Пример #1
0
/*
 *			  A D D _ T O _ P R I O Q ( )
 *
 */
void add_to_prioq (void *v, int depth)
{
    struct vertex	*vp = (struct vertex *) v;

    BU_CKMAG(vp, VERTEX_MAGIC, "vertex");
    BU_CKMAG(vp -> v_bridge, BRIDGE_MAGIC, "bridge");

    bu_rb_insert(prioq, (void *) (vp -> v_bridge));
}
/*
 * Perform one rewrite step on the root of a Boolean tree
 *
 * This function has two parameters: a Boolean-tree node and a rule
 * number.  Do_bool_tree_rewrite() applies the specified rewrite rule
 * to the subtree rooted at the specified node.
 */
static void do_bool_tree_rewrite (struct bool_tree_node *rp, int rule_nm)
{
    struct bool_tree_node *left;		/* Left child of the root */
    struct bool_tree_node *right;		/* Right "   "   "   "   */
    struct bool_tree_node *a, *b, *c;	/* Subtrees unchanged */

    BU_CKMAG(rp, BOOL_TREE_NODE_MAGIC, "Boolean tree node");

    left = bt_opd(rp, BT_LEFT);
    right = bt_opd(rp, BT_RIGHT);
    BU_CKMAG(left, BOOL_TREE_NODE_MAGIC, "Boolean tree node");
    BU_CKMAG(right, BOOL_TREE_NODE_MAGIC, "Boolean tree node");

    switch (rule_nm) {
	case 0:
	    return;
	case 1:		/* a U (b U c)  :  (a U b) U c */
	case 5:		/* a - (b U c)  :  (a - b) - c */
	case 6:		/* a * (b * c)  :  (a * b) * c */
	case 8:		/* a * (b - c)  :  (a * b) - c */
	    a = left;
	    b = bt_opd(right, BT_LEFT);
	    c = bt_opd(right, BT_RIGHT);
	    bt_opd(rp, BT_LEFT) = right;
	    bt_opd(bt_opd(rp, BT_LEFT), BT_LEFT) = a;
	    bt_opd(bt_opd(rp, BT_LEFT), BT_RIGHT) = b;
	    bt_opd(rp, BT_RIGHT) = c;
	    bt_opn(bt_opd(rp, BT_LEFT)) = bt_opn(rp);
	    if ((rule_nm == 5) || (rule_nm == 8))
		bt_opn(rp) = OPN_DIFFERENCE;
	    break;
	case 2:		/* (a U b) * c  :  (a * c) U (b * c)  */
	case 4:		/* (a U b) - c  :  (a - c) U (b - c)  */
	    a = bt_opd(left, BT_LEFT);
	    b = bt_opd(left, BT_RIGHT);
	    c = right;
	    bt_opn(left) = bt_opn(rp);
	    bt_opd(left, BT_RIGHT) = dup_bool_tree(c);
	    bt_opn(rp) = OPN_UNION;
	    bt_opd(rp, BT_RIGHT) = bt_create_internal(bt_opn(left), b, c);
	    break;
	case 3:		/* a * (b U c)  :  (a * b) U (a * c)  */
	case 7:		/* a - (b * c)  :  (a - b) U (a - c)  */
	case 9:		/* a - (b - c)  :  (a - b) U (a * c)  */
	    a = left;
	    b = bt_opd(right, BT_LEFT);
	    c = bt_opd(right, BT_RIGHT);
	    bt_opd(rp, BT_LEFT) = bt_create_internal(bt_opn(rp), a, b);
	    bt_opn(rp) = OPN_UNION;
	    bt_opn(right) = (rule_nm == 7) ? OPN_DIFFERENCE
		: OPN_INTERSECTION;
	    bt_opd(right, BT_LEFT) = dup_bool_tree(a);
	    break;
	default:
	    bu_exit (1, "Reached %s:%d.  This shouldn't happen\n", __FILE__, __LINE__);
    }
}
Пример #3
0
/*
 *		C O M P A R E _ V E R T E X _ I N D I C E S ( )
 */
int compare_vertex_indices (void *v1, void *v2)
{
    struct vertex	*vert1 = (struct vertex *) v1;
    struct vertex	*vert2 = (struct vertex *) v2;

