Пример #1
0
EFI_STATUS
EFIAPI
InitializeAttrib (
  IN EFI_HANDLE           ImageHandle,
  IN EFI_SYSTEM_TABLE     *SystemTable
  )
/*++

Routine Description:

  Command entry point. Parses command line arguments and calls internal
  function to perform actual action.

Arguments:

  ImageHandle    The image handle. 
  SystemTable    The system table.

Returns:

  EFI_SUCCESS             - Command completed successfully
  EFI_INVALID_PARAMETER   - Command usage error
  Other value             - Unknown error
  
--*/
{
  UINTN                   Index;
  EFI_LIST_ENTRY          FileList;
  EFI_LIST_ENTRY          *Link;
  SHELL_FILE_ARG          *Arg;
  UINT64                  Remove;
  UINT64                  Add;
  EFI_STATUS              Status;

  SHELL_VAR_CHECK_CODE    RetCode;
  CHAR16                  *Useful;
  SHELL_ARG_LIST          *Item;
  SHELL_VAR_CHECK_PACKAGE ChkPck;

  ZeroMem (&ChkPck, sizeof (SHELL_VAR_CHECK_PACKAGE));

  //
  // We are no being installed as an internal command driver, initialize
  // as an nshell app and run
  //
  EFI_SHELL_APP_INIT (ImageHandle, SystemTable);

  //
  // Enable tab key which can pause the output
  //
  EnableOutputTabPause();
  
  Status = LibFilterNullArgs ();
  if (EFI_ERROR (Status)) {
    return Status;
  }
  //
  // Register our string package with HII and return the handle to it.
  // If previously registered we will simply receive the handle
  //
  EFI_SHELL_STR_INIT (HiiHandle, STRING_ARRAY_NAME, EfiAttribGuid);

  if (!EFI_PROPER_VERSION (0, 99)) {
    PrintToken (
      STRING_TOKEN (STR_SHELLENV_GNC_COMMAND_NOT_SUPPORT),
      HiiHandle,
      L"attrib",
      EFI_VERSION_0_99 
      );
    Status = EFI_UNSUPPORTED;
    goto Quit;
  }

  RetCode = LibCheckVariables (SI, AttribCheckList, &ChkPck, &Useful);
  if (VarCheckOk != RetCode) {
    switch (RetCode) {
    case VarCheckConflict:

      PrintToken (STRING_TOKEN (STR_SHELLENV_GNC_FLAG_CONFLICT), HiiHandle, L"attrib", Useful);
      break;

    case VarCheckDuplicate:

      PrintToken (STRING_TOKEN (STR_SHELLENV_GNC_DUP_FLAG), HiiHandle, L"attrib", Useful);
      break;

    case VarCheckUnknown:

      PrintToken (STRING_TOKEN (STR_SHELLENV_GNC_UNKNOWN_FLAG), HiiHandle, L"attrib", Useful);
      break;

    default:
      break;
    }

    Status = EFI_INVALID_PARAMETER;
    goto Quit;
  }
  //
  // Out put help.
  //
  if (LibCheckVarGetFlag (&ChkPck, L"-b") != NULL) {
    EnablePageBreak (DEFAULT_INIT_ROW, DEFAULT_AUTO_LF);
  }

  if (LibCheckVarGetFlag (&ChkPck, L"-?") != NULL) {
    if (IS_OLD_SHELL) {
      PrintToken (STRING_TOKEN (STR_NO_HELP), HiiHandle);
      goto Quit;
    }

    if (ChkPck.ValueCount > 0 ||
        ChkPck.FlagCount > 2 ||
        (2 == ChkPck.FlagCount && !LibCheckVarGetFlag (&ChkPck, L"-b"))
        ) {
      PrintToken (STRING_TOKEN (STR_SHELLENV_GNC_TOO_MANY), HiiHandle, L"attrib");
      Status = EFI_INVALID_PARAMETER;
    } else {
      PrintToken (STRING_TOKEN (STR_ATTRIB_VERBOSE_HELP), HiiHandle);
      Status = EFI_SUCCESS;
    }

    goto Quit;
  }
  //
  // Local Variable Initializations
  //
  InitializeListHead (&FileList);
  Link    = NULL;
  Arg     = NULL;
  Remove  = 0;
  Add     = 0;

  //
  // Parse command line arguments
  //
  Item = GetFirstFlag (&ChkPck);
  for (Index = 0; Index < ChkPck.FlagCount; Index += 1) {
    if (Item->FlagStr[0] == '-') {
      //
      // Attributes to remove
      //
      Status = AttribSet (&Item->FlagStr[1], &Remove);
      if (EFI_ERROR (Status)) {
        PrintToken (STRING_TOKEN (STR_SHELLENV_GNC_INVALID_ARG), HiiHandle, L"attrib", Item->FlagStr);
        goto Done;
      }
    } else if (Item->FlagStr[0] == '+') {
      //
      // Attributes to Add
      //
      Status = AttribSet (&Item->FlagStr[1], &Add);
      if (EFI_ERROR (Status)) {
        PrintToken (STRING_TOKEN (STR_SHELLENV_GNC_INVALID_ARG), HiiHandle, L"attrib", Item->FlagStr);
        goto Done;
      }
    } else {
      //
      // we should never get here
      //
      ASSERT (FALSE);
    }

    Item = GetNextArg (Item);
  }

  Item = GetFirstArg (&ChkPck);
  for (Index = 0; Index < ChkPck.ValueCount; Index += 1) {
    Status = ShellFileMetaArg (Item->VarStr, &FileList);
    if (EFI_ERROR (Status)) {
      PrintToken (STRING_TOKEN (STR_ATTRIB_CANNOT_OPEN), HiiHandle, L"attrib", Item->VarStr, Status);
      goto Done;
    }

    Item = GetNextArg (Item);
  }
  //
  // if no file is specified, get the whole directory
  //
  if (IsListEmpty (&FileList)) {
    Status = ShellFileMetaArg (L"*", &FileList);
    if (EFI_ERROR (Status)) {
      PrintToken (STRING_TOKEN (STR_ATTRIB_CANNOT_OPEN_DIR), HiiHandle, L"attrib", Status);
      goto Done;
    }
  }

  ShellDelDupFileArg (&FileList);
  //
  // Attrib each file
  //
  for (Link = FileList.Flink; Link != &FileList; Link = Link->Flink) {
    //
    // Break the execution?
    //
    if (GetExecutionBreak ()) {
      goto Done;
    }

    Arg     = CR (Link, SHELL_FILE_ARG, Link, SHELL_FILE_ARG_SIGNATURE);
    Status  = AttribFile (Arg, Remove, Add);
  }

Done:
  ShellFreeFileList (&FileList);
Quit:
  LibCheckVarFreeVarList (&ChkPck);
  LibUnInitializeStrings ();
  return Status;
}
Пример #2
0
/**
  The function will go through the driver option link list, load and start
  every driver the driver option device path point to.

