inf_neg = (yl_inf.i[HI] & 0x80000000);                                    
  yh_inf.l = yh_inf.l & 0x7fffffffffffffffLL;  /* compute the absolute value*/ 
  yl_inf.l = yl_inf.l & 0x7fffffffffffffffLL;  /* compute the absolute value*/ 
  u53_inf.l     = (yh_inf.l & ULL(7ff0000000000000)) +  ULL(0010000000000000); 
  yh_sup.d = logh_sup;    yl_sup.d = logm_sup;
  yh_sup_neg = (yh_sup.i[HI] & 0x80000000);                                    
  yl_sup_neg = (yl_sup.i[HI] & 0x80000000);                                    
  yh_sup.l = yh_sup.l & 0x7fffffffffffffffLL;  /* compute the absolute value*/ 
  yl_sup.l = yl_sup.l & 0x7fffffffffffffffLL;  /* compute the absolute value*/ 
  u53_sup.l     = (yh_sup.l & ULL(7ff0000000000000)) +  ULL(0010000000000000); 
  roundable = 0;
  rd_ok=(yl_inf.d > roundcst * u53_inf.d);
  ru_ok=(yl_sup.d > roundcst * u53_sup.d);
     if(yl_inf_neg) {  /* The case yl==0 is filtered by the above test*/    
      /* return next down */                                           
      yh_inf.d = logh_inf;                                                   
      if(yh_inf_neg) yh_inf.l++;  else yh_inf.l--; /* Beware: fails for zero */
      res_inf = yh_inf.d ;
    }
    else {
      res_inf = logh_inf;
    }
    if(!yl_sup_neg) {  /* The case yl==0 is filtered by the above test*/
      /* return next up */
      yh_sup.d = logh_sup;
      if(yh_sup_neg) yh_sup.l--;  else yh_sup.l++; /* Beware: fails for zero */    
      res_sup = yh_sup.d ;                                                 
    }                                                                  
    else {
      res_sup = logh_sup;
    }
  if(save_res_inf==-1.0/0.0) res_inf=-1.0/0.0;
  if(rd_ok && ru_ok){
    ASSIGN_LOW(res,res_inf);
    ASSIGN_UP(res,res_sup);
    return(res);
  }
  else if (rd_ok){
    roundable=1;
  }
  else if (ru_ok){
     roundable=2;
  }


#if DEBUG
   printf("Going for Accurate Phase for x=%1.50e\n",x);
#endif
   if (roundable==1)
   {
     log_td_accurate(&logh_sup, &logm_sup, &logl_sup, E_sup, ed_sup, index_sup, zh_sup, zl_sup, logih_sup, logim_sup); 
     RoundUpwards3(&res_sup, logh_sup, logm_sup, logl_sup);
   }

   if (roundable==2)
   {
     log_td_accurate(&logh_inf, &logm_inf, &logl_inf, E_inf, ed_inf, index_inf, zh_inf, zl_inf, logih_inf, logim_inf); 
     RoundDownwards3(&res_inf, logh_inf, logm_inf, logl_inf);
   }
   if (roundable==0)
   {
     log_td_accurate(&logh_inf, &logm_inf, &logl_inf, E_inf, ed_inf, index_inf, zh_inf, zl_inf, logih_inf, logim_inf); 
     RoundDownwards3(&res_inf, logh_inf, logm_inf, logl_inf);
     log_td_accurate(&logh_sup, &logm_sup, &logl_sup, E_sup, ed_sup, index_sup, zh_sup, zl_sup, logih_sup, logim_sup); 
     RoundUpwards3(&res_sup, logh_sup, logm_sup, logl_sup);
   }
   ASSIGN_LOW(res,res_inf);
   ASSIGN_UP(res,res_sup);
   return res;
 }
Пример #4
0
/*************************************************************
 *************************************************************
 *               ROUNDED  TOWARDS ZERO			     *
 *************************************************************
 *************************************************************/
 double log_rz(double x) { 
   db_number xdb;
   double y, ed, ri, logih, logim, yrih, yril, th, zh, zl;
   double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
   double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
   int E, index;

   if (x == 1.0) return 0.0; /* This the only case in which the image under log of a double is a double. */

   E=0;
   xdb.d=x;

   /* Filter cases */
   if (xdb.i[HI] < 0x00100000){        /* x < 2^(-1022)    */
     if (((xdb.i[HI] & 0x7fffffff)|xdb.i[LO])==0){
       return -1.0/0.0;     
     }                    		   /* log(+/-0) = -Inf */
     if (xdb.i[HI] < 0){ 
       return (x-x)/0;                      /* log(-x) = Nan    */
     }
     /* Subnormal number */
     E = -52; 		
     xdb.d *= two52; 	  /* make x a normal number    */ 
   }
    
   if (xdb.i[HI] >= 0x7ff00000){
     return  x+x;				 /* Inf or Nan       */
   }
   
   
   /* Extract exponent and mantissa 
      Do range reduction,
      yielding to E holding the exponent and
      y the mantissa between sqrt(2)/2 and sqrt(2)
   */
   E += (xdb.i[HI]>>20)-1023;             /* extract the exponent */
   index = (xdb.i[HI] & 0x000fffff);
   xdb.i[HI] =  index | 0x3ff00000;	/* do exponent = 0 */
   index = (index + (1<<(20-L-1))) >> (20-L);
 