    BU_CKMAG(vert1, VERTEX_MAGIC, "vertex");
    BU_CKMAG(vert2, VERTEX_MAGIC, "vertex");

    return (vert1 -> v_index  -  vert2 -> v_index);
}
Пример #4
0
/*
 *			D E L _ F R O M _ P R I O Q ( )
 *
 */
void del_from_prioq (struct vertex *vp)
{
    BU_CKMAG(vp, VERTEX_MAGIC, "vertex");
    BU_CKMAG(vp -> v_bridge, BRIDGE_MAGIC, "bridge");

    if (debug)
	bu_log("del_from_prioq(<x%x>... bridge <x%x> %d)\n",
	       vp, vp -> v_bridge, vp -> v_bridge -> b_index);
    if (bu_rb_search(prioq, PRIOQ_INDEX, (void *) (vp -> v_bridge)) == NULL)
    {
	bu_exit(1, "del_from_prioq: Cannot find bridge <x%x>.", vp -> v_bridge);
    }
    bu_rb_delete(prioq, PRIOQ_INDEX);
}
/**
 * Restore the red-black properties of a red-black tree after the
 * splicing out of a node
 *
 * This function has three parameters: the tree to be fixed up, the
 * node where the trouble occurs, and the order.  _rb_fixup() is an
 * implementation of the routine RB-DELETE-FIXUP on p. 274 of Cormen
 * et al. (p. 326 in the paperback version of the 2009 edition).
 */
HIDDEN void
_rb_fixup(struct bu_rb_tree *tree, struct bu_rb_node *node, int order)
{
    int direction;
    struct bu_rb_node *parent;
    struct bu_rb_node *w;

    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    BU_CKMAG(node, BU_RB_NODE_MAGIC, "red-black node");
    RB_CKORDER(tree, order);

    while ((node != RB_ROOT(tree, order))
	   && (RB_GET_COLOR(node, order) == RB_BLK))
    {
	parent = RB_PARENT(node, order);
	if (node == RB_LEFT_CHILD(parent, order))
	    direction = RB_LEFT;
	else
	    direction = RB_RIGHT;

	w = RB_OTHER_CHILD(parent, order, direction);
	if (RB_GET_COLOR(w, order) == RB_RED) {
	    RB_SET_COLOR(w, order, RB_BLK);
	    RB_SET_COLOR(parent, order, RB_RED);
	    RB_ROTATE(parent, order, direction);
	    w = RB_OTHER_CHILD(parent, order, direction);
	}
	if ((RB_GET_COLOR(RB_CHILD(w, order, direction), order) == RB_BLK)
	    && (RB_GET_COLOR(RB_OTHER_CHILD(w, order, direction), order) == RB_BLK))
	{
	    RB_SET_COLOR(w, order, RB_RED);
	    node = parent;
	} else {
	    if (RB_GET_COLOR(RB_OTHER_CHILD(w, order, direction), order) == RB_BLK) {
		RB_SET_COLOR(RB_CHILD(w, order, direction), order, RB_BLK);
		RB_SET_COLOR(w, order, RB_RED);
		RB_OTHER_ROTATE(w, order, direction);
		w = RB_OTHER_CHILD(parent, order, direction);
	    }
	    RB_SET_COLOR(w, order, RB_GET_COLOR(parent, order));
	    RB_SET_COLOR(parent, order, RB_BLK);
	    RB_SET_COLOR(RB_OTHER_CHILD(w, order, direction),
			 order, RB_BLK);
	    RB_ROTATE(parent, order, direction);
	    node = RB_ROOT(tree, order);
	}
    }
    RB_SET_COLOR(node, order, RB_BLK);
}
Пример #6
0
/*
 *		C O M P A R E _ B R I D G E _ I N D I C E S ( )
 */
int compare_bridge_indices (void *v1, void *v2)
{
    struct bridge	*b1 = (struct bridge *) v1;
    struct bridge	*b2 = (struct bridge *) v2;

    BU_CKMAG(b1, BRIDGE_MAGIC, "bridge");
    BU_CKMAG(b2, BRIDGE_MAGIC, "bridge");

    if (b1 -> b_index < b2 -> b_index)
	return -1;
    else if (b1 -> b_index == b2 -> b_index)
	return 0;
    else
	return 1;
}
/**
 * Delete a node from one order of a red-black tree
 *
 * This function has three parameters: a tree, the node to delete, and
 * the order from which to delete it.  _rb_delete() is an
 * implementation of the routine RB-DELETE on p. 273 of Cormen et
 * al. (p. 324 in the paperback version of the 2009 edition).
 */
HIDDEN void
_rb_delete(struct bu_rb_tree *tree, struct bu_rb_node *node, int order)
{
    struct bu_rb_node *y;		/* The node to splice out */
    struct bu_rb_node *parent;
    struct bu_rb_node *only_child;

