Пример #1
0
int
yasm_intnum_in_range(const yasm_intnum *intn, long low, long high)
{
    wordptr val = intnum_tobv(result, intn);
    wordptr lval = op1static;
    wordptr hval = op2static;

    /* Convert high and low to bitvects */
    BitVector_Empty(lval);
    if (low >= 0)
        BitVector_Chunk_Store(lval, 32, 0, (unsigned long)low);
    else {
        BitVector_Chunk_Store(lval, 32, 0, (unsigned long)(-low));
        BitVector_Negate(lval, lval);
    }

    BitVector_Empty(hval);
    if (high >= 0)
        BitVector_Chunk_Store(hval, 32, 0, (unsigned long)high);
    else {
        BitVector_Chunk_Store(hval, 32, 0, (unsigned long)(-high));
        BitVector_Negate(hval, hval);
    }

    /* Compare! */
    return (BitVector_Compare(val, lval) >= 0
            && BitVector_Compare(val, hval) <= 0);
}
Пример #2
0
yasm_intnum *
yasm_intnum_create_leb128(const unsigned char *ptr, int sign,
                          unsigned long *size)
{
    yasm_intnum *intn = yasm_xmalloc(sizeof(yasm_intnum));
    const unsigned char *ptr_orig = ptr;
    unsigned long i = 0;

    BitVector_Empty(conv_bv);
    for (;;) {
        BitVector_Chunk_Store(conv_bv, 7, i, *ptr);
        i += 7;
        if ((*ptr & 0x80) != 0x80)
            break;
        ptr++;
    }

    *size = (unsigned long)(ptr-ptr_orig)+1;

    if(i > BITVECT_NATIVE_SIZE)
        yasm_error_set(YASM_ERROR_OVERFLOW,
                       N_("Numeric constant too large for internal format"));
    else if (sign && (*ptr & 0x40) == 0x40)
        BitVector_Interval_Fill(conv_bv, i, BITVECT_NATIVE_SIZE-1);

    intnum_frombv(intn, conv_bv);
    return intn;
}
Пример #3
0
yasm_intnum *
yasm_intnum_create_sized(unsigned char *ptr, int sign, size_t srcsize,
                         int bigendian)
{
    yasm_intnum *intn = yasm_xmalloc(sizeof(yasm_intnum));
    unsigned long i = 0;

    if (srcsize*8 > BITVECT_NATIVE_SIZE)
        yasm_error_set(YASM_ERROR_OVERFLOW,
                       N_("Numeric constant too large for internal format"));

    /* Read the buffer into a bitvect */
    BitVector_Empty(conv_bv);
    if (bigendian) {
        /* TODO */
        yasm_internal_error(N_("big endian not implemented"));
    } else {
        for (i = 0; i < srcsize; i++)
            BitVector_Chunk_Store(conv_bv, 8, i*8, ptr[i]);
    }

    /* Sign extend if needed */
    if (srcsize*8 < BITVECT_NATIVE_SIZE && sign && (ptr[i-1] & 0x80) == 0x80)
        BitVector_Interval_Fill(conv_bv, i*8, BITVECT_NATIVE_SIZE-1);

    intnum_frombv(intn, conv_bv);
    return intn;
}
Пример #4
0
static void
x86_cpu_intel(wordptr cpu, unsigned int data)
{
    BitVector_Empty(cpu);

    BitVector_Bit_On(cpu, CPU_Priv);
    if (data >= PROC_286)
        BitVector_Bit_On(cpu, CPU_Prot);
    if (data >= PROC_386)
        BitVector_Bit_On(cpu, CPU_SMM);
    if (data >= PROC_sandybridge)
        BitVector_Bit_On(cpu, CPU_AVX);
    if (data >= PROC_westmere) {
        BitVector_Bit_On(cpu, CPU_AES);
        BitVector_Bit_On(cpu, CPU_CLMUL);
    }
    if (data >= PROC_nehalem) {
        BitVector_Bit_On(cpu, CPU_SSE42);
        BitVector_Bit_On(cpu, CPU_XSAVE);
    }
    if (data >= PROC_penryn)
        BitVector_Bit_On(cpu, CPU_SSE41);
    if (data >= PROC_conroe)
        BitVector_Bit_On(cpu, CPU_SSSE3);
    if (data >= PROC_prescott)
        BitVector_Bit_On(cpu, CPU_SSE3);
    if (data >= PROC_p4)
        BitVector_Bit_On(cpu, CPU_SSE2);
    if (data >= PROC_p3)
        BitVector_Bit_On(cpu, CPU_SSE);
    if (data >= PROC_p2)
        BitVector_Bit_On(cpu, CPU_MMX);
    if (data >= PROC_486)
        BitVector_Bit_On(cpu, CPU_FPU);
    if (data >= PROC_prescott)
        BitVector_Bit_On(cpu, CPU_EM64T);