  @param  BdsDriverLists        The header of the current driver option link list

**/
VOID
EFIAPI
BdsLibLoadDrivers (
  IN LIST_ENTRY                   *BdsDriverLists
  )
{
  EFI_STATUS                Status;
  LIST_ENTRY                *Link;
  BDS_COMMON_OPTION         *Option;
  EFI_HANDLE                ImageHandle;
  EFI_LOADED_IMAGE_PROTOCOL *ImageInfo;
  UINTN                     ExitDataSize;
  CHAR16                    *ExitData;
  BOOLEAN                   ReconnectAll;

  ReconnectAll = FALSE;

  //
  // Process the driver option
  //
  for (Link = BdsDriverLists->ForwardLink; Link != BdsDriverLists; Link = Link->ForwardLink) {
    Option = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);

    //
    // If a load option is not marked as LOAD_OPTION_ACTIVE,
    // the boot manager will not automatically load the option.
    //
    if (!IS_LOAD_OPTION_TYPE (Option->Attribute, LOAD_OPTION_ACTIVE)) {
      continue;
    }

    //
    // If a driver load option is marked as LOAD_OPTION_FORCE_RECONNECT,
    // then all of the EFI drivers in the system will be disconnected and
    // reconnected after the last driver load option is processed.
    //
    if (IS_LOAD_OPTION_TYPE (Option->Attribute, LOAD_OPTION_FORCE_RECONNECT)) {
      ReconnectAll = TRUE;
    }

    //
    // Make sure the driver path is connected.
    //
    BdsLibConnectDevicePath (Option->DevicePath);

    //
    // Load and start the image that Driver#### describes
    //
    Status = gBS->LoadImage (
                    FALSE,
                    mBdsImageHandle,
                    Option->DevicePath,
                    NULL,
                    0,
                    &ImageHandle
                    );

    if (!EFI_ERROR (Status)) {
      gBS->HandleProtocol (ImageHandle, &gEfiLoadedImageProtocolGuid, (VOID **) &ImageInfo);

      //
      // Verify whether this image is a driver, if not,
      // exit it and continue to parse next load option
      //
      if (ImageInfo->ImageCodeType != EfiBootServicesCode && ImageInfo->ImageCodeType != EfiRuntimeServicesCode) {
        gBS->Exit (ImageHandle, EFI_INVALID_PARAMETER, 0, NULL);
        continue;
      }

      if (Option->LoadOptionsSize != 0) {
        ImageInfo->LoadOptionsSize  = Option->LoadOptionsSize;
        ImageInfo->LoadOptions      = Option->LoadOptions;
      }
      //
      // Before calling the image, enable the Watchdog Timer for
      // the 5 Minute period
      //
#ifndef VBOX
      gBS->SetWatchdogTimer (5 * 60, 0x0000, 0x00, NULL);
#endif

      Status = gBS->StartImage (ImageHandle, &ExitDataSize, &ExitData);
      DEBUG ((DEBUG_INFO | DEBUG_LOAD, "Driver Return Status = %r\n", Status));

      //
      // Clear the Watchdog Timer after the image returns
      //
#ifndef VBOX
      gBS->SetWatchdogTimer (0x0000, 0x0000, 0x0000, NULL);
#endif
    }
  }

  //
  // Process the LOAD_OPTION_FORCE_RECONNECT driver option
  //
  if (ReconnectAll) {
    BdsLibDisconnectAllEfi ();
    BdsLibConnectAll ();
  }

}
Пример #3
0
inline void
Trr2kNTNT
( UpperOrLower uplo,
  Orientation orientationOfB, Orientation orientationOfD,
  T alpha, const DistMatrix<T,MC,MR>& A, const DistMatrix<T,MC,MR>& B,
           const DistMatrix<T,MC,MR>& C, const DistMatrix<T,MC,MR>& D,
  T beta,        DistMatrix<T,MC,MR>& E )
{
#ifndef RELEASE
    PushCallStack("internal::Trr2kNTNT");
    if( E.Height() != E.Width()  || A.Width()  != C.Width()  ||
        A.Height() != E.Height() || C.Height() != E.Height() ||
        B.Height() != E.Width()  || D.Height() != E.Width()  ||
        A.Width()  != B.Width()  || C.Width()  != D.Width() )
        throw std::logic_error("Nonconformal Trr2kNTNT");
#endif
    const Grid& g = E.Grid();

    DistMatrix<T,MC,MR> AL(g), AR(g),
                        A0(g), A1(g), A2(g);
    DistMatrix<T,MC,MR> BL(g), BR(g),
                        B0(g), B1(g), B2(g);

    DistMatrix<T,MC,MR> CL(g), CR(g),
                        C0(g), C1(g), C2(g);
    DistMatrix<T,MC,MR> DL(g), DR(g),
                        D0(g), D1(g), D2(g);

    DistMatrix<T,MC,  STAR> A1_MC_STAR(g);
    DistMatrix<T,VR,  STAR> B1_VR_STAR(g);
    DistMatrix<T,STAR,MR  > B1AdjOrTrans_STAR_MR(g);
    DistMatrix<T,MC,  STAR> C1_MC_STAR(g);
    DistMatrix<T,VR,  STAR> D1_VR_STAR(g);
    DistMatrix<T,STAR,MR  > D1AdjOrTrans_STAR_MR(g);

    A1_MC_STAR.AlignWith( E );
    B1_VR_STAR.AlignWith( E );
    B1AdjOrTrans_STAR_MR.AlignWith( E );
    C1_MC_STAR.AlignWith( E );
    D1_VR_STAR.AlignWith( E );
    D1AdjOrTrans_STAR_MR.AlignWith( E );

    LockedPartitionRight( A, AL, AR, 0 );
    LockedPartitionRight( B, BL, BR, 0 );
    LockedPartitionRight( C, CL, CR, 0 );
    LockedPartitionRight( D, DL, DR, 0 );
    while( AL.Width() < A.Width() )
    {
        LockedRepartitionRight
        ( AL, /**/ AR,
          A0, /**/ A1, A2 );
        LockedRepartitionRight
        ( BL, /**/ BR,
          B0, /**/ B1, B2 );
        LockedRepartitionRight
        ( CL, /**/ CR,
          C0, /**/ C1, C2 );
        LockedRepartitionRight
        ( CL, /**/ CR,
          C0, /**/ C1, C2 );

