Пример #1
0
void L1DistanceMatrix(direction_t dirA, direction_t dirB, T alpha,
    const El::ElementalMatrix<T> &APre, const El::ElementalMatrix<T> &BPre,
    T beta, El::ElementalMatrix<T> &CPre) {

    if (dirA == base::COLUMNS && dirB == base::COLUMNS) {
        // Use a SUMMA-like routine, with C as stationary
        // Basically an adaptation of Elementals TN case for stationary C.

        const El::Int m = CPre.Height();
        const El::Int n = CPre.Width();
        const El::Int sumDim = BPre.Height();
        const El::Int bsize = El::Blocksize();
        const El::Grid& g = APre.Grid();

        El::DistMatrixReadProxy<T, T, El::MC, El::MR> AProx(APre);
        El::DistMatrixReadProxy<T, T, El::MC, El::MR> BProx(BPre);
        El::DistMatrixReadWriteProxy<T, T, El::MC, El::MR> CProx(CPre);
        auto& A = AProx.GetLocked();
        auto& B = BProx.GetLocked();
        auto& C = CProx.Get();

        // Temporary distributions
        El::DistMatrix<T, El::STAR, El::MC> A1_STAR_MC(g);
        El::DistMatrix<T, El::STAR, El::MR> B1_STAR_MR(g);

        A1_STAR_MC.AlignWith(C);
        B1_STAR_MR.AlignWith(C);

        El::Scale(beta, C);
        for(El::Int k = 0; k < sumDim; k += bsize) {
            const El::Int nb = std::min(bsize,sumDim-k);
            auto A1 = A(El::IR(k,k+nb), El::IR(0,m));
            auto B1 = B(El::IR(k,k+nb), El::IR(0,n));

            A1_STAR_MC = A1;
            B1_STAR_MR = B1;
            L1DistanceMatrix(base::COLUMNS, base::COLUMNS, alpha,
                A1_STAR_MC.LockedMatrix(), B1_STAR_MR.LockedMatrix(),
                T(1.0), C.Matrix());
        }
    }

    // TODO the rest of the cases.
}
Пример #2
0
inline void
internal::GemmTNC
( Orientation orientationOfA,
  T alpha, const DistMatrix<T,MC,MR>& A,
           const DistMatrix<T,MC,MR>& B,
  T beta,        DistMatrix<T,MC,MR>& C )
{
#ifndef RELEASE
    PushCallStack("internal::GemmTNC");
    if( A.Grid() != B.Grid() || B.Grid() != C.Grid() )
        throw std::logic_error
        ("{A,B,C} must be distributed over the same grid");
    if( orientationOfA == NORMAL )
        throw std::logic_error("GemmTNC assumes A is (Conjugate)Transposed");
    if( A.Width()  != C.Height() ||
        B.Width()  != C.Width()  ||
        A.Height() != B.Height()   )
    {
        std::ostringstream msg;
        msg << "Nonconformal GemmTNC: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B ~ " << B.Height() << " x " << B.Width() << "\n"
            << "  C ~ " << C.Height() << " x " << C.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<T,MC,MR> AT(g),  A0(g),
                        AB(g),  A1(g),
                                A2(g);

    DistMatrix<T,MC,MR> BT(g),  B0(g),
                        BB(g),  B1(g),
                                B2(g);

    // Temporary distributions
    DistMatrix<T,STAR,MC> A1_STAR_MC(g);
    DistMatrix<T,STAR,MR> B1_STAR_MR(g);

    // Start the algorithm
    Scal( beta, C );
    LockedPartitionDown
    ( A, AT,
         AB, 0 );
    LockedPartitionDown
    ( B, BT,
         BB, 0 );
    while( AB.Height() > 0 )
    {
        LockedRepartitionDown
        ( AT,  A0,
         /**/ /**/
               A1,
          AB,  A2 );

        LockedRepartitionDown
        ( BT,  B0,
         /**/ /**/
               B1,
          BB,  B2 );

        A1_STAR_MC.AlignWith( C );
        B1_STAR_MR.AlignWith( C );
        //--------------------------------------------------------------------//
        A1_STAR_MC = A1; // A1[*,MC] <- A1[MC,MR]
        B1_STAR_MR = B1; // B1[*,MR] <- B1[MC,MR]