    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    BU_CKMAG(node, BU_RB_NODE_MAGIC, "red-black node");
    RB_CKORDER(tree, order);

    if (UNLIKELY(tree->rbt_debug & BU_RB_DEBUG_DELETE))
	bu_log("_rb_delete(%p, %p, %d): data=%p\n",
	       (void*)tree, (void*)node, order, RB_DATA(node, order));

    if ((RB_LEFT_CHILD(node, order) == RB_NULL(tree))
	|| (RB_RIGHT_CHILD(node, order) == RB_NULL(tree)))
	y = node;
    else
	y = rb_neighbor(node, order, SENSE_MAX);

    if (RB_LEFT_CHILD(y, order) == RB_NULL(tree))
	only_child = RB_RIGHT_CHILD(y, order);
    else
	only_child = RB_LEFT_CHILD(y, order);

    parent = RB_PARENT(only_child, order) = RB_PARENT(y, order);
    if (parent == RB_NULL(tree))
	RB_ROOT(tree, order) = only_child;
    else if (y == RB_LEFT_CHILD(parent, order))
	RB_LEFT_CHILD(parent, order) = only_child;
    else
	RB_RIGHT_CHILD(parent, order) = only_child;

    /*
     * Splice y out if it's not node
     */
    if (y != node) {
	(node->rbn_package)[order] = (y->rbn_package)[order];
	((node->rbn_package)[order]->rbp_node)[order] = node;
    }

    if (RB_GET_COLOR(y, order) == RB_BLK)
	_rb_fixup(tree, only_child, order);

    if (--(y->rbn_pkg_refs) == 0)
	rb_free_node(y);
}
Пример #8
0
/**		    _ R B _ N E I G H B O R ( )
 *
 *	    Return a node adjacent to a given red-black node
 *
 *	This function has three parameters: the node of interest, the
 *	order on which to do the search, and the sense (min or max,
 *	which is to say predecessor or successor).  _rb_neighbor()
 *	returns a pointer to the adjacent node.  This function is
 *	modeled after the routine TREE-SUCCESSOR on p. 249 of Cormen et al.
 */
struct bu_rb_node *_rb_neighbor (struct bu_rb_node *node, int order, int sense)
{
    struct bu_rb_node	*child;
    struct bu_rb_node	*parent;
    bu_rb_tree		*tree;
    struct bu_rb_node	*empty_node;

    BU_CKMAG(node, BU_RB_NODE_MAGIC, "red-black node");
    tree = node -> rbn_tree;
    BU_RB_CKORDER(tree, order);

    empty_node = bu_rb_null(tree);

    child = (sense == SENSE_MIN) ? bu_rb_left_child(node, order) :
            bu_rb_right_child(node, order);
    if (child != empty_node)
        return (_rb_extreme(child, order, 1 - sense, empty_node));
    parent = bu_rb_parent(node, order);
    while ((parent != empty_node) &&
            (node == bu_rb_child(parent, order, sense)))
    {
        node = parent;
        parent = bu_rb_parent(parent, order);
    }

    /* Record the node with which we've been working */
    bu_rb_current(tree) = parent;

    return (parent);
}
Пример #9
0
/**		        _ R B _ E X T R E M E ( )
 *
 *	Find the minimum or maximum node in one order of a red-black tree
 *
 *	This function has four parameters: the root of the tree, the
 *	order, the sense (min or max), and the address to be understood
 *	as the nil node pointer. _rb_extreme() returns a pointer to the
 *	extreme node.
 */
static struct bu_rb_node *_rb_extreme (struct bu_rb_node *root, int order, int sense, struct bu_rb_node *empty_node)
{
    struct bu_rb_node	*child;
    bu_rb_tree		*tree;

    if (root == empty_node)
        return (root);

    while (1)
    {
        BU_CKMAG(root, BU_RB_NODE_MAGIC, "red-black node");
        tree = root -> rbn_tree;
        BU_RB_CKORDER(tree, order);

        child = (sense == SENSE_MIN) ? bu_rb_left_child(root, order) :
                bu_rb_right_child(root, order);
        if (child == empty_node)
            break;
        root = child;
    }