        //--------------------------------------------------------------------//
        A1_MC_STAR = A1;
        C1_MC_STAR = C1;
        B1_VR_STAR = B1;
        D1_VR_STAR = D1;
        if( orientationOfB == ADJOINT )
            B1AdjOrTrans_STAR_MR.AdjointFrom( B1_VR_STAR );
        else
            B1AdjOrTrans_STAR_MR.TransposeFrom( B1_VR_STAR );
        if( orientationOfD == ADJOINT )
            D1AdjOrTrans_STAR_MR.AdjointFrom( D1_VR_STAR );
        else
            D1AdjOrTrans_STAR_MR.TransposeFrom( D1_VR_STAR );
        LocalTrr2k
        ( uplo, 
          alpha, A1_MC_STAR, B1AdjOrTrans_STAR_MR, 
                 C1_MC_STAR, D1AdjOrTrans_STAR_MR,
          beta,  E );
        //--------------------------------------------------------------------//

        SlideLockedPartitionRight
        ( DL,     /**/ DR,
          D0, D1, /**/ D2 );
        SlideLockedPartitionRight
        ( CL,     /**/ CR,
          C0, C1, /**/ C2 );
        SlideLockedPartitionRight
        ( BL,     /**/ BR,
          B0, B1, /**/ B2 );
        SlideLockedPartitionRight
        ( AL,     /**/ AR,
          A0, A1, /**/ A2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
Пример #4
0
static int S_render_node(cmark_renderer *renderer, cmark_node *node,
                         cmark_event_type ev_type, int options) {
  cmark_node *tmp;
  int list_number;
  bool entering = (ev_type == CMARK_EVENT_ENTER);
  bool allow_wrap = renderer->width > 0 && !(CMARK_OPT_NOBREAKS & options);

  if (node->extension && node->extension->man_render_func) {
    node->extension->man_render_func(node->extension, renderer, node, ev_type, options);
    return 1;
  }

  switch (node->type) {
  case CMARK_NODE_DOCUMENT:
    if (entering) {
      /* Define a strikethrough macro */
      /* Commenting out because this makes tests fail
      LIT(".de ST");
      CR();
      LIT(".nr ww \\w'\\\\$1'");
      CR();
      LIT("\\Z@\\v'-.25m'\\l'\\\\n[ww]u'@\\\\$1");
      CR();
      LIT("..");
      CR();
      */
    }
    break;

  case CMARK_NODE_BLOCK_QUOTE:
    if (entering) {
      CR();
      LIT(".RS");
      CR();
    } else {
      CR();
      LIT(".RE");
      CR();
    }
    break;

  case CMARK_NODE_LIST:
    break;

  case CMARK_NODE_ITEM:
    if (entering) {
      CR();
      LIT(".IP ");
      if (cmark_node_get_list_type(node->parent) == CMARK_BULLET_LIST) {
        LIT("\\[bu] 2");
      } else {
        list_number = cmark_node_get_list_start(node->parent);
        tmp = node;
        while (tmp->prev) {
          tmp = tmp->prev;
          list_number += 1;
        }
        char list_number_s[LIST_NUMBER_SIZE];
        snprintf(list_number_s, LIST_NUMBER_SIZE, "\"%d.\" 4", list_number);
        LIT(list_number_s);
      }
      CR();
    } else {
      CR();
    }
    break;

  case CMARK_NODE_HEADING:
    if (entering) {
      CR();
      LIT(cmark_node_get_heading_level(node) == 1 ? ".SH" : ".SS");
      CR();
    } else {
      CR();
    }
    break;

  case CMARK_NODE_CODE_BLOCK:
    CR();
    LIT(".IP\n.nf\n\\f[C]\n");
    OUT(cmark_node_get_literal(node), false, NORMAL);
    CR();
    LIT("\\f[]\n.fi");
    CR();
    break;

  case CMARK_NODE_HTML_BLOCK:
    break;

  case CMARK_NODE_CUSTOM_BLOCK:
    CR();
    OUT(entering ? cmark_node_get_on_enter(node) : cmark_node_get_on_exit(node),
        false, LITERAL);
    CR();
    break;

  case CMARK_NODE_THEMATIC_BREAK:
    CR();
    LIT(".PP\n  *  *  *  *  *");
    CR();
    break;

  case CMARK_NODE_PARAGRAPH:
    if (entering) {
      // no blank line if first paragraph in list:
      if (node->parent && node->parent->type == CMARK_NODE_ITEM &&
          node->prev == NULL) {
        // no blank line or .PP
      } else {
        CR();
        LIT(".PP");
        CR();
      }
    } else {
      CR();
    }
    break;

  case CMARK_NODE_TEXT:
    OUT(cmark_node_get_literal(node), allow_wrap, NORMAL);
    break;

  case CMARK_NODE_LINEBREAK:
    LIT(".PD 0\n.P\n.PD");
    CR();
    break;

  case CMARK_NODE_SOFTBREAK:
    if (options & CMARK_OPT_HARDBREAKS) {
      LIT(".PD 0\n.P\n.PD");
      CR();
    } else if (renderer->width == 0 && !(CMARK_OPT_NOBREAKS & options)) {
      CR();
    } else {
      OUT(" ", allow_wrap, LITERAL);
    }
    break;

  case CMARK_NODE_CODE:
    LIT("\\f[C]");
    OUT(cmark_node_get_literal(node), allow_wrap, NORMAL);
    LIT("\\f[]");
    break;

  case CMARK_NODE_HTML_INLINE:
    break;

  case CMARK_NODE_CUSTOM_INLINE:
    OUT(entering ? cmark_node_get_on_enter(node) : cmark_node_get_on_exit(node),
        false, LITERAL);
    break;

  case CMARK_NODE_STRONG:
    if (entering) {
      LIT("\\f[B]");
    } else {
      LIT("\\f[]");
    }
    break;

  case CMARK_NODE_EMPH:
    if (entering) {
      LIT("\\f[I]");
    } else {
      LIT("\\f[]");
    }
    break;

  case CMARK_NODE_LINK:
    if (!entering) {
      LIT(" (");
      OUT(cmark_node_get_url(node), allow_wrap, URL);
      LIT(")");
    }
    break;

  case CMARK_NODE_IMAGE:
    if (entering) {
      LIT("[IMAGE: ");
    } else {
      LIT("]");
    }
    break;

  case CMARK_NODE_FOOTNOTE_DEFINITION:
  case CMARK_NODE_FOOTNOTE_REFERENCE:
    // TODO
    break;

  default:
    assert(false);
    break;
  }

  return 1;
}
Пример #5
0
EditStyle::EditStyle(Score* s, QWidget* parent)
   : QDialog(parent)
      {
      setupUi(this);
      setWindowFlags(this->windowFlags() & ~Qt::WindowContextHelpButtonHint);
      cs     = s;

      buttonApplyToAllParts = buttonBox->addButton(tr("Apply to all Parts"), QDialogButtonBox::ApplyRole);
      buttonApplyToAllParts->setEnabled(cs->parentScore() != nullptr);

      lstyle = *s->style();
      setModal(true);

      chordDescriptionFileButton->setIcon(*icons[int(Icons::fileOpen_ICON)]);

      pageList->setCurrentRow(0);