    if (data >= PROC_p4)
        BitVector_Bit_On(cpu, CPU_P4);
    if (data >= PROC_p3)
        BitVector_Bit_On(cpu, CPU_P3);
    if (data >= PROC_686)
        BitVector_Bit_On(cpu, CPU_686);
    if (data >= PROC_586)
        BitVector_Bit_On(cpu, CPU_586);
    if (data >= PROC_486)
        BitVector_Bit_On(cpu, CPU_486);
    if (data >= PROC_386)
        BitVector_Bit_On(cpu, CPU_386);
    if (data >= PROC_286)
        BitVector_Bit_On(cpu, CPU_286);
    if (data >= PROC_186)
        BitVector_Bit_On(cpu, CPU_186);
    BitVector_Bit_On(cpu, CPU_086);
}
Пример #5
0
unsigned long
yasm_size_uleb128(unsigned long v)
{
    wordptr val = op1static;

    if (v == 0)
        return 1;

    BitVector_Empty(val);
    BitVector_Chunk_Store(val, 32, 0, v);
    return size_leb128(val, 0);
}
Пример #6
0
unsigned long
yasm_get_uleb128(unsigned long v, unsigned char *ptr)
{
    wordptr val = op1static;

    /* Shortcut 0 */
    if (v == 0) {
        *ptr = 0;
        return 1;
    }

    BitVector_Empty(val);
    BitVector_Chunk_Store(val, 32, 0, v);
    return get_leb128(val, ptr, 0);
}
Пример #7
0
/* If intnum is a BV, returns its bitvector directly.
 * If not, converts into passed bv and returns that instead.
 */
static wordptr
intnum_tobv(/*@returned@*/ wordptr bv, const yasm_intnum *intn)
{
    if (intn->type == INTNUM_BV)
        return intn->val.bv;

    BitVector_Empty(bv);
    if (intn->val.l >= 0)
        BitVector_Chunk_Store(bv, 32, 0, (unsigned long)intn->val.l);
    else {
        BitVector_Chunk_Store(bv, 32, 0, (unsigned long)-intn->val.l);
        BitVector_Negate(bv, bv);
    }
    return bv;
}
Пример #8
0
yasm_intnum *
yasm_intnum_create_charconst_tasm(const char *str)
{
    yasm_intnum *intn = yasm_xmalloc(sizeof(yasm_intnum));
    size_t len = strlen(str);
    size_t i;

    if(len*8 > BITVECT_NATIVE_SIZE)
        yasm_error_set(YASM_ERROR_OVERFLOW,
                       N_("Character constant too large for internal format"));

    /* be conservative in choosing bitvect in case MSB is set */
    if (len > 3) {
        BitVector_Empty(conv_bv);
        intn->type = INTNUM_BV;
    } else {
        intn->val.l = 0;
        intn->type = INTNUM_L;
    }

    /* tasm uses big endian notation */
    i = 0;
    switch (len) {
        case 3:
            intn->val.l |= ((unsigned long)str[i++]) & 0xff;
            intn->val.l <<= 8;
            /*@fallthrough@*/
        case 2:
            intn->val.l |= ((unsigned long)str[i++]) & 0xff;
            intn->val.l <<= 8;
            /*@fallthrough@*/
        case 1:
            intn->val.l |= ((unsigned long)str[i++]) & 0xff;
        case 0:
            break;
        default:
            /* >=32 bit conversion */
            while (i < len) {
                BitVector_Chunk_Store(conv_bv, 8, (len-i-1)*8,
                                      ((unsigned long)str[i]) & 0xff);
                i++;
            }
            intn->val.bv = BitVector_Clone(conv_bv);
    }

    return intn;
}
Пример #9
0
unsigned long
yasm_size_sleb128(long v)
{
    wordptr val = op1static;

    if (v == 0)
        return 1;

    BitVector_Empty(val);
    if (v >= 0)
        BitVector_Chunk_Store(val, 32, 0, (unsigned long)v);
    else {
        BitVector_Chunk_Store(val, 32, 0, (unsigned long)(-v));
        BitVector_Negate(val, val);
    }
    return size_leb128(val, 1);
}
Пример #10
0
static void
x86_cpu_amd(wordptr cpu, yasm_arch_x86 *arch_x86, unsigned int data)
{
    BitVector_Empty(cpu);