    /* Record the node with which we've been working */
    bu_rb_current(tree) = root;

    return (root);
}
Пример #10
0
/**		        B U _ R B _ R A N K ( )
 *
 *	Determines the rank of a node in one order of a red-black tree
 *
 *	This function has two parameters: the tree in which to search
 *	and the order on which to do the searching.  If the current node
 *	is null, bu_rb_rank() returns 0.  Otherwise, it returns the rank
 *	of the current node in the specified order.  bu_rb_rank() is an
 *	implementation of the routine OS-RANK on p. 283 of Cormen et al.
 */
int bu_rb_rank (bu_rb_tree *tree, int order)
{
    int			rank;
    struct bu_rb_node	*node;
    struct bu_rb_node	*parent;
    struct bu_rb_node	*root;

    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    BU_RB_CKORDER(tree, order);

    if ((node = bu_rb_current(tree)) == bu_rb_null(tree))
	return (0);

    root = bu_rb_root(tree, order);
    rank = bu_rb_size(bu_rb_left_child(node, order), order) + 1;
    while (node != root)
    {
	parent = bu_rb_parent(node, order);
	if (node == bu_rb_right_child(parent, order))
	    rank += bu_rb_size(bu_rb_left_child(parent, order), order) + 1;
	node = parent;
    }

    return (rank);
}
Пример #11
0
void
bu_semaphore_release(unsigned int i)
{
#if !defined(PARALLEL) && !defined(DEFINED_BU_SEMAPHORES)
    i = i; /* quellage */
    return;					/* No support on this hardware */
#else
    if (bu_semaphores == NULL) {
	/* Semaphores not initialized yet.  Must be non-parallel */
	return;
    }

    BU_CKMAG(bu_semaphores, BU_SEMAPHORE_MAGIC, "bu_semaphore");

    if (i >= bu_nsemaphores) {
	fprintf(stderr, "bu_semaphore_release(%d): semaphore # exceeds max of %d\n",
		i, bu_nsemaphores - 1);
	exit(3); /* cannot call bu_exit() here */
    }

    BU_CKMAG(&bu_semaphores[i], BU_SEMAPHORE_MAGIC, "bu_semaphore");

    /*
     * Begin vendor-specific initialization sections.
     */

#	ifdef SUNOS
    if (mutex_unlock(&bu_semaphores[i].mu)) {
	fprintf(stderr, "bu_semaphore_acquire(): mutex_unlock() failed on [%d]\n", i);
	bu_bomb("fatal semaphore acquisition failure");
    }
#	endif
#	if defined(HAVE_PTHREAD_H)
    if (pthread_mutex_unlock(&bu_semaphores[i].mu)) {
	fprintf(stderr, "bu_semaphore_acquire(): pthread_mutex_unlock() failed on [%d]\n", i);
	bu_bomb("fatal semaphore acquisition failure");
    }
#	endif

#	if defined(_WIN32) && !defined(__CYGWIN__)
    if (!ReleaseMutex(bu_semaphores[i].m)) {
	fprintf(stderr, "bu_semaphore_acquire(): ReleaseMutex() failed on [%d]\n", i);
	bu_bomb("fatal semaphore acquisition failure");
    }
#	endif
#endif
}
Пример #12
0
/*
 *			  P R I N T _ B R I D G E ( )
 *
 */
void print_bridge (struct bridge *bp)
{
    BU_CKMAG(bp, BRIDGE_MAGIC, "bridge");

    bu_log(" bridge <x%x> %d... <x%x> and <x%x>, weight = %g\n",
	   bp, bp -> b_index,
	   bp -> b_vert_civ, bp -> b_vert_unciv, bp -> b_weight);
}
Пример #13
0
static void
free_script(struct script_rec *srp)
{
    BU_CKMAG(srp, SCRIPT_REC_MAGIC, "script record");

    bu_vls_free(&(srp->sr_script));
    bu_free((void *) srp, "script record");
}
int
bu_rb_is_uniq(struct bu_rb_tree *tree, int order)
{
    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    RB_CKORDER(tree, order);

    return RB_GET_UNIQUENESS(tree, order);
}
/*
 * Find an applicable rewrite for the root of a Boolean tree
 *
 * This function has one parameter: a Boolean-tree node.
 * Find_bool_tree_rewrite() compares the structure of the subtree
 * rooted at the specified node to the LHS's of the rewrite rules and
 * returns the number of the first match it finds.
 */
static int find_bool_tree_rewrite (struct bool_tree_node *rp)
{
    int rule_nm;	/* An applicable rule */
    int lop;		/* Left child's operation */
    int rop;		/* Right "        " */

