Пример #1
0
int test_rshift1(BIO *bp)
	{
	BIGNUM *a,*b,*c;
	int i;

	a=BN_new();
	b=BN_new();
	c=BN_new();

	BN_bntest_rand(a,200,0,0); /**/
	a->neg=rand_neg();
	for (i=0; i<num0; i++)
		{
		BN_rshift1(b,a);
		if (bp != NULL)
			{
			if (!results)
				{
				BN_print(bp,a);
				BIO_puts(bp," / 2");
				BIO_puts(bp," - ");
				}
			BN_print(bp,b);
			BIO_puts(bp,"\n");
			}
		BN_sub(c,a,b);
		BN_sub(c,c,b);
		if(!BN_is_zero(c) && !BN_abs_is_word(c, 1))
		    {
		    fprintf(stderr,"Right shift one test failed!\n");
		    return 0;
		    }
		BN_copy(a,b);
		}
	BN_free(a);
	BN_free(b);
	BN_free(c);
	return(1);
	}
Пример #2
0
int BN_is_word(const BIGNUM *bn, BN_ULONG w) {
  return BN_abs_is_word(bn, w) && (w == 0 || bn->neg == 0);
}
Пример #3
0
int BN_is_one(const BIGNUM *bn) {
  return bn->neg == 0 && BN_abs_is_word(bn, 1);
}
Пример #4
0
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) 
/* Returns 'ret' such that
 *      ret^2 == a (mod p),
 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
 * in Algebraic Computational Number Theory", algorithm 1.5.1).
 * 'p' must be prime!
 */
	{
	BIGNUM *ret = in;
	int err = 1;
	int r;
	BIGNUM *A, *b, *q, *t, *x, *y;
	int e, i, j;
	
	if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
		{
		if (BN_abs_is_word(p, 2))
			{
			if (ret == NULL)
				ret = BN_new();
			if (ret == NULL)
				goto end;
			if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
				{
				if (ret != in)
					BN_free(ret);
				return NULL;
				}
			bn_check_top(ret);
			return ret;
			}

		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		return(NULL);
		}

	if (BN_is_zero(a) || BN_is_one(a))
		{
		if (ret == NULL)
			ret = BN_new();
		if (ret == NULL)
			goto end;
		if (!BN_set_word(ret, BN_is_one(a)))
			{
			if (ret != in)
				BN_free(ret);
			return NULL;
			}
		bn_check_top(ret);
		return ret;
		}

	BN_CTX_start(ctx);
	A = BN_CTX_get(ctx);
	b = BN_CTX_get(ctx);
	q = BN_CTX_get(ctx);
	t = BN_CTX_get(ctx);
	x = BN_CTX_get(ctx);
	y = BN_CTX_get(ctx);
	if (y == NULL) goto end;
	
	if (ret == NULL)
		ret = BN_new();
	if (ret == NULL) goto end;

	/* A = a mod p */
	if (!BN_nnmod(A, a, p, ctx)) goto end;

	/* now write  |p| - 1  as  2^e*q  where  q  is odd */
	e = 1;
	while (!BN_is_bit_set(p, e))
		e++;
	/* we'll set  q  later (if needed) */

	if (e == 1)
		{
		/* The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
		 * modulo  (|p|-1)/2,  and square roots can be computed
		 * directly by modular exponentiation.
		 * We have
		 *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
		 * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
		 */
		if (!BN_rshift(q, p, 2)) goto end;
		q->neg = 0;
		if (!BN_add_word(q, 1)) goto end;
		if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
		err = 0;
		goto vrfy;
		}
	
	if (e == 2)
		{
		/* |p| == 5  (mod 8)
		 *
		 * In this case  2  is always a non-square since
		 * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
		 * So if  a  really is a square, then  2*a  is a non-square.
		 * Thus for
		 *      b := (2*a)^((|p|-5)/8),
		 *      i := (2*a)*b^2
		 * we have
		 *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
		 *         = (2*a)^((p-1)/2)
		 *         = -1;
		 * so if we set
		 *      x := a*b*(i-1),
		 * then
		 *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
		 *         = a^2 * b^2 * (-2*i)
		 *         = a*(-i)*(2*a*b^2)
		 *         = a*(-i)*i
		 *         = a.
		 *
		 * (This is due to A.O.L. Atkin, 
		 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
		 * November 1992.)
		 */