    BitVector_Bit_On(cpu, CPU_Priv);
    BitVector_Bit_On(cpu, CPU_Prot);
    BitVector_Bit_On(cpu, CPU_SMM);
    BitVector_Bit_On(cpu, CPU_3DNow);
    if (data >= PROC_bulldozer) {
        BitVector_Bit_On(cpu, CPU_XOP);
        BitVector_Bit_On(cpu, CPU_FMA4);
    }
    if (data >= PROC_k10)
        BitVector_Bit_On(cpu, CPU_SSE4a);
    if (data >= PROC_venice)
        BitVector_Bit_On(cpu, CPU_SSE3);
    if (data >= PROC_hammer)
        BitVector_Bit_On(cpu, CPU_SSE2);
    if (data >= PROC_k7)
        BitVector_Bit_On(cpu, CPU_SSE);
    if (data >= PROC_k6)
        BitVector_Bit_On(cpu, CPU_MMX);
    BitVector_Bit_On(cpu, CPU_FPU);

    if (data >= PROC_hammer)
        BitVector_Bit_On(cpu, CPU_Hammer);
    if (data >= PROC_k7)
        BitVector_Bit_On(cpu, CPU_Athlon);
    if (data >= PROC_k6)
        BitVector_Bit_On(cpu, CPU_K6);
    BitVector_Bit_On(cpu, CPU_686);
    BitVector_Bit_On(cpu, CPU_586);
    BitVector_Bit_On(cpu, CPU_486);
    BitVector_Bit_On(cpu, CPU_386);
    BitVector_Bit_On(cpu, CPU_286);
    BitVector_Bit_On(cpu, CPU_186);
    BitVector_Bit_On(cpu, CPU_086);

    /* Use AMD long NOPs if k6 or better */
    if (data >= PROC_k6)
        arch_x86->nop = X86_NOP_AMD;
    else
        arch_x86->nop = X86_NOP_BASIC;
}
Пример #11
0
unsigned long
yasm_get_sleb128(long v, unsigned char *ptr)
{
    wordptr val = op1static;

    /* Shortcut 0 */
    if (v == 0) {
        *ptr = 0;
        return 1;
    }

    BitVector_Empty(val);
    if (v >= 0)
        BitVector_Chunk_Store(val, 32, 0, (unsigned long)v);
    else {
        BitVector_Chunk_Store(val, 32, 0, (unsigned long)(-v));
        BitVector_Negate(val, val);
    }
    return get_leb128(val, ptr, 1);
}
Пример #12
0
static void
x86_cpu_ia64(wordptr cpu, yasm_arch_x86 *arch_x86, unsigned int data)
{
    BitVector_Empty(cpu);
    BitVector_Bit_On(cpu, CPU_Priv);
    BitVector_Bit_On(cpu, CPU_Prot);
    BitVector_Bit_On(cpu, CPU_SMM);
    BitVector_Bit_On(cpu, CPU_SSE2);
    BitVector_Bit_On(cpu, CPU_SSE);
    BitVector_Bit_On(cpu, CPU_MMX);
    BitVector_Bit_On(cpu, CPU_FPU);
    BitVector_Bit_On(cpu, CPU_IA64);
    BitVector_Bit_On(cpu, CPU_P4);
    BitVector_Bit_On(cpu, CPU_P3);
    BitVector_Bit_On(cpu, CPU_686);
    BitVector_Bit_On(cpu, CPU_586);
    BitVector_Bit_On(cpu, CPU_486);
    BitVector_Bit_On(cpu, CPU_386);
    BitVector_Bit_On(cpu, CPU_286);
    BitVector_Bit_On(cpu, CPU_186);
    BitVector_Bit_On(cpu, CPU_086);
}
Пример #13
0
static void
x86_cpu_amd(wordptr cpu, unsigned int data)
{
    BitVector_Empty(cpu);