    BU_CKMAG(rp, BOOL_TREE_NODE_MAGIC, "Boolean tree node");

    BU_CKMAG(bt_opd(rp, BT_LEFT), BOOL_TREE_NODE_MAGIC, "Boolean tree node");
    BU_CKMAG(bt_opd(rp, BT_RIGHT), BOOL_TREE_NODE_MAGIC, "Boolean tree node");
    lop = bt_opn(bt_opd(rp, BT_LEFT));
    rop = bt_opn(bt_opd(rp, BT_RIGHT));
    rule_nm = 0;

    switch (bt_opn(rp)) {
	case OPN_UNION:
	    if (rop == OPN_UNION)
		rule_nm = 1;
	    break;
	case OPN_INTERSECTION:
	    if (lop == OPN_UNION)
		rule_nm = 2;
	    else
		switch (rop) {
		    case OPN_UNION:		rule_nm = 3; break;
		    case OPN_INTERSECTION:	rule_nm = 6; break;
		    case OPN_DIFFERENCE:	rule_nm = 8; break;
		}
	    break;
	case OPN_DIFFERENCE:
	    if (lop == OPN_UNION)
		rule_nm = 4;
	    else
		switch (rop) {
		    case OPN_UNION:		rule_nm = 5; break;
		    case OPN_INTERSECTION:	rule_nm = 7; break;
		    case OPN_DIFFERENCE:	rule_nm = 9; break;
		}
	    break;
	default:
	    bu_exit (1, "Reached %s:%d.  This shouldn't happen\n", __FILE__, __LINE__);
    }

    return rule_nm;
}
Пример #16
0
/*
 * The comparison callback for the red-black tree
 */
int
compare_pixels(void *v1, void *v2)
{
    struct pixel *p1 = (struct pixel *)v1;
    struct pixel *p2 = (struct pixel *)v2;
    int i;

    BU_CKMAG(p1, PIXEL_MAGIC, "pixel");
    BU_CKMAG(p2, PIXEL_MAGIC, "pixel");

    for (i = 0; i < pixel_size; ++i) {
	if (p1->p_color[i] < p2->p_color[i])
	    return -1;
	else if (p1->p_color[i] > p2->p_color[i])
	    return 1;
    }
    return 0;
}
Пример #17
0
/*
 *		 C O M P A R E _ V E R T E X _ L A B E L S ( )
 */
int compare_vertex_labels (void *v1, void *v2)
{
    struct vertex	*vert1 = (struct vertex *) v1;
    struct vertex	*vert2 = (struct vertex *) v2;

    BU_CKMAG(vert1, VERTEX_MAGIC, "vertex");
    BU_CKMAG(vert2, VERTEX_MAGIC, "vertex");
    if (vert1 -> v_label == '\0')
	bu_exit (1, "compare_vertex_labels: null label in vertex <x%x> %d\n", vert1, vert1 -> v_index);
    if (vert2 -> v_label == '\0')
	bu_exit (1, "compare_vertex_labels: null label in vertex <x%x> %d\n", vert2, vert2 -> v_index);

    if (*(vert1 -> v_label) < *(vert2 -> v_label))
	return -1;
    else if (*(vert1 -> v_label) > *(vert2 -> v_label))
	return 1;
    else
	return (strcmp(vert1 -> v_label, vert2 -> v_label));
}
Пример #18
0
/**		            B U _ R B _ C U R R ( )
 *
 *	    Return the current red-black node
 *
 *	This function has two parameters: the tree and order in which
 *	to find the current node.  bu_rb_curr() returns a pointer to
 *	the data in the current node, if it exists.  Otherwise,
 *	it returns NULL.
 */
void *bu_rb_curr (bu_rb_tree *tree, int order)
{
    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    BU_RB_CKORDER(tree, order);