		/* t := 2*a */
		if (!BN_mod_lshift1_quick(t, A, p)) goto end;

		/* b := (2*a)^((|p|-5)/8) */
		if (!BN_rshift(q, p, 3)) goto end;
		q->neg = 0;
		if (!BN_mod_exp(b, t, q, p, ctx)) goto end;

		/* y := b^2 */
		if (!BN_mod_sqr(y, b, p, ctx)) goto end;

		/* t := (2*a)*b^2 - 1*/
		if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
		if (!BN_sub_word(t, 1)) goto end;

		/* x = a*b*t */
		if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;

		if (!BN_copy(ret, x)) goto end;
		err = 0;
		goto vrfy;
		}
	
	/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
	 * First, find some  y  that is not a square. */
	if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
	q->neg = 0;
	i = 2;
	do
		{
		/* For efficiency, try small numbers first;
		 * if this fails, try random numbers.
		 */
		if (i < 22)
			{
			if (!BN_set_word(y, i)) goto end;
			}
		else
			{
			if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
			if (BN_ucmp(y, p) >= 0)
				{
				if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
				}
			/* now 0 <= y < |p| */
			if (BN_is_zero(y))
				if (!BN_set_word(y, i)) goto end;
			}
		
		r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
		if (r < -1) goto end;
		if (r == 0)
			{
			/* m divides p */
			BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
			goto end;
			}
		}
	while (r == 1 && ++i < 82);
	
	if (r != -1)
		{
		/* Many rounds and still no non-square -- this is more likely
		 * a bug than just bad luck.
		 * Even if  p  is not prime, we should have found some  y
		 * such that r == -1.
		 */
		BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
		goto end;
		}

	/* Here's our actual 'q': */
	if (!BN_rshift(q, q, e)) goto end;

	/* Now that we have some non-square, we can find an element
	 * of order  2^e  by computing its q'th power. */
	if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
	if (BN_is_one(y))
		{
		BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
		goto end;
		}

	/* Now we know that (if  p  is indeed prime) there is an integer
	 * k,  0 <= k < 2^e,  such that
	 *
	 *      a^q * y^k == 1   (mod p).
	 *
	 * As  a^q  is a square and  y  is not,  k  must be even.
	 * q+1  is even, too, so there is an element
	 *
	 *     X := a^((q+1)/2) * y^(k/2),
	 *
	 * and it satisfies
	 *
	 *     X^2 = a^q * a     * y^k
	 *         = a,
	 *
	 * so it is the square root that we are looking for.
	 */
	
	/* t := (q-1)/2  (note that  q  is odd) */
	if (!BN_rshift1(t, q)) goto end;
	
	/* x := a^((q-1)/2) */
	if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
		{
		if (!BN_nnmod(t, A, p, ctx)) goto end;
		if (BN_is_zero(t))
			{
			/* special case: a == 0  (mod p) */
			BN_zero(ret);
			err = 0;
			goto end;
			}
		else
			if (!BN_one(x)) goto end;
		}
	else
		{
		if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
		if (BN_is_zero(x))
			{
			/* special case: a == 0  (mod p) */
			BN_zero(ret);
			err = 0;
			goto end;
			}
		}

	/* b := a*x^2  (= a^q) */
	if (!BN_mod_sqr(b, x, p, ctx)) goto end;
	if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
	
	/* x := a*x    (= a^((q+1)/2)) */
	if (!BN_mod_mul(x, x, A, p, ctx)) goto end;

	while (1)
		{
		/* Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
		 * where  E  refers to the original value of  e,  which we
		 * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
		 *
		 * We have  a*b = x^2,
		 *    y^2^(e-1) = -1,
		 *    b^2^(e-1) = 1.
		 */

		if (BN_is_one(b))
			{
			if (!BN_copy(ret, x)) goto end;
			err = 0;
			goto vrfy;
			}


		/* find smallest  i  such that  b^(2^i) = 1 */
		i = 1;
		if (!BN_mod_sqr(t, b, p, ctx)) goto end;
		while (!BN_is_one(t))
			{
			i++;
			if (i == e)
				{
				BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
				goto end;
				}
			if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
			}
		