    BitVector_Bit_On(cpu, CPU_Priv);
    BitVector_Bit_On(cpu, CPU_Prot);
    BitVector_Bit_On(cpu, CPU_SMM);
    BitVector_Bit_On(cpu, CPU_3DNow);
    if (data >= PROC_bulldozer)
        BitVector_Bit_On(cpu, CPU_SSE5);
    if (data >= PROC_k10)
        BitVector_Bit_On(cpu, CPU_SSE4a);
    if (data >= PROC_venice)
        BitVector_Bit_On(cpu, CPU_SSE3);
    if (data >= PROC_hammer)
        BitVector_Bit_On(cpu, CPU_SSE2);
    if (data >= PROC_k7)
        BitVector_Bit_On(cpu, CPU_SSE);
    if (data >= PROC_k6)
        BitVector_Bit_On(cpu, CPU_MMX);
    BitVector_Bit_On(cpu, CPU_FPU);

    if (data >= PROC_hammer)
        BitVector_Bit_On(cpu, CPU_Hammer);
    if (data >= PROC_k7)
        BitVector_Bit_On(cpu, CPU_Athlon);
    if (data >= PROC_k6)
        BitVector_Bit_On(cpu, CPU_K6);
    BitVector_Bit_On(cpu, CPU_686);
    BitVector_Bit_On(cpu, CPU_586);
    BitVector_Bit_On(cpu, CPU_486);
    BitVector_Bit_On(cpu, CPU_386);
    BitVector_Bit_On(cpu, CPU_286);
    BitVector_Bit_On(cpu, CPU_186);
    BitVector_Bit_On(cpu, CPU_086);
}
Пример #14
0
static void
x86_cpu_intel(wordptr cpu, yasm_arch_x86 *arch_x86, unsigned int data)
{
    BitVector_Empty(cpu);

    BitVector_Bit_On(cpu, CPU_Priv);
    if (data >= PROC_286)
        BitVector_Bit_On(cpu, CPU_Prot);
    if (data >= PROC_386)
        BitVector_Bit_On(cpu, CPU_SMM);
    if (data >= PROC_sandybridge)
        BitVector_Bit_On(cpu, CPU_AVX);
    if (data >= PROC_westmere) {
        BitVector_Bit_On(cpu, CPU_AES);
        BitVector_Bit_On(cpu, CPU_CLMUL);
    }
    if (data >= PROC_nehalem) {
        BitVector_Bit_On(cpu, CPU_SSE42);
        BitVector_Bit_On(cpu, CPU_XSAVE);
    }
    if (data >= PROC_penryn)
        BitVector_Bit_On(cpu, CPU_SSE41);
    if (data >= PROC_conroe)
        BitVector_Bit_On(cpu, CPU_SSSE3);
    if (data >= PROC_prescott)
        BitVector_Bit_On(cpu, CPU_SSE3);
    if (data >= PROC_p4)
        BitVector_Bit_On(cpu, CPU_SSE2);
    if (data >= PROC_p3)
        BitVector_Bit_On(cpu, CPU_SSE);
    if (data >= PROC_p2)
        BitVector_Bit_On(cpu, CPU_MMX);
    if (data >= PROC_486)
        BitVector_Bit_On(cpu, CPU_FPU);
    if (data >= PROC_prescott)
        BitVector_Bit_On(cpu, CPU_EM64T);

    if (data >= PROC_p4)
        BitVector_Bit_On(cpu, CPU_P4);
    if (data >= PROC_p3)
        BitVector_Bit_On(cpu, CPU_P3);
    if (data >= PROC_686)
        BitVector_Bit_On(cpu, CPU_686);
    if (data >= PROC_586)
        BitVector_Bit_On(cpu, CPU_586);
    if (data >= PROC_486)
        BitVector_Bit_On(cpu, CPU_486);
    if (data >= PROC_386)
        BitVector_Bit_On(cpu, CPU_386);
    if (data >= PROC_286)
        BitVector_Bit_On(cpu, CPU_286);
    if (data >= PROC_186)
        BitVector_Bit_On(cpu, CPU_186);
    BitVector_Bit_On(cpu, CPU_086);

    /* Use Intel long NOPs if 686 or better */
    if (data >= PROC_686)
        arch_x86->nop = X86_NOP_INTEL;
    else
        arch_x86->nop = X86_NOP_BASIC;
}
Пример #15
0
/*@-nullderef -nullpass -branchstate@*/
int
yasm_intnum_calc(yasm_intnum *acc, yasm_expr_op op, yasm_intnum *operand)
{
    boolean carry = 0;
    wordptr op1, op2 = NULL;
    N_int count;

    /* Always do computations with in full bit vector.
     * Bit vector results must be calculated through intermediate storage.
     */
    op1 = intnum_tobv(op1static, acc);
    if (operand)
        op2 = intnum_tobv(op2static, operand);

    if (!operand && op != YASM_EXPR_NEG && op != YASM_EXPR_NOT &&
        op != YASM_EXPR_LNOT) {
        yasm_error_set(YASM_ERROR_ARITHMETIC,
                       N_("operation needs an operand"));
        BitVector_Empty(result);
        return 1;
    }