    if (bu_rb_current(tree) == bu_rb_null(tree))
        return (NULL);
    else
        return (bu_rb_data(bu_rb_current(tree), order));
}
/*
 * Duplicate a Boolean tree
 *
 * This function has one parameter: a Boolean-tree node.
 * Dup_bool_tree() recursively copies the subtree rooted at the
 * specified node and returns a pointer to the root of the copy.
 */
static struct bool_tree_node *dup_bool_tree (struct bool_tree_node *rp)
{
    BU_CKMAG(rp, BOOL_TREE_NODE_MAGIC, "Boolean tree node");

    if (bt_is_leaf(rp))
	return rp;
    else
	return (bt_create_internal(bt_opn(rp),
				   dup_bool_tree(bt_opd(rp, BT_LEFT)),
				   dup_bool_tree(bt_opd(rp, BT_RIGHT))));
}
void
bu_rb_walk(struct bu_rb_tree *tree,
	   int order,
	   void (*visit)(void),
	   int trav_type)
{
    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    RB_CKORDER(tree, order);

    rb_walk(tree, order, visit, WALK_DATA, trav_type);
}
Пример #21
0
void
print_pixel(void *p, int UNUSED(depth))
{
    int i;
    struct pixel *pp = (struct pixel *)p;

    BU_CKMAG(pp, PIXEL_MAGIC, "pixel");

    for (i = 0; i < pixel_size; ++i)
	fprintf(outfp, "%3d ", pp->p_color[i]);
    fprintf(outfp, " %d\n", pp->p_count);
}
Пример #22
0
/*
 *			  P R I N T _ V E R T E X ( )
 *
 */
void print_vertex (void *v, int depth)
{
    struct vertex	*vp = (struct vertex *) v;
    struct neighbor	*np;

    BU_CKMAG(vp, VERTEX_MAGIC, "vertex");

    bu_log(" vertex <x%x> %d '%s' %s...\n",
	   vp, vp -> v_index, vp -> v_label,
	   vp -> v_civilized ? "civilized" : "uncivilized");
    for (BU_LIST_FOR(np, neighbor, &(vp -> v_neighbors)))
    {
	BU_CKMAG(np, NEIGHBOR_MAGIC, "neighbor");
	BU_CKMAG(np -> n_vertex, VERTEX_MAGIC, "vertex");

	bu_log("  is a neighbor <x%x> of vertex <x%x> %d '%s' at cost %g\n",
	       np, np -> n_vertex,
	       np -> n_vertex -> v_index, np -> n_vertex -> v_label,
	       np -> n_weight);
    }
}
Пример #23
0
/*
 *			   E X T R A C T _ M I N ( )
 *
 */
struct bridge *extract_min (void)
{
    struct bridge	*bp;

    bp = (struct bridge *) bu_rb_min(prioq, PRIOQ_WEIGHT);
    if (bp != BRIDGE_NULL)
    {
	BU_CKMAG(bp, BRIDGE_MAGIC, "bridge");
	bu_rb_delete(prioq, PRIOQ_WEIGHT);
    }
    return (bp);
}
/*
 * Successively rewrite the root of a Boolean tree
 *
 * This function has one parameter: a Boolean-tree node.
 * Convert_one_node() iteratively rewrites the subtree rooted at the
 * specified node until it no longer matches the LHS of any of the
 * rewrite rules.  It returns the number of times a rewrite rule was
 * applied.
 */
static int convert_one_node (struct bool_tree_node *rp)
{
    int lisp = 1;
    int rule_nm;
    int nm_rewrites;

    BU_CKMAG(rp, BOOL_TREE_NODE_MAGIC, "Boolean tree node");

    for (nm_rewrites = 0; rule_nm = find_bool_tree_rewrite(rp); ++nm_rewrites)
	do_bool_tree_rewrite(rp, rule_nm);

    return nm_rewrites;
}
/**
 * Raise or lower the uniqueness flags for all the linear orders of a
 * red-black tree
 *
 * This function has two parameters: the tree, and the new value for
 * all the flags.
 */
HIDDEN void
_rb_set_uniq_all(struct bu_rb_tree *tree, int new_value)
{
    int nm_orders;
    int order;

