Vector<Vector2> Navigation2D::get_simple_path(const Vector2 &p_start, const Vector2 &p_end, bool p_optimize) { Polygon *begin_poly = NULL; Polygon *end_poly = NULL; Vector2 begin_point; Vector2 end_point; float begin_d = 1e20; float end_d = 1e20; //look for point inside triangle for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); if (begin_d || end_d) { for (int i = 2; i < p.edges.size(); i++) { if (begin_d > 0) { if (Geometry::is_point_in_triangle(p_start, _get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point))) { begin_poly = &p; begin_point = p_start; begin_d = 0; if (end_d == 0) break; } } if (end_d > 0) { if (Geometry::is_point_in_triangle(p_end, _get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point))) { end_poly = &p; end_point = p_end; end_d = 0; if (begin_d == 0) break; } } } } p.prev_edge = -1; } } //start or end not inside triangle.. look for closest segment :| if (begin_d || end_d) { for (Map<int, NavMesh>::Element *E = navpoly_map.front(); E; E = E->next()) { if (!E->get().linked) continue; for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) { Polygon &p = F->get(); int es = p.edges.size(); for (int i = 0; i < es; i++) { Vector2 edge[2] = { _get_vertex(p.edges[i].point), _get_vertex(p.edges[(i + 1) % es].point) }; if (begin_d > 0) { Vector2 spoint = Geometry::get_closest_point_to_segment_2d(p_start, edge); float d = spoint.distance_to(p_start); if (d < begin_d) { begin_poly = &p; begin_point = spoint; begin_d = d; } } if (end_d > 0) { Vector2 spoint = Geometry::get_closest_point_to_segment_2d(p_end, edge); float d = spoint.distance_to(p_end); if (d < end_d) { end_poly = &p; end_point = spoint; end_d = d; } } } } } } if (!begin_poly || !end_poly) { return Vector<Vector2>(); //no path } if (begin_poly == end_poly) { Vector<Vector2> path; path.resize(2); path.write[0] = begin_point; path.write[1] = end_point; return path; } bool found_route = false; List<Polygon *> open_list; begin_poly->entry = p_start; for (int i = 0; i < begin_poly->edges.size(); i++) { if (begin_poly->edges[i].C) { begin_poly->edges[i].C->prev_edge = begin_poly->edges[i].C_edge; #ifdef USE_ENTRY_POINT Vector2 edge[2] = { _get_vertex(begin_poly->edges[i].point), _get_vertex(begin_poly->edges[(i + 1) % begin_poly->edges.size()].point) }; Vector2 entry = Geometry::get_closest_point_to_segment_2d(begin_poly->entry, edge); begin_poly->edges[i].C->distance = begin_poly->entry.distance_to(entry); begin_poly->edges[i].C->entry = entry; #else begin_poly->edges[i].C->distance = begin_poly->center.distance_to(begin_poly->edges[i].C->center); #endif open_list.push_back(begin_poly->edges[i].C); if (begin_poly->edges[i].C == end_poly) { found_route = true; } } } while (!found_route) { if (open_list.size() == 0) { break; } //check open list List<Polygon *>::Element *least_cost_poly = NULL; float least_cost = 1e30; //this could be faster (cache previous results) for (List<Polygon *>::Element *E = open_list.front(); E; E = E->next()) { Polygon *p = E->get(); float cost = p->distance; cost += p->center.distance_to(end_point); if (cost < least_cost) { least_cost_poly = E; least_cost = cost; } } Polygon *p = least_cost_poly->get(); //open the neighbours for search int es = p->edges.size(); for (int i = 0; i < es; i++) { Polygon::Edge &e = p->edges.write[i]; if (!e.C) continue; #ifdef USE_ENTRY_POINT Vector2 edge[2] = { _get_vertex(p->edges[i].point), _get_vertex(p->edges[(i + 1) % es].point) }; Vector2 edge_entry = Geometry::get_closest_point_to_segment_2d(p->entry, edge); float distance = p->entry.distance_to(edge_entry) + p->distance; #else float distance = p->center.distance_to(e.C->center) + p->distance; #endif if (e.C->prev_edge != -1) { //oh this was visited already, can we win the cost? if (e.C->distance > distance) { e.C->prev_edge = e.C_edge; e.C->distance = distance; #ifdef USE_ENTRY_POINT e.C->entry = edge_entry; #endif } } else { //add to open neighbours e.C->prev_edge = e.C_edge; e.C->distance = distance; #ifdef USE_ENTRY_POINT e.C->entry = edge_entry; #endif open_list.push_back(e.C); if (e.C == end_poly) { //oh my reached end! stop algorithm found_route = true; break; } } } if (found_route) break; open_list.erase(least_cost_poly); } if (found_route) { Vector<Vector2> path; if (p_optimize) { //string pulling Vector2 apex_point = end_point; Vector2 portal_left = apex_point; Vector2 portal_right = apex_point; Polygon *left_poly = end_poly; Polygon *right_poly = end_poly; Polygon *p = end_poly; while (p) { Vector2 left; Vector2 right; //#define CLOCK_TANGENT(m_a,m_b,m_c) ( ((m_a)-(m_c)).cross((m_a)-(m_b)) ) #define CLOCK_TANGENT(m_a, m_b, m_c) ((((m_a).x - (m_c).x) * ((m_b).y - (m_c).y) - ((m_b).x - (m_c).x) * ((m_a).y - (m_c).y))) if (p == begin_poly) { left = begin_point; right = begin_point; } else { int prev = p->prev_edge; int prev_n = (p->prev_edge + 1) % p->edges.size(); left = _get_vertex(p->edges[prev].point); right = _get_vertex(p->edges[prev_n].point); if (p->clockwise) { SWAP(left, right); } /*if (CLOCK_TANGENT(apex_point,left,(left+right)*0.5) < 0){ SWAP(left,right); }*/ } bool skip = false; /* print_line("-----\nAPEX: "+(apex_point-end_point)); print_line("LEFT:"); print_line("\tPortal: "+(portal_left-end_point)); print_line("\tPoint: "+(left-end_point)); print_line("\tLeft Tangent: "+rtos(CLOCK_TANGENT(apex_point,portal_left,left))); print_line("\tLeft Distance: "+rtos(portal_left.distance_squared_to(apex_point))); print_line("\tLeft Test: "+rtos(CLOCK_TANGENT(apex_point,left,portal_right))); print_line("RIGHT:"); print_line("\tPortal: "+(portal_right-end_point)); print_line("\tPoint: "+(right-end_point)); print_line("\tRight Tangent: "+rtos(CLOCK_TANGENT(apex_point,portal_right,right))); print_line("\tRight Distance: "+rtos(portal_right.distance_squared_to(apex_point))); print_line("\tRight Test: "+rtos(CLOCK_TANGENT(apex_point,right,portal_left))); */ if (CLOCK_TANGENT(apex_point, portal_left, left) >= 0) { //process if (portal_left.distance_squared_to(apex_point) < CMP_EPSILON || CLOCK_TANGENT(apex_point, left, portal_right) > 0) { left_poly = p; portal_left = left; } else { apex_point = portal_right; p = right_poly; left_poly = p; portal_left = apex_point; portal_right = apex_point; if (!path.size() || path[path.size() - 1].distance_to(apex_point) > CMP_EPSILON) path.push_back(apex_point); skip = true; } } if (!skip && CLOCK_TANGENT(apex_point, portal_right, right) <= 0) { //process if (portal_right.distance_squared_to(apex_point) < CMP_EPSILON || CLOCK_TANGENT(apex_point, right, portal_left) < 0) { right_poly = p; portal_right = right; } else { apex_point = portal_left; p = left_poly; right_poly = p; portal_right = apex_point; portal_left = apex_point; if (!path.size() || path[path.size() - 1].distance_to(apex_point) > CMP_EPSILON) path.push_back(apex_point); } } if (p != begin_poly) p = p->edges[p->prev_edge].C; else p = NULL; } } else { //midpoints Polygon *p = end_poly; while (true) { int prev = p->prev_edge; int prev_n = (p->prev_edge + 1) % p->edges.size(); Vector2 point = (_get_vertex(p->edges[prev].point) + _get_vertex(p->edges[prev_n].point)) * 0.5; path.push_back(point); p = p->edges[prev].C; if (p == begin_poly) break; } } if (!path.size() || path[path.size() - 1].distance_squared_to(begin_point) > CMP_EPSILON) { path.push_back(begin_point); // Add the begin point } else { path.write[path.size() - 1] = begin_point; // Replace first midpoint by the exact begin point } path.invert(); if (path.size() <= 1 || path[path.size() - 1].distance_squared_to(end_point) > CMP_EPSILON) { path.push_back(end_point); // Add the end point } else { path.write[path.size() - 1] = end_point; // Replace last midpoint by the exact end point } return path; } return Vector<Vector2>(); }