      //articulationTable->verticalHeader()->setVisible(false); // can get disabled in ui file
      articulationTable->setSelectionBehavior(QAbstractItemView::SelectRows);
      QStringList headers;
      headers << tr("Symbol") << tr("Anchor");
      articulationTable->setHorizontalHeaderLabels(headers);
      articulationTable->setColumnWidth(0, 200);
      articulationTable->setColumnWidth(1, 180);
      articulationTable->setRowCount(int(ArticulationType::ARTICULATIONS));

      accidentalsGroup->setVisible(false); // disable, not yet implemented

      musicalSymbolFont->clear();
      int idx = 0;
      for (auto i : ScoreFont::scoreFonts()) {
            musicalSymbolFont->addItem(i.name(), idx);
            ++idx;
            }

      for (int i = 0; i < int(ArticulationType::ARTICULATIONS); ++i) {
            ArticulationInfo* ai = &Articulation::articulationList[i];

            QPixmap ct = cs->scoreFont()->sym2pixmap(ai->upSym, 3.0);
            QIcon icon(ct);
            QTableWidgetItem* item = new QTableWidgetItem(icon, qApp->translate("articulation", qPrintable(ai->description)));

            item->setFlags(item->flags() & ~Qt::ItemIsEditable);
            articulationTable->setItem(i, 0, item);

            QComboBox* cb = new QComboBox();
            cb->addItem(tr("Above Staff"), int(ArticulationAnchor::TOP_STAFF));
            cb->addItem(tr("Below Staff"), int(ArticulationAnchor::BOTTOM_STAFF));
            cb->addItem(tr("Chord Automatic"), int(ArticulationAnchor::CHORD));
            cb->addItem(tr("Above Chord"), int(ArticulationAnchor::TOP_CHORD));
            cb->addItem(tr("Below Chord"), int(ArticulationAnchor::BOTTOM_CHORD));
            articulationTable->setCellWidget(i, 1, cb);
            }
      QButtonGroup* bg = new QButtonGroup(this);
      bg->addButton(editEvenHeaderL, 0);
      bg->addButton(editEvenHeaderC, 1);
      bg->addButton(editEvenHeaderR, 2);
      bg->addButton(editOddHeaderL,  3);
      bg->addButton(editOddHeaderC,  4);
      bg->addButton(editOddHeaderR,  5);

      bg->addButton(editEvenFooterL, 6);
      bg->addButton(editEvenFooterC, 7);
      bg->addButton(editEvenFooterR, 8);
      bg->addButton(editOddFooterL,  9);
      bg->addButton(editOddFooterC, 10);
      bg->addButton(editOddFooterR, 11);

      // figured bass init
      QList<QString> fbFontNames = FiguredBass::fontNames();
      foreach(const QString& family, fbFontNames)
            comboFBFont->addItem(family);
      comboFBFont->setCurrentIndex(0);
      connect(comboFBFont, SIGNAL(currentIndexChanged(int)), SLOT(on_comboFBFont_currentIndexChanged(int)));

      setValues();

      // keep in sync with implementation in Page::replaceTextMacros (page.cpp)
      // jumping thru hoops here to make the job of translators easier, yet have a nice display
      QString toolTipHeaderFooter
            = QString("<html><head></head><body><p><b>")
            + tr("Special symbols in header/footer")
            + QString("</b></p>")
            + QString("<table><tr><td>$p</td><td>-</td><td><i>")
            + tr("page number, except on first page")
            + QString("</i></td></tr><tr><td>$P</td><td>-</td><td><i>")
            + tr("page number, on all pages")
            + QString("</i></td></tr><tr><td>$n</td><td>-</td><td><i>")
            + tr("number of pages")
            + QString("</i></td></tr><tr><td>$f</td><td>-</td><td><i>")
            + tr("file name")
            + QString("</i></td></tr><tr><td>$F</td><td>-</td><td><i>")
            + tr("file path+name")
            + QString("</i></td></tr><tr><td>$d</td><td>-</td><td><i>")
            + tr("current date")
            + QString("</i></td></tr><tr><td>$D</td><td>-</td><td><i>")
            + tr("creation date")
            + QString("</i></td></tr><tr><td>$C</td><td>-</td><td><i>")
            + tr("copyright, on first page only")
            + QString("</i></td></tr><tr><td>$c</td><td>-</td><td><i>")
            + tr("copyright, on all pages")
            + QString("</i></td></tr><tr><td>$$</td><td>-</td><td><i>")
            + tr("the $ sign itself")
            + QString("</i></td></tr><tr><td>$:tag:</td><td>-</td><td><i>")
            + tr("meta data tag")
            + QString("</i></td></tr></table><p>")
            + tr("Available tags and their current values:")
            + QString("</p><table>");
      // shown all tags for curent score, see also Score::init()
      QMapIterator<QString, QString> i(cs->metaTags());
      while (i.hasNext()) {
            i.next();
            toolTipHeaderFooter += QString("<tr><td>%1</td><td>-</td><td>%2</td></tr>").arg(i.key()).arg(i.value());
      }
      toolTipHeaderFooter += QString("</table></body></html>");
      showHeader->setToolTip(toolTipHeaderFooter);
      showFooter->setToolTip(toolTipHeaderFooter);
      connect(buttonBox, SIGNAL(clicked(QAbstractButton*)), SLOT(buttonClicked(QAbstractButton*)));
      connect(headerOddEven, SIGNAL(toggled(bool)), SLOT(toggleHeaderOddEven(bool)));
      connect(footerOddEven, SIGNAL(toggled(bool)), SLOT(toggleFooterOddEven(bool)));
      connect(chordDescriptionFileButton, SIGNAL(clicked()), SLOT(selectChordDescriptionFile()));
      connect(chordsStandard, SIGNAL(toggled(bool)), SLOT(setChordStyle(bool)));
      connect(chordsJazz, SIGNAL(toggled(bool)), SLOT(setChordStyle(bool)));
      connect(chordsCustom, SIGNAL(toggled(bool)), SLOT(setChordStyle(bool)));
      connect(SwingOff, SIGNAL(toggled(bool)), SLOT(setSwingParams(bool)));
      connect(swingEighth, SIGNAL(toggled(bool)), SLOT(setSwingParams(bool)));
      connect(swingSixteenth, SIGNAL(toggled(bool)), SLOT(setSwingParams(bool)));
      connect(hideEmptyStaves, SIGNAL(clicked(bool)), dontHideStavesInFirstSystem, SLOT(setEnabled(bool)));

      connect(bg, SIGNAL(buttonClicked(int)), SLOT(editTextClicked(int)));