   /* reduce  such that sqrt(2)/2 < xdb.d < sqrt(2) */
   if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
     xdb.i[HI] -= 0x00100000; 
     E++;
   }
   y = xdb.d;
   index = index & INDEXMASK;
   /* Cast integer E into double ed for multiplication later */
   ed = (double) E;

   /* 
      Read tables:
      Read one float for ri
      Read the first two doubles for -log(r_i) (out of three)

      Organization of the table:

      one struct entry per index, the struct entry containing 
      r, logih, logim and logil in this order
   */
   

   ri = argredtable[index].ri;
   /* 
      Actually we don't need the logarithm entries now
      Move the following two lines to the eventual reconstruction
      As long as we don't have any if in the following code, we can overlap 
      memory access with calculations 
   */
   logih = argredtable[index].logih;
   logim = argredtable[index].logim;

   /* Do range reduction:

      zh + zl = y * ri - 1.0 correctly

      Correctness is assured by use of Mul12 and Add12
      even if we don't force ri to have its' LSBs set to zero

      Discard zl for higher monome degrees
   */

   Mul12(&yrih, &yril, y, ri);
   th = yrih - 1.0; 
   Add12Cond(zh, zl, th, yril); 

   /* 
      Polynomial evaluation

      Use a 7 degree polynomial
      Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
      Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zl
      using an ad hoc method

   */



#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
   polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
#else
   polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
#endif

   Mul12(&zhSquareh, &zhSquarel, zh, zh);
   polyUpper = polyHorner * (zh * zhSquareh);
   zhSquareHalfh = zhSquareh * -0.5;
   zhSquareHalfl = zhSquarel * -0.5;
   Add12(t1h, t1l, polyUpper, -1 * (zh * zl));
   Add22(&t2h, &t2l, zh, zl, zhSquareHalfh, zhSquareHalfl);
   Add22(&ph, &pl, t2h, t2l, t1h, t1l);

   /* Reconstruction 

      Read logih and logim in the tables (already done)
      
      Compute log(x) = E * log(2) + log(1+z) - log(ri)
      i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta

      Carry out everything in double double precision

   */
   
   /* 
      We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
      Multiplication of ed (double E) and log2h is thus correct
      The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
      is enough for the accurate phase
      The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
      Nevertheless the storage with trailing zeros implies an overlap of the tabulated
      triple double values. We have to take it into account for the accurate phase 
      basic procedures for addition and multiplication
      The condition on the next Add12 is verified as log2m is smaller than log2h 
      and both are scaled by ed
   */

   Add12(log2edh, log2edl, log2h * ed, log2m * ed);

   /* Add logih and logim to ph and pl 

      We must use conditioned Add22 as logih can move over ph
   */

   Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);

   /* Add log2edh + log2edl to logTabPolyh + logTabPolyl */

   Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);

   /* Rounding test and eventual return or call to the accurate function */

   if(E==0)
      roundcst = RDROUNDCST1;
   else
      roundcst = RDROUNDCST2;

   TEST_AND_RETURN_RZ(logh, logm, roundcst);

#if DEBUG
  printf("Going for Accurate Phase for x=%1.50e\n",x);
#endif

    log_td_accurate(&logh, &logm, &logl, E, ed, index, zh, zl, logih, logim); 

    ReturnRoundTowardsZero3(logh, logm, logl);
 } 
Пример #5
0
void log_td_accurate(double *logh, double *logm, double *logl, int E, double ed, int index, double zh, double zl, double logih, double logim) {
  double highPoly, t1h, t1l, t2h, t2l, t3h, t3l, t4h, t4l, t5h, t5l, t6h, t6l, t7h, t7l, t8h, t8l, t9h, t9l, t10h, t10l, t11h, t11l;
  double t12h, t12l, t13h, t13l, t14h, t14l, zSquareh, zSquarem, zSquarel, zCubeh, zCubem, zCubel, higherPolyMultZh, higherPolyMultZm;
  double higherPolyMultZl, zSquareHalfh, zSquareHalfm, zSquareHalfl, polyWithSquareh, polyWithSquarem, polyWithSquarel;
  double polyh, polym, polyl, logil, logyh, logym, logyl, loghover, logmover, loglover, log2edhover, log2edmover, log2edlover;
  double log2edh, log2edm, log2edl;


#if EVAL_PERF
  crlibm_second_step_taken++;
#endif


  /* Accurate phase:

     Argument reduction is already done. 
     We must return logh, logm and logl representing the intermediate result in 118 bits precision.

     We use a 14 degree polynomial, computing the first 3 (the first is 0) coefficients in triple double,
     calculating the next 7 coefficients in double double arithmetics and the last in double.