    /* A operation does a bitvector computation if result is allocated. */
    switch (op) {
        case YASM_EXPR_ADD:
            BitVector_add(result, op1, op2, &carry);
            break;
        case YASM_EXPR_SUB:
            BitVector_sub(result, op1, op2, &carry);
            break;
        case YASM_EXPR_MUL:
            BitVector_Multiply(result, op1, op2);
            break;
        case YASM_EXPR_DIV:
            /* TODO: make sure op1 and op2 are unsigned */
            if (BitVector_is_empty(op2)) {
                yasm_error_set(YASM_ERROR_ZERO_DIVISION, N_("divide by zero"));
                BitVector_Empty(result);
                return 1;
            } else
                BitVector_Divide(result, op1, op2, spare);
            break;
        case YASM_EXPR_SIGNDIV:
            if (BitVector_is_empty(op2)) {
                yasm_error_set(YASM_ERROR_ZERO_DIVISION, N_("divide by zero"));
                BitVector_Empty(result);
                return 1;
            } else
                BitVector_Divide(result, op1, op2, spare);
            break;
        case YASM_EXPR_MOD:
            /* TODO: make sure op1 and op2 are unsigned */
            if (BitVector_is_empty(op2)) {
                yasm_error_set(YASM_ERROR_ZERO_DIVISION, N_("divide by zero"));
                BitVector_Empty(result);
                return 1;
            } else
                BitVector_Divide(spare, op1, op2, result);
            break;
        case YASM_EXPR_SIGNMOD:
            if (BitVector_is_empty(op2)) {
                yasm_error_set(YASM_ERROR_ZERO_DIVISION, N_("divide by zero"));
                BitVector_Empty(result);
                return 1;
            } else
                BitVector_Divide(spare, op1, op2, result);
            break;
        case YASM_EXPR_NEG:
            BitVector_Negate(result, op1);
            break;
        case YASM_EXPR_NOT:
            Set_Complement(result, op1);
            break;
        case YASM_EXPR_OR:
            Set_Union(result, op1, op2);
            break;
        case YASM_EXPR_AND:
            Set_Intersection(result, op1, op2);
            break;
        case YASM_EXPR_XOR:
            Set_ExclusiveOr(result, op1, op2);
            break;
        case YASM_EXPR_XNOR:
            Set_ExclusiveOr(result, op1, op2);
            Set_Complement(result, result);
            break;
        case YASM_EXPR_NOR:
            Set_Union(result, op1, op2);
            Set_Complement(result, result);
            break;
        case YASM_EXPR_SHL:
            if (operand->type == INTNUM_L && operand->val.l >= 0) {
                BitVector_Copy(result, op1);
                BitVector_Move_Left(result, (N_int)operand->val.l);
            } else      /* don't even bother, just zero result */
                BitVector_Empty(result);
            break;
        case YASM_EXPR_SHR:
            if (operand->type == INTNUM_L && operand->val.l >= 0) {
                BitVector_Copy(result, op1);
                carry = BitVector_msb_(op1);
                count = (N_int)operand->val.l;
                while (count-- > 0)
                    BitVector_shift_right(result, carry);
            } else      /* don't even bother, just zero result */
                BitVector_Empty(result);
            break;
        case YASM_EXPR_LOR:
            BitVector_Empty(result);
            BitVector_LSB(result, !BitVector_is_empty(op1) ||
                          !BitVector_is_empty(op2));
            break;
        case YASM_EXPR_LAND:
            BitVector_Empty(result);
            BitVector_LSB(result, !BitVector_is_empty(op1) &&
                          !BitVector_is_empty(op2));
            break;
        case YASM_EXPR_LNOT:
            BitVector_Empty(result);
            BitVector_LSB(result, BitVector_is_empty(op1));
            break;
        case YASM_EXPR_LXOR:
            BitVector_Empty(result);
            BitVector_LSB(result, !BitVector_is_empty(op1) ^
                          !BitVector_is_empty(op2));
            break;
        case YASM_EXPR_LXNOR:
            BitVector_Empty(result);
            BitVector_LSB(result, !(!BitVector_is_empty(op1) ^
                          !BitVector_is_empty(op2)));
            break;
        case YASM_EXPR_LNOR:
            BitVector_Empty(result);
            BitVector_LSB(result, !(!BitVector_is_empty(op1) ||
                          !BitVector_is_empty(op2)));
            break;
        case YASM_EXPR_EQ:
            BitVector_Empty(result);
            BitVector_LSB(result, BitVector_equal(op1, op2));
            break;
        case YASM_EXPR_LT:
            BitVector_Empty(result);
            BitVector_LSB(result, BitVector_Compare(op1, op2) < 0);
            break;
        case YASM_EXPR_GT:
            BitVector_Empty(result);
            BitVector_LSB(result, BitVector_Compare(op1, op2) > 0);
            break;
        case YASM_EXPR_LE:
            BitVector_Empty(result);
            BitVector_LSB(result, BitVector_Compare(op1, op2) <= 0);
            break;
        case YASM_EXPR_GE:
            BitVector_Empty(result);
            BitVector_LSB(result, BitVector_Compare(op1, op2) >= 0);
            break;
        case YASM_EXPR_NE:
            BitVector_Empty(result);
            BitVector_LSB(result, !BitVector_equal(op1, op2));
            break;
        case YASM_EXPR_SEG:
            yasm_error_set(YASM_ERROR_ARITHMETIC, N_("invalid use of '%s'"),
                           "SEG");
            break;
        case YASM_EXPR_WRT:
            yasm_error_set(YASM_ERROR_ARITHMETIC, N_("invalid use of '%s'"),
                           "WRT");
            break;
        case YASM_EXPR_SEGOFF:
            yasm_error_set(YASM_ERROR_ARITHMETIC, N_("invalid use of '%s'"),
                           ":");
            break;
        case YASM_EXPR_IDENT:
            if (result)
                BitVector_Copy(result, op1);
            break;
        default:
            yasm_error_set(YASM_ERROR_ARITHMETIC,
                           N_("invalid operation in intnum calculation"));
            BitVector_Empty(result);
            return 1;
    }