      QSignalMapper* mapper = new QSignalMapper(this);

#define CR(W, ID) connect(W, SIGNAL(clicked()), mapper, SLOT(map())); mapper->setMapping(W, int(ID));
      CR(resetVoltaY,                StyleIdx::voltaY);
      CR(resetVoltaHook,             StyleIdx::voltaHook);
      CR(resetVoltaLineWidth,        StyleIdx::voltaLineWidth);
      CR(resetVoltaLineStyle,        StyleIdx::voltaLineStyle);

      CR(resetOttavaY,               StyleIdx::ottavaY);
      CR(resetOttavaHook,            StyleIdx::ottavaHook);
      CR(resetOttavaLineWidth,       StyleIdx::ottavaLineWidth);
      CR(resetOttavaLineStyle,       StyleIdx::ottavaLineStyle);
      CR(resetOttavaNumbersOnly,     StyleIdx::ottavaNumbersOnly);

      CR(resetHairpinY,              StyleIdx::hairpinY);
      CR(resetHairpinLineWidth,      StyleIdx::hairpinLineWidth);
      CR(resetHairpinHeight,         StyleIdx::hairpinHeight);
      CR(resetHairpinContinueHeight, StyleIdx::hairpinContHeight);
#undef CR
      connect(mapper, SIGNAL(mapped(int)), SLOT(resetStyleValue(int)));

      }
Пример #6
0
static int S_render_node(cmark_renderer *renderer, cmark_node *node,
                         cmark_event_type ev_type, int options) {
  cmark_node *tmp;
  int list_number;
  cmark_delim_type list_delim;
  int numticks;
  int i;
  bool entering = (ev_type == CMARK_EVENT_ENTER);
  const char *info, *code, *title;
  size_t info_len, code_len;
  char listmarker[20];
  char *emph_delim;
  bufsize_t marker_width;

  // Don't adjust tight list status til we've started the list.
  // Otherwise we loose the blank line between a paragraph and
  // a following list.
  if (!(node->type == CMARK_NODE_ITEM && node->prev == NULL && entering)) {
    tmp = get_containing_block(node);
    renderer->in_tight_list_item =
        (tmp->type == CMARK_NODE_ITEM &&
         cmark_node_get_list_tight(tmp->parent)) ||
        (tmp && tmp->parent && tmp->parent->type == CMARK_NODE_ITEM &&
         cmark_node_get_list_tight(tmp->parent->parent));
  }

  switch (node->type) {
  case CMARK_NODE_DOCUMENT:
    break;

  case CMARK_NODE_BLOCK_QUOTE:
    if (entering) {
      LIT("> ");
      cmark_strbuf_puts(renderer->prefix, "> ");
    } else {
      cmark_strbuf_truncate(renderer->prefix, renderer->prefix->size - 2);
      BLANKLINE();
    }
    break;

  case CMARK_NODE_LIST:
    if (!entering && node->next && (node->next->type == CMARK_NODE_CODE_BLOCK ||
                                    node->next->type == CMARK_NODE_LIST)) {
      // this ensures 2 blank lines after list,
      // if before code block or list:
      LIT("\n");
    }
    break;

  case CMARK_NODE_ITEM:
    if (cmark_node_get_list_type(node->parent) == CMARK_BULLET_LIST) {
      marker_width = 2;
    } else {
      list_number = cmark_node_get_list_start(node->parent);
      list_delim = cmark_node_get_list_delim(node->parent);
      tmp = node;
      while (tmp->prev) {
        tmp = tmp->prev;
        list_number += 1;
      }
      // we ensure a width of at least 4 so
      // we get nice transition from single digits
      // to double
      sprintf(listmarker, "%d%s%s", list_number,
              list_delim == CMARK_PAREN_DELIM ? ")" : ".",
              list_number < 10 ? "  " : " ");
      marker_width = safe_strlen(listmarker);
    }
    if (entering) {
      if (cmark_node_get_list_type(node->parent) == CMARK_BULLET_LIST) {
        LIT("* ");
        cmark_strbuf_puts(renderer->prefix, "  ");
      } else {
        LIT(listmarker);
        for (i = marker_width; i--;) {
          cmark_strbuf_putc(renderer->prefix, ' ');
        }
      }
    } else {
      cmark_strbuf_truncate(renderer->prefix,
                            renderer->prefix->size - marker_width);
      CR();
    }
    break;

  case CMARK_NODE_HEADER:
    if (entering) {
      for (int i = cmark_node_get_header_level(node); i > 0; i--) {
        LIT("#");
      }
      LIT(" ");
      renderer->no_wrap = true;
    } else {
      renderer->no_wrap = false;
      BLANKLINE();
    }
    break;

  case CMARK_NODE_CODE_BLOCK:
    BLANKLINE();
    info = cmark_node_get_fence_info(node);
    info_len = safe_strlen(info);
    code = cmark_node_get_literal(node);
    code_len = safe_strlen(code);
    // use indented form if no info, and code doesn't
    // begin or end with a blank line, and code isn't
    // first thing in a list item
    if (info_len == 0 &&
        (code_len > 2 && !isspace(code[0]) &&
         !(isspace(code[code_len - 1]) && isspace(code[code_len - 2]))) &&
        !(node->prev == NULL && node->parent &&
          node->parent->type == CMARK_NODE_ITEM)) {
      LIT("    ");
      cmark_strbuf_puts(renderer->prefix, "    ");
      OUT(cmark_node_get_literal(node), false, LITERAL);
      cmark_strbuf_truncate(renderer->prefix, renderer->prefix->size - 4);
    } else {
      numticks = longest_backtick_sequence(code) + 1;
      if (numticks < 3) {
        numticks = 3;
      }
      for (i = 0; i < numticks; i++) {
        LIT("`");
      }
      LIT(" ");
      OUT(info, false, LITERAL);
      CR();
      OUT(cmark_node_get_literal(node), false, LITERAL);
      CR();
      for (i = 0; i < numticks; i++) {
        LIT("`");
      }
    }
    BLANKLINE();
    break;