    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    new_value = (new_value != 0);

    nm_orders = tree->rbt_nm_orders;
    for (order = 0; order < nm_orders; ++order)
	RB_SET_UNIQUENESS(tree, order, new_value);
}
Пример #26
0
/*
 *		C O M P A R E _ B R I D G E _ W E I G H T S ( )
 */
int compare_bridge_weights (void *v1, void *v2)
{
    double		delta;
    struct bridge	*b1 = (struct bridge *) v1;
    struct bridge	*b2 = (struct bridge *) v2;

    BU_CKMAG(b1, BRIDGE_MAGIC, "bridge");
    BU_CKMAG(b2, BRIDGE_MAGIC, "bridge");

    if (is_infinite_bridge(b1))
	if (is_infinite_bridge(b2))
	    return 0;
	else
	    return 1;
    else if (is_infinite_bridge(b2))
	return -1;

    delta = b1 -> b_weight  -  b2 -> b_weight;
    return ((delta <  0.0) ? -1 :
	    (delta == 0.0) ?  0 :
	    1);
}
/**
 * Raise or lower the uniqueness flag for one linear order of a
 * red-black tree
 *
 * This function has three parameters: the tree, the order for which
 * to modify the flag, and the new value for the flag.  _rb_set_uniq()
 * sets the specified flag to the specified value and returns the
 * previous value of the flag.
 */
HIDDEN int
_rb_set_uniq(struct bu_rb_tree *tree, int order, int new_value)
{
    int prev_value;

    BU_CKMAG(tree, BU_RB_TREE_MAGIC, "red-black tree");
    RB_CKORDER(tree, order);
    new_value = (new_value != 0);

    prev_value = RB_GET_UNIQUENESS(tree, order);
    RB_SET_UNIQUENESS(tree, order, new_value);
    return prev_value;
}
/*
 * Convert a Boolean tree to GIFT-Boolean form.
 *
 * This function has one parameter: a Boolean-tree node.
 * Cvt_to_gift_bool() recursively rewrites the subtree rooted at the
 * specified node.  It returns the number of times a rewrite rule was
 * applied.
 */
int cvt_to_gift_bool (struct bool_tree_node *rp)
{
    int cnr;		/* Cumulative number of rewrites */
    int nr;		/* Number of rewrites in this pass */

    BU_CKMAG(rp, BOOL_TREE_NODE_MAGIC, "Boolean tree node");


    for (cnr = 0; nr = _cvt_to_gift_bool(rp); cnr += nr) {
	;
    }

    return cnr;
}
/*
 * Make one conversion pass through a Boolean tree
 *
 * This function has one parameter: a Boolean-tree node.
 * _cvt_to_gift_bool() recursively rewrites the subtree rooted at the
 * specified node.  It returns the number of times a rewrite rule was
 * applied.
 */
static int _cvt_to_gift_bool (struct bool_tree_node *rp)
{
    int nm_rewrites;

    BU_CKMAG(rp, BOOL_TREE_NODE_MAGIC, "Boolean tree node");

    if (bt_is_leaf(rp))
	return 0;

    nm_rewrites = convert_one_node(rp);
    nm_rewrites += _cvt_to_gift_bool(bt_opd(rp, BT_LEFT));
    nm_rewrites += _cvt_to_gift_bool(bt_opd(rp, BT_RIGHT));

    return nm_rewrites;
}
/**
 * Search for a node in a red-black tree
 *
 * This function has four parameters: the root and order of the tree
 * in which to search, the comparison function, and a data block
 * containing the desired value of the key.  On success, _rb_search()
 * returns a pointer to the discovered node.  Otherwise, it returns
 * (tree->rbt_empty_node).
 */
HIDDEN struct bu_rb_node *
_rb_search(struct bu_rb_node *root, int order_nm, int (*compare)(const void *, const void *), void *data)
{
    int result;
    struct bu_rb_tree *tree;

    BU_CKMAG(root, BU_RB_NODE_MAGIC, "red-black node");
    tree = root->rbn_tree;
    RB_CKORDER(tree, order_nm);

    while (1) {
	if (root == RB_NULL(root->rbn_tree))
	    break;
	if ((result = compare(data, RB_DATA(root, order_nm))) == 0)
	    break;
	else if (result < 0)
	    root = RB_LEFT_CHILD(root, order_nm);
	else	/* result > 0 */
	    root = RB_RIGHT_CHILD(root, order_nm);
	BU_CKMAG(root, BU_RB_NODE_MAGIC, "red-black node");
    }
    RB_CURRENT(tree) = root;
    return root;
}