		/* t := y^2^(e - i - 1) */
		if (!BN_copy(t, y)) goto end;
		for (j = e - i - 1; j > 0; j--)
			{
			if (!BN_mod_sqr(t, t, p, ctx)) goto end;
			}
		if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
		if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
		if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
		e = i;
		}

 vrfy:
	if (!err)
		{
		/* verify the result -- the input might have been not a square
		 * (test added in 0.9.8) */
		
		if (!BN_mod_sqr(x, ret, p, ctx))
			err = 1;
		
		if (!err && 0 != BN_cmp(x, A))
			{
			BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
			err = 1;
			}
		}

 end:
	if (err)
		{
		if (ret != NULL && ret != in)
			{
			BN_clear_free(ret);
			}
		ret = NULL;
		}
	BN_CTX_end(ctx);
	bn_check_top(ret);
	return ret;
	}
Пример #5
0
/* Returns -2 for errors because both -1 and 0 are valid results. */
int BN_kronecker (const BIGNUM * a, const BIGNUM * b, BN_CTX * ctx)
{
    int i;

    int ret = -2;                /* avoid 'uninitialized' warning */

    int err = 0;

    BIGNUM *A, *B, *tmp;

    /* In 'tab', only odd-indexed entries are relevant:
     * For any odd BIGNUM n,
     *     tab[BN_lsw(n) & 7]
     * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
     * Note that the sign of n does not matter.
     */
    static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 };

    bn_check_top (a);
    bn_check_top (b);

    BN_CTX_start (ctx);
    A = BN_CTX_get (ctx);
    B = BN_CTX_get (ctx);
    if (B == NULL)
        goto end;

    err = !BN_copy (A, a);
    if (err)
        goto end;
    err = !BN_copy (B, b);
    if (err)
        goto end;

    /*
     * Kronecker symbol, imlemented according to Henri Cohen,
     * "A Course in Computational Algebraic Number Theory"
     * (algorithm 1.4.10).
     */

    /* Cohen's step 1: */

    if (BN_is_zero (B))
    {
        ret = BN_abs_is_word (A, 1);
        goto end;
    }

    /* Cohen's step 2: */

    if (!BN_is_odd (A) && !BN_is_odd (B))
    {
        ret = 0;
        goto end;
    }

    /* now  B  is non-zero */
    i = 0;
    while (!BN_is_bit_set (B, i))
        i++;
    err = !BN_rshift (B, B, i);
    if (err)
        goto end;
    if (i & 1)
    {
        /* i is odd */
        /* (thus  B  was even, thus  A  must be odd!)  */

        /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
        ret = tab[BN_lsw (A) & 7];
    }
    else
    {
        /* i is even */
        ret = 1;
    }

    if (B->neg)
    {
        B->neg = 0;
        if (A->neg)
            ret = -ret;
    }

    /* now  B  is positive and odd, so what remains to be done is
     * to compute the Jacobi symbol  (A/B)  and multiply it by 'ret' */

    while (1)
    {
        /* Cohen's step 3: */

        /*  B  is positive and odd */

        if (BN_is_zero (A))
        {
            ret = BN_is_one (B) ? ret : 0;
            goto end;
        }

        /* now  A  is non-zero */
        i = 0;
        while (!BN_is_bit_set (A, i))
            i++;
        err = !BN_rshift (A, A, i);
        if (err)
            goto end;
        if (i & 1)
        {
            /* i is odd */
            /* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
            ret = ret * tab[BN_lsw (B) & 7];
        }

        /* Cohen's step 4: */
        /* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
        if ((A->neg ? ~BN_lsw (A) : BN_lsw (A)) & BN_lsw (B) & 2)
            ret = -ret;

        /* (A, B) := (B mod |A|, |A|) */
        err = !BN_nnmod (B, B, A, ctx);
        if (err)
            goto end;
        tmp = A;
        A = B;
        B = tmp;
        tmp->neg = 0;
    }
  end:
    BN_CTX_end (ctx);
    if (err)
        return -2;
    else
        return ret;
}
Пример #6
0
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
  // Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm
  // (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory",
  // algorithm 1.5.1). |p| is assumed to be a prime.