  case CMARK_NODE_HTML:
    BLANKLINE();
    OUT(cmark_node_get_literal(node), false, LITERAL);
    BLANKLINE();
    break;

  case CMARK_NODE_HRULE:
    BLANKLINE();
    LIT("-----");
    BLANKLINE();
    break;

  case CMARK_NODE_PARAGRAPH:
    if (!entering) {
      BLANKLINE();
    }
    break;

  case CMARK_NODE_TEXT:
    OUT(cmark_node_get_literal(node), true, NORMAL);
    break;

  case CMARK_NODE_LINEBREAK:
    if (!(CMARK_OPT_HARDBREAKS & options)) {
      LIT("\\");
    }
    CR();
    break;

  case CMARK_NODE_SOFTBREAK:
    if (renderer->width == 0 && !(CMARK_OPT_HARDBREAKS & options)) {
      CR();
    } else {
      OUT(" ", true, LITERAL);
    }
    break;

  case CMARK_NODE_CODE:
    code = cmark_node_get_literal(node);
    code_len = safe_strlen(code);
    numticks = shortest_unused_backtick_sequence(code);
    for (i = 0; i < numticks; i++) {
      LIT("`");
    }
    if (code_len == 0 || code[0] == '`') {
      LIT(" ");
    }
    OUT(cmark_node_get_literal(node), true, LITERAL);
    if (code_len == 0 || code[code_len - 1] == '`') {
      LIT(" ");
    }
    for (i = 0; i < numticks; i++) {
      LIT("`");
    }
    break;

  case CMARK_NODE_INLINE_HTML:
    OUT(cmark_node_get_literal(node), false, LITERAL);
    break;

  case CMARK_NODE_STRONG:
    if (entering) {
      LIT("**");
    } else {
      LIT("**");
    }
    break;

  case CMARK_NODE_EMPH:
    // If we have EMPH(EMPH(x)), we need to use *_x_*
    // because **x** is STRONG(x):
    if (node->parent && node->parent->type == CMARK_NODE_EMPH &&
        node->next == NULL && node->prev == NULL) {
      emph_delim = "_";
    } else {
      emph_delim = "*";
    }
    if (entering) {
      LIT(emph_delim);
    } else {
      LIT(emph_delim);
    }
    break;

  case CMARK_NODE_LINK:
    if (is_autolink(node)) {
      if (entering) {
        LIT("<");
        if (strncmp(cmark_node_get_url(node), "mailto:", 7) == 0) {
          LIT((char *)cmark_node_get_url(node) + 7);
        } else {
          LIT((char *)cmark_node_get_url(node));
        }
        LIT(">");
        // return signal to skip contents of node...
        return 0;
      }
    } else {
      if (entering) {
        LIT("[");
      } else {
        LIT("](");
        OUT(cmark_node_get_url(node), false, URL);
        title = cmark_node_get_title(node);
        if (safe_strlen(title) > 0) {
          LIT(" \"");
          OUT(title, false, TITLE);
          LIT("\"");
        }
        LIT(")");
      }
    }
    break;

  case CMARK_NODE_IMAGE:
    if (entering) {
      LIT("![");
    } else {
      LIT("](");
      OUT(cmark_node_get_url(node), false, URL);
      title = cmark_node_get_title(node);
      if (safe_strlen(title) > 0) {
        OUT(" \"", true, LITERAL);
        OUT(title, false, TITLE);
        LIT("\"");
      }
      LIT(")");
    }
    break;

  default:
    assert(false);
    break;
  }

  return 1;
}
Пример #7
0
inline void
internal::GemmTNA
( Orientation orientationOfA,
  T alpha, const DistMatrix<T,MC,MR>& A,
           const DistMatrix<T,MC,MR>& B,
  T beta,        DistMatrix<T,MC,MR>& C )
{
#ifndef RELEASE
    PushCallStack("internal::GemmTNA");    
    if( A.Grid() != B.Grid() || B.Grid() != C.Grid() )
        throw std::logic_error
        ("{A,B,C} must be distributed over the same grid");
    if( orientationOfA == NORMAL )
        throw std::logic_error("GemmTNA assumes A is (Conjugate)Transposed");
    if( A.Width()  != C.Height() ||
        B.Width()  != C.Width()  ||
        A.Height() != B.Height()   )
    {
        std::ostringstream msg;
        msg << "Nonconformal GemmTNA: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B ~ " << B.Height() << " x " << B.Width() << "\n"
            << "  C ~ " << C.Height() << " x " << C.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<T,MC,MR> BL(g), BR(g),
                        B0(g), B1(g), B2(g);

    DistMatrix<T,MC,MR> CL(g), CR(g),
                        C0(g), C1(g), C2(g);

    // Temporary distributions
    DistMatrix<T,MC,STAR> B1_MC_STAR(g);
    DistMatrix<T,MR,STAR> D1_MR_STAR(g);
    DistMatrix<T,MR,MC  > D1_MR_MC(g);
    DistMatrix<T,MC,MR  > D1(g);

    // Start the algorithm
    Scal( beta, C );
    LockedPartitionRight( B, BL, BR, 0 );
    PartitionRight( C, CL, CR, 0 );
    while( BR.Width() > 0 )
    {
        LockedRepartitionRight
        ( BL, /**/     BR,
          B0, /**/ B1, B2 );
 
        RepartitionRight
        ( CL, /**/     CR,
          C0, /**/ C1, C2 );

        B1_MC_STAR.AlignWith( A );
        D1_MR_STAR.AlignWith( A );
        D1_MR_STAR.ResizeTo( C1.Height(), C1.Width() );
        D1.AlignWith( C1 );
        //--------------------------------------------------------------------//
        B1_MC_STAR = B1; // B1[MC,*] <- B1[MC,MR]

        // D1[MR,*] := alpha (A1[MC,MR])^T B1[MC,*]
        //           = alpha (A1^T)[MR,MC] B1[MC,*]
        internal::LocalGemm
        ( orientationOfA, NORMAL, alpha, A, B1_MC_STAR, (T)0, D1_MR_STAR );

        // C1[MC,MR] += scattered & transposed D1[MR,*] summed over grid cols
        D1_MR_MC.SumScatterFrom( D1_MR_STAR );
        D1 = D1_MR_MC; 
        Axpy( (T)1, D1, C1 );
        //--------------------------------------------------------------------//
        B1_MC_STAR.FreeAlignments();
        D1_MR_STAR.FreeAlignments();
        D1.FreeAlignments();