    /* Try to fit the result into 32 bits if possible */
    if (acc->type == INTNUM_BV)
        BitVector_Destroy(acc->val.bv);
    intnum_frombv(acc, result);
    return 0;
}
Пример #16
0
/* Function used by conversion routines to actually perform the conversion.
 *
 * ptr -> the array to return the little-endian floating point value into.
 * flt -> the floating point value to convert.
 * byte_size -> the size in bytes of the output format.
 * mant_bits -> the size in bits of the output mantissa.
 * implicit1 -> does the output format have an implicit 1? 1=yes, 0=no.
 * exp_bits -> the size in bits of the output exponent.
 *
 * Returns 0 on success, 1 if overflow, -1 if underflow.
 */
static int
floatnum_get_common(const yasm_floatnum *flt, /*@out@*/ unsigned char *ptr,
                    N_int byte_size, N_int mant_bits, int implicit1,
                    N_int exp_bits)
{
    long exponent = (long)flt->exponent;
    wordptr output;
    charptr buf;
    unsigned int len;
    unsigned int overflow = 0, underflow = 0;
    int retval = 0;
    long exp_bias = (1<<(exp_bits-1))-1;
    long exp_inf = (1<<exp_bits)-1;

    output = BitVector_Create(byte_size*8, TRUE);

    /* copy mantissa */
    BitVector_Interval_Copy(output, flt->mantissa, 0,
                            (N_int)((MANT_BITS-implicit1)-mant_bits),
                            mant_bits);

    /* round mantissa */
    if (BitVector_bit_test(flt->mantissa, (MANT_BITS-implicit1)-(mant_bits+1)))
        BitVector_increment(output);

    if (BitVector_bit_test(output, mant_bits)) {
        /* overflowed, so zero mantissa (and set explicit bit if necessary) */
        BitVector_Empty(output);
        BitVector_Bit_Copy(output, mant_bits-1, !implicit1);
        /* and up the exponent (checking for overflow) */
        if (exponent+1 >= EXP_INF)
            overflow = 1;
        else
            exponent++;
    }

    /* adjust the exponent to the output bias, checking for overflow */
    exponent -= EXP_BIAS-exp_bias;
    if (exponent >= exp_inf)
        overflow = 1;
    else if (exponent <= 0)
        underflow = 1;

    /* underflow and overflow both set!? */
    if (underflow && overflow)
        yasm_internal_error(N_("Both underflow and overflow set"));

    /* check for underflow or overflow and set up appropriate output */
    if (underflow) {
        BitVector_Empty(output);
        exponent = 0;
        if (!(flt->flags & FLAG_ISZERO))
            retval = -1;
    } else if (overflow) {
        BitVector_Empty(output);
        exponent = exp_inf;
        retval = 1;
    }

    /* move exponent into place */
    BitVector_Chunk_Store(output, exp_bits, mant_bits, (N_long)exponent);