     We must account for zl starting with the monome of degree 4 (7^3 + 53 - 7 >> 118); so 
     double double calculations won't account for it.

  */

  /* Start of the horner scheme */

#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
  highPoly = FMA(FMA(FMA(FMA(accPolyC14,zh,accPolyC13),zh,accPolyC12),zh,accPolyC11),zh,accPolyC10);
#else
  highPoly = accPolyC10 + zh * (accPolyC11 + zh * (accPolyC12 + zh * (accPolyC13 + zh * accPolyC14)));
#endif
  
  /* We want to write 

     accPolyC3 + zh * (accPoly4 + zh * (accPoly5 + zh * (accPoly6 + zh * (accPoly7 + zh * (accPoly8 + zh * (accPoly9 + zh * highPoly))))));
     (        t14  t13         t12  t11         t10   t9          t8   t7          t6   t5          t4   t3          t2   t1  )

     with all additions and multiplications in double double arithmetics
     but we will produce intermediate results labelled t1h/t1l thru t14h/t14l
  */

  Mul12(&t1h, &t1l, zh, highPoly);
  Add22(&t2h, &t2l, accPolyC9h, accPolyC9l, t1h, t1l);
  Mul22(&t3h, &t3l, zh, zl, t2h, t2l);
  Add22(&t4h, &t4l, accPolyC8h, accPolyC8l, t3h, t3l);
  Mul22(&t5h, &t5l, zh, zl, t4h, t4l);
  Add22(&t6h, &t6l, accPolyC7h, accPolyC7l, t5h, t5l);
  Mul22(&t7h, &t7l, zh, zl, t6h, t6l);
  Add22(&t8h, &t8l, accPolyC6h, accPolyC6l, t7h, t7l);
  Mul22(&t9h, &t9l, zh, zl, t8h, t8l);
  Add22(&t10h, &t10l, accPolyC5h, accPolyC5l, t9h, t9l);
  Mul22(&t11h, &t11l, zh, zl, t10h, t10l);
  Add22(&t12h, &t12l, accPolyC4h, accPolyC4l, t11h, t11l);
  Mul22(&t13h, &t13l, zh, zl, t12h, t12l);
  Add22(&t14h, &t14l, accPolyC3h, accPolyC3l, t13h, t13l);

  /* We must now prepare (zh + zl)^2 and (zh + zl)^3 as triple doubles */

  Mul23(&zSquareh, &zSquarem, &zSquarel, zh, zl, zh, zl); 
  Mul233(&zCubeh, &zCubem, &zCubel, zh, zl, zSquareh, zSquarem, zSquarel); 
  
  /* We can now multiplicate the middle and higher polynomial by z^3 */

  Mul233(&higherPolyMultZh, &higherPolyMultZm, &higherPolyMultZl, t14h, t14l, zCubeh, zCubem, zCubel);
  
  /* Multiply now z^2 by -1/2 (exact op) and add to middle and higher polynomial */
  
  zSquareHalfh = zSquareh * -0.5;
  zSquareHalfm = zSquarem * -0.5;
  zSquareHalfl = zSquarel * -0.5;

  Add33(&polyWithSquareh, &polyWithSquarem, &polyWithSquarel, 
	zSquareHalfh, zSquareHalfm, zSquareHalfl, 
	higherPolyMultZh, higherPolyMultZm, higherPolyMultZl);

  /* Add now zh and zl to obtain the polynomial evaluation result */

  Add233(&polyh, &polym, &polyl, zh, zl, polyWithSquareh, polyWithSquarem, polyWithSquarel);

  /* Reconstruct now log(y) = log(1 + z) - log(ri) by adding logih, logim, logil
     logil has not been read to the time, do this first 
  */

  logil =  argredtable[index].logil;

  Add33(&logyh, &logym, &logyl, logih, logim, logil, polyh, polym, polyl);

  /* Multiply log2 with E, i.e. log2h, log2m, log2l by ed 
     ed is always less than 2^(12) and log2h and log2m are stored with at least 12 trailing zeros 
     So multiplying naively is correct (up to 134 bits at least)

     The final result is thus obtained by adding log2 * E to log(y)
  */

  log2edhover = log2h * ed;
  log2edmover = log2m * ed;
  log2edlover = log2l * ed;

  /* It may be necessary to renormalize the tabulated value (multiplied by ed) before adding
     the to the log(y)-result 

     If needed, uncomment the following Renormalize3-Statement and comment out the copies 
     following it.
  */

  /* Renormalize3(&log2edh, &log2edm, &log2edl, log2edhover, log2edmover, log2edlover); */

  log2edh = log2edhover;
  log2edm = log2edmover;
  log2edl = log2edlover;

  Add33(&loghover, &logmover, &loglover, log2edh, log2edm, log2edl, logyh, logym, logyl);

  /* Since we can not guarantee in each addition and multiplication procedure that 
     the results are not overlapping, we must renormalize the result before handing
     it over to the final rounding
  */

  Renormalize3(logh,logm,logl,loghover,logmover,loglover);

}