        SlideLockedPartitionRight
        ( BL,     /**/ BR,
          B0, B1, /**/ B2 );

        SlidePartitionRight
        ( CL,     /**/ CR,
          C0, C1, /**/ C2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}
Пример #8
0
	/**
	 * @brief      Assign k-space trajectory
	 * 
	 * @param  k   K-space trajectory
	 */
	void KSpace (const Matrix<RT>& k) {
		m_k = k;
        if (size(k,1) == KSpaceSize() && m_nmany == 1) {
#pragma omp parallel num_threads (m_fts.size())
            {
                m_fts[omp_get_thread_num()].KSpace(k);
            }
        } else if (size(m_k,2) == m_nmany) {
#pragma omp parallel num_threads (m_fts.size())
        	{
        		size_t i = omp_get_thread_num();
				if (ndims(k)==3)
					m_fts[i].KSpace(k(CR(),CR(),CR(i)));
				else if (ndims(k) == 4)
					m_fts[i].KSpace(k(CR(),CR(),CR(),CR(i)));
				else
					throw NCSENSE_KSPACE_DIMENSIONS;
        	}
		} else if (size(m_k,2)*size(m_k,3) == m_nmany) {
#pragma omp parallel num_threads (m_fts.size())
            {
                size_t i = omp_get_thread_num(), l=i%size(m_k,2), n = i/size(m_k,2);
                if (ndims(k)==4)
                    m_fts[i].KSpace(k(CR(),CR(),CR(l),CR(n)));
                else if (ndims(k) == 5)
                    m_fts[i].KSpace(k(CR(),CR(),CR(),CR(l),CR(n)));
                else 
                    throw NCSENSE_KSPACE_DIMENSIONS;
            }
        } else {
            throw NCSENSE_KSPACE_DIMENSIONS;
        }
    }
Пример #9
0
bool SparseMatrixTest(const size_t & size,
                      const C_FLOAT64 & sparseness,
                      const unsigned C_INT32 & seed,
                      const bool & RMP,
                      const bool & dgemmFlag,
                      const bool & SMP,
                      const bool & CCMP)
{
  size_t i, j, l, loop = 1;
  CRandom * pRandom =
    CRandom::createGenerator(CRandom::mt19937, seed);

  // If the sparseness is not specified we expect 4 metabolites per reaction
  C_FLOAT64 Sparseness = sparseness;

  if (Sparseness == 0.0) Sparseness = 4.0 / size;

  CMatrix< C_FLOAT64 > M(size - 3, size);
  CSparseMatrix S(size - 3, size);
  CMatrix< C_FLOAT64 > MM(size, size + 3);
  CSparseMatrix Ss(size, size + 3);
  C_FLOAT64 tmp;

  for (i = 0; i < size - 3; i++)
    for (j = 0; j < size; j++)
      {
        if (pRandom->getRandomCC() < Sparseness)
          S(i, j) = (pRandom->getRandomCC() - 0.5) * 100.0;
      }

  for (i = 0; i < size; i++)
    for (j = 0; j < size + 3; j++)
      {
        if (pRandom->getRandomCC() < Sparseness)
          Ss(i, j) = (pRandom->getRandomCC() - 0.5) * 100.0;
      }

  M = S;
  MM = Ss;

  CCompressedColumnFormat C(S);
  CCompressedColumnFormat CC(Ss);

  std::cout << "Memory requirements for sparseness:\t" << Sparseness << std::endl;

  tmp = (C_FLOAT64) sizeof(CMatrix< C_FLOAT64 >) + size * size * sizeof(C_FLOAT64);
  std::cout << "Matrix(" << size << "x" << size << "):\t" << tmp << std::endl;

  C_FLOAT64 tmp2 = (C_FLOAT64) sizeof(CSparseMatrix)
                   + 2 * size * sizeof(std::vector<CSparseMatrixElement *>)
                   + 2 * size * sizeof(C_FLOAT64)
                   + S.numNonZeros() * sizeof(CSparseMatrixElement);
  std::cout << "Sparse(" << size << "x" << size << "):\t" << tmp2 << std::endl;
  std::cout << "Sparse/Matrix:\t" << tmp2 / tmp << std::endl;

  tmp2 = (C_FLOAT64) sizeof(CCompressedColumnFormat)
         + 2 * C.numNonZeros() * sizeof(C_FLOAT64)
         + (size + 1) * sizeof(C_FLOAT64);
  std::cout << "CompressedColumnFormat(" << size << "x" << size << "):\t" << tmp2 << std::endl;
  std::cout << "CompressedColumnFormat/Matrix:\t" << tmp2 / tmp << std::endl << std::endl;

  CCopasiTimer CPU(CCopasiTimer::PROCESS);
  CCopasiTimer WALL(CCopasiTimer::WALL);

  if (RMP)
    {
      // Regular Matrix Product
      CPU.start();
      WALL.start();

      for (l = 0; l < loop; l++)
        {
          CMatrix< C_FLOAT64 > MR(M.numRows(), MM.numCols());
          const C_FLOAT64 *pTmp1, *pTmp2, *pTmp4, *pTmp5;
          const C_FLOAT64 *pEnd1, *pEnd2, *pEnd4;
          C_FLOAT64 *pTmp3;

          size_t LDA = M.numCols();
          size_t LDB = MM.numCols();

          pTmp1 = M.array();
          pEnd1 = pTmp1 + M.numRows() * LDA;

          pEnd2 = MM.array() + LDB;
          pTmp3 = MR.array();

          for (; pTmp1 < pEnd1; pTmp1 += LDA)
            for (pTmp2 = MM.array(); pTmp2 < pEnd2; pTmp2++, pTmp3++)
              {
                *pTmp3 = 0.0;

                for (pTmp4 = pTmp1, pTmp5 = pTmp2, pEnd4 = pTmp4 + LDA;
                     pTmp4 < pEnd4; pTmp4++, pTmp5 += LDB)
                  * pTmp3 += *pTmp4 * *pTmp5;
              }
        }

      CPU.refresh();
      WALL.refresh();
      std::cout << "Matrix * Matrix:\t";
      CPU.print(&std::cout);
      std::cout << "\t";
      WALL.print(&std::cout);
      std::cout << std::endl;
    }

  if (dgemmFlag)
    {
      CPU.start();
      WALL.start();

      for (l = 0; l < loop; l++)
        {
          CMatrix< C_FLOAT64 > dgemmR(M.numRows(), MM.numCols());
          char T = 'N';