  BIGNUM *ret = in;
  int err = 1;
  int r;
  BIGNUM *A, *b, *q, *t, *x, *y;
  int e, i, j;

  if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
    if (BN_abs_is_word(p, 2)) {
      if (ret == NULL) {
        ret = BN_new();
      }
      if (ret == NULL) {
        goto end;
      }
      if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
        if (ret != in) {
          BN_free(ret);
        }
        return NULL;
      }
      return ret;
    }

    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    return (NULL);
  }

  if (BN_is_zero(a) || BN_is_one(a)) {
    if (ret == NULL) {
      ret = BN_new();
    }
    if (ret == NULL) {
      goto end;
    }
    if (!BN_set_word(ret, BN_is_one(a))) {
      if (ret != in) {
        BN_free(ret);
      }
      return NULL;
    }
    return ret;
  }

  BN_CTX_start(ctx);
  A = BN_CTX_get(ctx);
  b = BN_CTX_get(ctx);
  q = BN_CTX_get(ctx);
  t = BN_CTX_get(ctx);
  x = BN_CTX_get(ctx);
  y = BN_CTX_get(ctx);
  if (y == NULL) {
    goto end;
  }

  if (ret == NULL) {
    ret = BN_new();
  }
  if (ret == NULL) {
    goto end;
  }

  // A = a mod p
  if (!BN_nnmod(A, a, p, ctx)) {
    goto end;
  }

  // now write  |p| - 1  as  2^e*q  where  q  is odd
  e = 1;
  while (!BN_is_bit_set(p, e)) {
    e++;
  }
  // we'll set  q  later (if needed)

  if (e == 1) {
    // The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
    // modulo  (|p|-1)/2,  and square roots can be computed
    // directly by modular exponentiation.
    // We have
    //     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
    // so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
    if (!BN_rshift(q, p, 2)) {
      goto end;
    }
    q->neg = 0;
    if (!BN_add_word(q, 1) ||
        !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) {
      goto end;
    }
    err = 0;
    goto vrfy;
  }

  if (e == 2) {
    // |p| == 5  (mod 8)
    //
    // In this case  2  is always a non-square since
    // Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
    // So if  a  really is a square, then  2*a  is a non-square.
    // Thus for
    //      b := (2*a)^((|p|-5)/8),
    //      i := (2*a)*b^2
    // we have
    //     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
    //         = (2*a)^((p-1)/2)
    //         = -1;
    // so if we set
    //      x := a*b*(i-1),
    // then
    //     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
    //         = a^2 * b^2 * (-2*i)
    //         = a*(-i)*(2*a*b^2)
    //         = a*(-i)*i
    //         = a.
    //
    // (This is due to A.O.L. Atkin,
    // <URL:
    //http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
    // November 1992.)

    // t := 2*a
    if (!BN_mod_lshift1_quick(t, A, p)) {
      goto end;
    }

    // b := (2*a)^((|p|-5)/8)
    if (!BN_rshift(q, p, 3)) {
      goto end;
    }
    q->neg = 0;
    if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) {
      goto end;
    }

    // y := b^2
    if (!BN_mod_sqr(y, b, p, ctx)) {
      goto end;
    }

    // t := (2*a)*b^2 - 1
    if (!BN_mod_mul(t, t, y, p, ctx) ||
        !BN_sub_word(t, 1)) {
      goto end;
    }

    // x = a*b*t
    if (!BN_mod_mul(x, A, b, p, ctx) ||
        !BN_mod_mul(x, x, t, p, ctx)) {
      goto end;
    }

    if (!BN_copy(ret, x)) {
      goto end;
    }
    err = 0;
    goto vrfy;
  }

  // e > 2, so we really have to use the Tonelli/Shanks algorithm.
  // First, find some  y  that is not a square.
  if (!BN_copy(q, p)) {
    goto end;  // use 'q' as temp
  }
  q->neg = 0;
  i = 2;
  do {
    // For efficiency, try small numbers first;
    // if this fails, try random numbers.
    if (i < 22) {
      if (!BN_set_word(y, i)) {
        goto end;
      }
    } else {
      if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) {
        goto end;
      }
      if (BN_ucmp(y, p) >= 0) {
        if (!(p->neg ? BN_add : BN_sub)(y, y, p)) {
          goto end;
        }
      }
      // now 0 <= y < |p|
      if (BN_is_zero(y)) {
        if (!BN_set_word(y, i)) {
          goto end;
        }
      }
    }

    r = bn_jacobi(y, q, ctx);  // here 'q' is |p|
    if (r < -1) {
      goto end;
    }
    if (r == 0) {
      // m divides p
      OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
      goto end;
    }
  } while (r == 1 && ++i < 82);

  if (r != -1) {
    // Many rounds and still no non-square -- this is more likely
    // a bug than just bad luck.
    // Even if  p  is not prime, we should have found some  y
    // such that r == -1.
    OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS);
    goto end;
  }