Vector<Vector3> Navigation::get_simple_path(const Vector3& p_start, const Vector3& p_end, bool p_optimize) { Polygon *begin_poly=NULL; Polygon *end_poly=NULL; Vector3 begin_point; Vector3 end_point; float begin_d=1e20; float end_d=1e20; for (Map<int,NavMesh>::Element*E=navmesh_map.front();E;E=E->next()) { if (!E->get().linked) continue; for(List<Polygon>::Element *F=E->get().polygons.front();F;F=F->next()) { Polygon &p=F->get(); for(int i=2;i<p.edges.size();i++) { Face3 f(_get_vertex(p.edges[0].point),_get_vertex(p.edges[i-1].point),_get_vertex(p.edges[i].point)); Vector3 spoint = f.get_closest_point_to(p_start); float dpoint = spoint.distance_to(p_start); if (dpoint<begin_d) { begin_d=dpoint; begin_poly=&p; begin_point=spoint; } spoint = f.get_closest_point_to(p_end); dpoint = spoint.distance_to(p_end); if (dpoint<end_d) { end_d=dpoint; end_poly=&p; end_point=spoint; } } p.prev_edge=-1; } } if (!begin_poly || !end_poly) { //print_line("No Path Path"); return Vector<Vector3>(); //no path } if (begin_poly==end_poly) { Vector<Vector3> path; path.resize(2); path[0]=begin_point; path[1]=end_point; //print_line("Direct Path"); return path; } bool found_route=false; List<Polygon*> open_list; for(int i=0;i<begin_poly->edges.size();i++) { if (begin_poly->edges[i].C) { begin_poly->edges[i].C->prev_edge=begin_poly->edges[i].C_edge; begin_poly->edges[i].C->distance=begin_poly->center.distance_to(begin_poly->edges[i].C->center); open_list.push_back(begin_poly->edges[i].C); if (begin_poly->edges[i].C==end_poly) { found_route=true; } } } while(!found_route) { if (open_list.size()==0) { // print_line("NOU OPEN LIST"); break; } //check open list List<Polygon*>::Element *least_cost_poly=NULL; float least_cost=1e30; //this could be faster (cache previous results) for (List<Polygon*>::Element *E=open_list.front();E;E=E->next()) { Polygon *p=E->get(); float cost=p->distance; cost+=p->center.distance_to(end_point); if (cost<least_cost) { least_cost_poly=E; least_cost=cost; } } Polygon *p=least_cost_poly->get(); //open the neighbours for search for(int i=0;i<p->edges.size();i++) { Polygon::Edge &e=p->edges[i]; if (!e.C) continue; float distance = p->center.distance_to(e.C->center) + p->distance; if (e.C->prev_edge!=-1) { //oh this was visited already, can we win the cost? if (e.C->distance>distance) { e.C->prev_edge=e.C_edge; e.C->distance=distance; } } else { //add to open neighbours e.C->prev_edge=e.C_edge; e.C->distance=distance; open_list.push_back(e.C); if (e.C==end_poly) { //oh my reached end! stop algorithm found_route=true; break; } } } if (found_route) break; open_list.erase(least_cost_poly); } if (found_route) { Vector<Vector3> path; if (p_optimize) { //string pulling Polygon *apex_poly=end_poly; Vector3 apex_point=end_point; Vector3 portal_left=apex_point; Vector3 portal_right=apex_point; Polygon *left_poly=end_poly; Polygon *right_poly=end_poly; Polygon *p=end_poly; path.push_back(end_point); while(p) { Vector3 left; Vector3 right; #define CLOCK_TANGENT(m_a,m_b,m_c) ( ((m_a)-(m_c)).cross((m_a)-(m_b)) ) if (p==begin_poly) { left=begin_point; right=begin_point; } else { int prev = p->prev_edge; int prev_n = (p->prev_edge+1)%p->edges.size(); left = _get_vertex(p->edges[prev].point); right = _get_vertex(p->edges[prev_n].point); //if (CLOCK_TANGENT(apex_point,left,(left+right)*0.5).dot(up) < 0){ if (p->clockwise) { SWAP(left,right); } } bool skip=false; if (CLOCK_TANGENT(apex_point,portal_left,left).dot(up) >= 0){ //process if (portal_left==apex_point || CLOCK_TANGENT(apex_point,left,portal_right).dot(up) > 0) { left_poly=p; portal_left=left; } else { _clip_path(path,apex_poly,portal_right,right_poly); apex_point=portal_right; p=right_poly; left_poly=p; apex_poly=p; portal_left=apex_point; portal_right=apex_point; path.push_back(apex_point); skip=true; } } if (!skip && CLOCK_TANGENT(apex_point,portal_right,right).dot(up) <= 0){ //process if (portal_right==apex_point || CLOCK_TANGENT(apex_point,right,portal_left).dot(up) < 0) { right_poly=p; portal_right=right; } else { _clip_path(path,apex_poly,portal_left,left_poly); apex_point=portal_left; p=left_poly; right_poly=p; apex_poly=p; portal_right=apex_point; portal_left=apex_point; path.push_back(apex_point); } } if (p!=begin_poly) p=p->edges[p->prev_edge].C; else p=NULL; } if (path[path.size()-1]!=begin_point) path.push_back(begin_point); path.invert(); } else { //midpoints Polygon *p=end_poly; path.push_back(end_point); while(true) { int prev = p->prev_edge; int prev_n = (p->prev_edge+1)%p->edges.size(); Vector3 point = (_get_vertex(p->edges[prev].point) + _get_vertex(p->edges[prev_n].point))*0.5; path.push_back(point); p = p->edges[prev].C; if (p==begin_poly) break; } path.push_back(begin_point); path.invert();; } return path; } return Vector<Vector3>(); }