Пример #1
0
void WSortView::FillData(unsigned int schema, size_t arraysize)
{
    if (arraysize == 0) arraysize = 1;

    ResetArray(arraysize);

    if (schema == 0) // Shuffle of [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
            m_array[i] = ArrayItem(i+1);

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else if (schema == 1) // Ascending [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
            m_array[i] = ArrayItem(i+1);
    }
    else if (schema == 2) // Descending [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
            m_array[i] = ArrayItem(m_array.size() - i);
    }
    else if (schema == 3) // Cubic skew of [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
        {
            // normalize to [-1,+1]
            double x = (2.0 * (double)i / m_array.size()) - 1.0;
            // calculate x^3
            double v = x * x * x;
            // normalize to array size
            double w = (v + 1.0) / 2.0 * arraysize + 1;
            // decrease resolution for more equal values
            w /= 3.0;
            m_array[i] = ArrayItem(w + 1);
        }

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else if (schema == 4) // Quintic skew of [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
        {
            // normalize to [-1,+1]
            double x = (2.0 * (double)i / m_array.size()) - 1.0;
            // calculate x^5
            double v = x * x * x * x * x;
            // normalize to array size
            double w = (v + 1.0) / 2.0 * arraysize + 1;
            // decrease resolution for more equal values
            w /= 3.0;
            m_array[i] = ArrayItem(w + 1);
        }

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else if (schema == 5) // shuffled n-2 equal values in [1,n]
    {
        m_array[0] = ArrayItem(1);
        for (size_t i = 1; i < m_array.size()-1; ++i)
        {
            m_array[i] = ArrayItem( arraysize / 2 + 1 );
        }
        m_array[m_array.size()-1] = ArrayItem(arraysize);

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else if (schema == 6) // almost sorted values in [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
            m_array[i] = ArrayItem(i+1);
        auto arraysize = m_array.size();
        std::uniform_int_distribution<std::size_t> dist{0, arraysize};
        std::random_device gen;
        std::size_t permutations = arraysize / 30; // magic numbers ftw!
        for(std::size_t i=0; i < permutations; ++i)
            std::swap(m_array[dist(gen)], m_array[dist(gen)]);
    }
    else // fallback
    {
        return FillData(0, arraysize);
    }

    FinishFill();
}
Пример #2
0
void WSortView::ResetArray(size_t size)
{
    m_array.resize(size, ArrayItem(0));
    m_mark.resize(size);
}
Пример #3
0
void SortArray::FillData(unsigned int schema, size_t arraysize)
{
    if (arraysize == 0) arraysize = 1;

    ResetArray(arraysize);

    if (schema == 0) // Shuffle of [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
            m_array[i] = ArrayItem(i+1);

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else if (schema == 1) // Ascending [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
            m_array[i] = ArrayItem(i+1);
    }
    else if (schema == 2) // Descending [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
            m_array[i] = ArrayItem(m_array.size() - i);
    }
    else if (schema == 3) // Cubic skew of [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
        {
            // normalize to [-1,+1]
            double x = (2.0 * (double)i / m_array.size()) - 1.0;
            // calculate x^3
            double v = x * x * x;
            // normalize to array size
            double w = (v + 1.0) / 2.0 * arraysize + 1;
            // decrease resolution for more equal values
            w /= 3.0;
            m_array[i] = ArrayItem(w + 1);
        }

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else if (schema == 4) // Quintic skew of [1,n]
    {
        for (size_t i = 0; i < m_array.size(); ++i)
        {
            // normalize to [-1,+1]
            double x = (2.0 * (double)i / m_array.size()) - 1.0;
            // calculate x^5
            double v = x * x * x * x * x;
            // normalize to array size
            double w = (v + 1.0) / 2.0 * arraysize + 1;
            // decrease resolution for more equal values
            w /= 3.0;
            m_array[i] = ArrayItem(w + 1);
        }

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else if (schema == 5) // shuffled n-2 equal values in [1,n]
    {
        m_array[0] = ArrayItem(1);
        for (size_t i = 1; i < m_array.size()-1; ++i)
        {
            m_array[i] = ArrayItem( arraysize / 2 + 1 );
        }
        m_array[m_array.size()-1] = ArrayItem(arraysize);

        std::random_shuffle(m_array.begin(), m_array.end());
    }
    else // fallback
    {
        return FillData(0, arraysize);
    }

    FinishFill();
}