    /* merge in sign bit */
    BitVector_Bit_Copy(output, byte_size*8-1, flt->sign);

    /* get little-endian bytes */
    buf = BitVector_Block_Read(output, &len);
    if (len < byte_size)
        yasm_internal_error(
            N_("Byte length of BitVector does not match bit length"));

    /* copy to output */
    memcpy(ptr, buf, byte_size*sizeof(unsigned char));

    /* free allocated resources */
    yasm_xfree(buf);

    BitVector_Destroy(output);

    return retval;
}
Пример #17
0
yasm_floatnum *
yasm_floatnum_create(const char *str)
{
    yasm_floatnum *flt;
    int dec_exponent, dec_exp_add;      /* decimal (powers of 10) exponent */
    int POT_index;
    wordptr operand[2];
    int sig_digits;
    int decimal_pt;
    boolean carry;

    flt = yasm_xmalloc(sizeof(yasm_floatnum));

    flt->mantissa = BitVector_Create(MANT_BITS, TRUE);

    /* allocate and initialize calculation variables */
    operand[0] = BitVector_Create(MANT_BITS, TRUE);
    operand[1] = BitVector_Create(MANT_BITS, TRUE);
    dec_exponent = 0;
    sig_digits = 0;
    decimal_pt = 1;

    /* set initial flags to 0 */
    flt->flags = 0;

    /* check for + or - character and skip */
    if (*str == '-') {
        flt->sign = 1;
        str++;
    } else if (*str == '+') {
        flt->sign = 0;
        str++;
    } else
        flt->sign = 0;

    /* eliminate any leading zeros (which do not count as significant digits) */
    while (*str == '0')
        str++;

    /* When we reach the end of the leading zeros, first check for a decimal
     * point.  If the number is of the form "0---0.0000" we need to get rid
     * of the zeros after the decimal point and not count them as significant
     * digits.
     */
    if (*str == '.') {
        str++;
        while (*str == '0') {
            str++;
            dec_exponent--;
        }
    } else {
        /* The number is of the form "yyy.xxxx" (where y <> 0). */
        while (isdigit(*str)) {
            /* See if we've processed more than the max significant digits: */
            if (sig_digits < MANT_SIGDIGITS) {
                /* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
                BitVector_shift_left(flt->mantissa, 0);
                BitVector_Copy(operand[0], flt->mantissa);
                BitVector_Move_Left(flt->mantissa, 2);
                carry = 0;
                BitVector_add(operand[1], operand[0], flt->mantissa, &carry);

                /* Add in current digit */
                BitVector_Empty(operand[0]);
                BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
                carry = 0;
                BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
            } else {
                /* Can't integrate more digits with mantissa, so instead just
                 * raise by a power of ten.
                 */
                dec_exponent++;
            }
            sig_digits++;
            str++;
        }

        if (*str == '.')
            str++;
        else
            decimal_pt = 0;
    }

    if (decimal_pt) {
        /* Process the digits to the right of the decimal point. */
        while (isdigit(*str)) {
            /* See if we've processed more than 19 significant digits: */
            if (sig_digits < 19) {
                /* Raise by a power of ten */
                dec_exponent--;

                /* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
                BitVector_shift_left(flt->mantissa, 0);
                BitVector_Copy(operand[0], flt->mantissa);
                BitVector_Move_Left(flt->mantissa, 2);
                carry = 0;
                BitVector_add(operand[1], operand[0], flt->mantissa, &carry);

                /* Add in current digit */
                BitVector_Empty(operand[0]);
                BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
                carry = 0;
                BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
            }
            sig_digits++;
            str++;
        }
    }

    if (*str == 'e' || *str == 'E') {
        str++;
        /* We just saw the "E" character, now read in the exponent value and
         * add it into dec_exponent.
         */
        dec_exp_add = 0;
        sscanf(str, "%d", &dec_exp_add);
        dec_exponent += dec_exp_add;
    }

    /* Free calculation variables. */
    BitVector_Destroy(operand[1]);
    BitVector_Destroy(operand[0]);

    /* Normalize the number, checking for 0 first. */
    if (BitVector_is_empty(flt->mantissa)) {
        /* Mantissa is 0, zero exponent too. */
        flt->exponent = 0;
        /* Set zero flag so output functions don't see 0 value as underflow. */
        flt->flags |= FLAG_ISZERO;
        /* Return 0 value. */
        return flt;
    }
    /* Exponent if already norm. */
    flt->exponent = (unsigned short)(0x7FFF+(MANT_BITS-1));
    floatnum_normalize(flt);