        // C[MC,MR] += alpha (A1[*,MC])^T B1[*,MR]
        //           = alpha (A1^T)[MC,*] B1[*,MR]
        internal::LocalGemm
        ( orientationOfA, NORMAL, alpha, A1_STAR_MC, B1_STAR_MR, (T)1, C );
        //--------------------------------------------------------------------//
        A1_STAR_MC.FreeAlignments();
        B1_STAR_MR.FreeAlignments();

        SlideLockedPartitionDown
        ( AT,  A0,
               A1,
         /**/ /**/
          AB,  A2 );

        SlideLockedPartitionDown
        ( BT,  B0,
               B1,
         /**/ /**/
          BB,  B2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
inline void
RowEchelon( DistMatrix<F>& A, DistMatrix<F>& B )
{
#ifndef RELEASE
    CallStackEntry entry("RowEchelon");
    if( A.Grid() != B.Grid() )
        LogicError("{A,B} must be distributed over the same grid");
    if( A.Height() != B.Height() )
        LogicError("A and B must be the same height");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<F>
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),  APan(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),
                         A20(g), A21(g), A22(g);

    DistMatrix<F>
        BT(g),  B0(g),
        BB(g),  B1(g),
                B2(g);

    // Temporary distributions
    DistMatrix<F,STAR,STAR> A11_STAR_STAR(g);
    DistMatrix<F,STAR,VR  > A12_STAR_VR(g);
    DistMatrix<F,STAR,MR  > A12_STAR_MR(g);
    DistMatrix<F,MC,  STAR> A21_MC_STAR(g);
    DistMatrix<F,STAR,VR  > B1_STAR_VR(g);
    DistMatrix<F,STAR,MR  > B1_STAR_MR(g);
    DistMatrix<Int,STAR,STAR> p1_STAR_STAR(g);

    // In case B's columns are not aligned with A's
    const bool BAligned = ( B.ColShift() == A.ColShift() );
    DistMatrix<F,MC,STAR> A21_MC_STAR_B(g);

    // Pivot composition
    std::vector<Int> image, preimage;

    // Start the algorithm
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( B, BT,
         BB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        RepartitionDown
        ( BT,  B0,
         /**/ /**/
               B1,
          BB,  B2 );

        View2x1
        ( APan, A12,
                A22 );

        A12_STAR_VR.AlignWith( A22 );
        A12_STAR_MR.AlignWith( A22 );
        A21_MC_STAR.AlignWith( A22 );
        B1_STAR_VR.AlignWith( B1 );
        B1_STAR_MR.AlignWith( B1 );
        if( ! BAligned )
            A21_MC_STAR_B.AlignWith( B2 );
        p1_STAR_STAR.ResizeTo( A11.Height(), 1 );
        //--------------------------------------------------------------------//
        A11_STAR_STAR = A11;
        A21_MC_STAR = A21;
        lu::Panel( A11_STAR_STAR, A21_MC_STAR, p1_STAR_STAR, A00.Height() );
        ComposePivots( p1_STAR_STAR, A00.Height(), image, preimage );
        ApplyRowPivots( APan, image, preimage );
        ApplyRowPivots( BB,   image, preimage );

        A12_STAR_VR = A12;
        B1_STAR_VR = B1;
        LocalTrsm
        ( LEFT, LOWER, NORMAL, UNIT, F(1), A11_STAR_STAR, A12_STAR_VR );
        LocalTrsm( LEFT, LOWER, NORMAL, UNIT, F(1), A11_STAR_STAR, B1_STAR_VR );

        A12_STAR_MR = A12_STAR_VR;
        B1_STAR_MR = B1_STAR_VR;
        LocalGemm( NORMAL, NORMAL, F(-1), A21_MC_STAR, A12_STAR_MR, F(1), A22 );
        if( BAligned )
        {
            LocalGemm
            ( NORMAL, NORMAL, F(-1), A21_MC_STAR, B1_STAR_MR, F(1), B2 );
        }
        else
        {
            A21_MC_STAR_B = A21_MC_STAR;
            LocalGemm
            ( NORMAL, NORMAL, F(-1), A21_MC_STAR_B, B1_STAR_MR, F(1), B2 );
        }

        A11 = A11_STAR_STAR;
        A12 = A12_STAR_MR;
        B1 = B1_STAR_MR;
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );

        SlidePartitionDown
        ( BT,  B0,
               B1,
         /**/ /**/
          BB,  B2 );
    }
}