  // Here's our actual 'q':
  if (!BN_rshift(q, q, e)) {
    goto end;
  }

  // Now that we have some non-square, we can find an element
  // of order  2^e  by computing its q'th power.
  if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) {
    goto end;
  }
  if (BN_is_one(y)) {
    OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME);
    goto end;
  }

  // Now we know that (if  p  is indeed prime) there is an integer
  // k,  0 <= k < 2^e,  such that
  //
  //      a^q * y^k == 1   (mod p).
  //
  // As  a^q  is a square and  y  is not,  k  must be even.
  // q+1  is even, too, so there is an element
  //
  //     X := a^((q+1)/2) * y^(k/2),
  //
  // and it satisfies
  //
  //     X^2 = a^q * a     * y^k
  //         = a,
  //
  // so it is the square root that we are looking for.

  // t := (q-1)/2  (note that  q  is odd)
  if (!BN_rshift1(t, q)) {
    goto end;
  }

  // x := a^((q-1)/2)
  if (BN_is_zero(t))  // special case: p = 2^e + 1
  {
    if (!BN_nnmod(t, A, p, ctx)) {
      goto end;
    }
    if (BN_is_zero(t)) {
      // special case: a == 0  (mod p)
      BN_zero(ret);
      err = 0;
      goto end;
    } else if (!BN_one(x)) {
      goto end;
    }
  } else {
    if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) {
      goto end;
    }
    if (BN_is_zero(x)) {
      // special case: a == 0  (mod p)
      BN_zero(ret);
      err = 0;
      goto end;
    }
  }

  // b := a*x^2  (= a^q)
  if (!BN_mod_sqr(b, x, p, ctx) ||
      !BN_mod_mul(b, b, A, p, ctx)) {
    goto end;
  }

  // x := a*x    (= a^((q+1)/2))
  if (!BN_mod_mul(x, x, A, p, ctx)) {
    goto end;
  }

  while (1) {
    // Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
    // where  E  refers to the original value of  e,  which we
    // don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
    //
    // We have  a*b = x^2,
    //    y^2^(e-1) = -1,
    //    b^2^(e-1) = 1.

    if (BN_is_one(b)) {
      if (!BN_copy(ret, x)) {
        goto end;
      }
      err = 0;
      goto vrfy;
    }


    // find smallest  i  such that  b^(2^i) = 1
    i = 1;
    if (!BN_mod_sqr(t, b, p, ctx)) {
      goto end;
    }
    while (!BN_is_one(t)) {
      i++;
      if (i == e) {
        OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
        goto end;
      }
      if (!BN_mod_mul(t, t, t, p, ctx)) {
        goto end;
      }
    }


    // t := y^2^(e - i - 1)
    if (!BN_copy(t, y)) {
      goto end;
    }
    for (j = e - i - 1; j > 0; j--) {
      if (!BN_mod_sqr(t, t, p, ctx)) {
        goto end;
      }
    }
    if (!BN_mod_mul(y, t, t, p, ctx) ||
        !BN_mod_mul(x, x, t, p, ctx) ||
        !BN_mod_mul(b, b, y, p, ctx)) {
      goto end;
    }
    e = i;
  }

vrfy:
  if (!err) {
    // verify the result -- the input might have been not a square
    // (test added in 0.9.8)

    if (!BN_mod_sqr(x, ret, p, ctx)) {
      err = 1;
    }

    if (!err && 0 != BN_cmp(x, A)) {
      OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE);
      err = 1;
    }
  }

end:
  if (err) {
    if (ret != in) {
      BN_clear_free(ret);
    }
    ret = NULL;
  }
  BN_CTX_end(ctx);
  return ret;
}