    /* The number is normalized.  Now multiply by 10 the number of times
     * specified in DecExponent.  This uses the power of ten tables to speed
     * up this operation (and make it more accurate).
     */
    if (dec_exponent > 0) {
        POT_index = 0;
        /* Until we hit 1.0 or finish exponent or overflow */
        while ((POT_index < 14) && (dec_exponent != 0) &&
               (flt->exponent != EXP_INF)) {
            /* Find the first power of ten in the table which is just less than
             * the exponent.
             */
            while (dec_exponent < POT_TableP[POT_index].dec_exponent)
                POT_index++;

            if (POT_index < 14) {
                /* Subtract out what we're multiplying in from exponent */
                dec_exponent -= POT_TableP[POT_index].dec_exponent;

                /* Multiply by current power of 10 */
                floatnum_mul(flt, &POT_TableP[POT_index].f);
            }
        }
    } else if (dec_exponent < 0) {
        POT_index = 0;
        /* Until we hit 1.0 or finish exponent or underflow */
        while ((POT_index < 14) && (dec_exponent != 0) &&
               (flt->exponent != EXP_ZERO)) {
            /* Find the first power of ten in the table which is just less than
             * the exponent.
             */
            while (dec_exponent > POT_TableN[POT_index].dec_exponent)
                POT_index++;

            if (POT_index < 14) {
                /* Subtract out what we're multiplying in from exponent */
                dec_exponent -= POT_TableN[POT_index].dec_exponent;

                /* Multiply by current power of 10 */
                floatnum_mul(flt, &POT_TableN[POT_index].f);
            }
        }
    }

    /* Round the result. (Don't round underflow or overflow).  Also don't
     * increment if this would cause the mantissa to wrap.
     */
    if ((flt->exponent != EXP_INF) && (flt->exponent != EXP_ZERO) &&
        !BitVector_is_full(flt->mantissa))
        BitVector_increment(flt->mantissa);

    return flt;
}
Пример #18
0
/* acc *= op */
static void
floatnum_mul(yasm_floatnum *acc, const yasm_floatnum *op)
{
    long expon;
    wordptr product, op1, op2;
    long norm_amt;

    /* Compute the new sign */
    acc->sign ^= op->sign;

    /* Check for multiply by 0 */
    if (BitVector_is_empty(acc->mantissa) || BitVector_is_empty(op->mantissa)) {
        BitVector_Empty(acc->mantissa);
        acc->exponent = EXP_ZERO;
        return;
    }

    /* Add exponents, checking for overflow/underflow. */
    expon = (((int)acc->exponent)-EXP_BIAS) + (((int)op->exponent)-EXP_BIAS);
    expon += EXP_BIAS;
    if (expon > EXP_MAX) {
        /* Overflow; return infinity. */
        BitVector_Empty(acc->mantissa);
        acc->exponent = EXP_INF;
        return;
    } else if (expon < EXP_MIN) {
        /* Underflow; return zero. */
        BitVector_Empty(acc->mantissa);
        acc->exponent = EXP_ZERO;
        return;
    }

    /* Add one to the final exponent, as the multiply shifts one extra time. */
    acc->exponent = (unsigned short)(expon+1);

    /* Allocate space for the multiply result */
    product = BitVector_Create((N_int)((MANT_BITS+1)*2), FALSE);

    /* Allocate 1-bit-longer fields to force the operands to be unsigned */
    op1 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);
    op2 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);

    /* Make the operands unsigned after copying from original operands */
    BitVector_Copy(op1, acc->mantissa);
    BitVector_MSB(op1, 0);
    BitVector_Copy(op2, op->mantissa);
    BitVector_MSB(op2, 0);

    /* Compute the product of the mantissas */
    BitVector_Multiply(product, op1, op2);

    /* Normalize the product.  Note: we know the product is non-zero because
     * both of the original operands were non-zero.
     *
     * Look for the highest set bit, shift to make it the MSB, and adjust
     * exponent.  Don't let exponent go negative.
     */
    norm_amt = (MANT_BITS*2-1)-Set_Max(product);
    if (norm_amt > (long)acc->exponent)
        norm_amt = (long)acc->exponent;
    BitVector_Move_Left(product, (N_int)norm_amt);
    acc->exponent -= (unsigned short)norm_amt;

    /* Store the highest bits of the result */
    BitVector_Interval_Copy(acc->mantissa, product, 0, MANT_BITS, MANT_BITS);

    /* Free allocated variables */
    BitVector_Destroy(product);
    BitVector_Destroy(op1);
    BitVector_Destroy(op2);
}