          C_INT m = (C_INT) MM.numCols(); /* LDA, LDC */
          C_INT n = (C_INT) M.numRows();
          C_INT k = (C_INT) M.numCols();  /* LDB */

          C_FLOAT64 Alpha = 1.0;
          C_FLOAT64 Beta = 0.0;

          dgemm_(&T, &T, &m, &n, &k, &Alpha, MM.array(), &m,
                 M.array(), &k, &Beta, dgemmR.array(), &m);
        }

      /*
        for (i = 0; i < MR.numRows(); i++)
          for (j = 0; j < MR.numCols(); j++)
            assert(fabs(MR(i, j) - dgemmR(i, j)) <= 100.0 * std::numeric_limits< C_FLOAT64 >::epsilon() * fabs(MR(i, j)));
      */

      CPU.refresh();
      WALL.refresh();
      std::cout << "dgemm(Matrix, Matrix):\t";
      CPU.print(&std::cout);
      std::cout << "\t";
      WALL.print(&std::cout);
      std::cout << std::endl;
    }

  // Sparse Matrix Product
  if (SMP)
    {
      CPU.start();
      WALL.start();

      for (l = 0; l < loop; l++)
        {
          CSparseMatrix SR(S.numRows(), Ss.numCols());
          C_FLOAT64 Tmp;
          std::vector< std::vector< CSparseMatrixElement * > >::const_iterator itRow;
          std::vector< std::vector< CSparseMatrixElement * > >::const_iterator endRow;
          std::vector< CSparseMatrixElement * >::const_iterator itRowElement;
          std::vector< CSparseMatrixElement * >::const_iterator endRowElement;
          std::vector< std::vector< CSparseMatrixElement * > >::const_iterator itCol;
          std::vector< std::vector< CSparseMatrixElement * > >::const_iterator endCol;
          std::vector< CSparseMatrixElement * >::const_iterator itColElement;
          std::vector< CSparseMatrixElement * >::const_iterator endColElement;

          for (itRow = S.getRows().begin(), endRow = S.getRows().end(); itRow != endRow; ++itRow)
            {
              endRowElement = itRow->end();

              for (itCol = Ss.getColumns().begin(), endCol = Ss.getColumns().end(); itCol != endCol; ++itCol)
                {
                  Tmp = 0;
                  itRowElement = itRow->begin();
                  itColElement = itCol->begin();
                  endColElement = itCol->end();

                  while (itRowElement != endRowElement &&
                         itColElement != endColElement)
                    {
                      while (itRowElement != endRowElement &&
                             (*itRowElement)->col() < (*itColElement)->row()) ++itRowElement;

                      if (itRowElement == endRowElement) break;

                      while (itColElement != endColElement &&
                             (*itColElement)->row() < (*itRowElement)->col()) ++itColElement;

                      if (itColElement == endColElement) break;

                      if ((*itRowElement)->col() != (*itColElement)->row()) continue;

                      Tmp += **itRowElement * **itColElement;
                      ++itRowElement;
                      ++itColElement;
                    }

                  if (fabs(Tmp) < SR.getTreshold()) continue;

                  SR.insert((*itRow->begin())->row(), (*itCol->begin())->col(), Tmp);
                }
            }
        }

      CPU.refresh();
      WALL.refresh();
      std::cout << "Sparse * Sparse:\t";
      CPU.print(&std::cout);
      std::cout << "\t";
      WALL.print(&std::cout);
      std::cout << std::endl;

      /*
        for (i = 0; i < MR.numRows(); i++)
          for (j = 0; j < MR.numCols(); j++)
            assert(fabs(MR(i, j) - SR(i, j)) < SR.getTreshold());
      */
    }

  // Compressed Column Format Product
  if (CCMP)
    {
      CPU.start();
      WALL.start();

      for (l = 0; l < loop; l++)
        {
          CSparseMatrix TmpR(C.numRows(), CC.numCols());
          CCompressedColumnFormat CR(C.numRows(), CC.numCols(), 0);
          C_FLOAT64 Tmp;
          size_t imax = CR.numRows();
          size_t jmax = CR.numCols();
          C_FLOAT64 * pColElement, * pEndColElement;
          size_t * pColElementRow, * pEndColElementRow;
          size_t * pColStart;
          CCompressedColumnFormat::const_row_iterator itRowElement;
          CCompressedColumnFormat::const_row_iterator endRowElement = C.endRow(0);

          for (j = 0, pColStart = CC.getColumnStart(); j < jmax; j++, pColStart++)
            {
              for (i = 0; i < imax; i++)
                {
                  Tmp = 0;

                  itRowElement = C.beginRow(i);
                  pColElement = CC.getValues() + *pColStart;
                  pEndColElement = CC.getValues() + *(pColStart + 1);
                  pColElementRow = CC.getRowIndex() + *pColStart;
                  pEndColElementRow = CC.getRowIndex() + *(pColStart + 1);

                  while (itRowElement != endRowElement &&
                         pColElement != pEndColElement)
                    {
                      while (itRowElement != endRowElement &&
                             itRowElement.getColumnIndex() < *pColElementRow) ++itRowElement;

                      if (!(itRowElement != endRowElement)) break;

                      while (pColElement != pEndColElement &&
                             *pColElementRow < itRowElement.getColumnIndex())
                        {
                          ++pColElement;
                          ++pColElementRow;
                        }

                      if (pColElement == pEndColElement) break;

                      if (itRowElement.getColumnIndex() != *pColElementRow) continue;

                      Tmp += *itRowElement * *pColElement;
                      ++itRowElement;
                      ++pColElement;
                      ++pColElementRow;
                    }

                  if (fabs(Tmp) < TmpR.getTreshold()) continue;

                  TmpR.insert(i, j, Tmp);
                }
            }

          CR = TmpR;
        }

      CPU.refresh();
      WALL.refresh();
      std::cout << "Compressed * Compressed:\t";
      CPU.print(&std::cout);
      std::cout << "\t";
      WALL.print(&std::cout);
      std::cout << std::endl;

      /*
        for (i = 0; i < MR.numRows(); i++)
          for (j = 0; j < MR.numCols(); j++)
            assert(fabs(MR(i, j) - TmpR(i, j)) < SR.getTreshold());
      */
    }

  std::cout << std::endl;
  std::cout << std::endl;

  return true;
}
Пример #10
0
/**
  Set the memory map to new entries, according to one old entry,
  based upon PE code section and data section in image record

  @param  ImageRecord            An image record whose [ImageBase, ImageSize] covered
                                 by old memory map entry.
  @param  NewRecord              A pointer to several new memory map entries.
                                 The caller gurantee the buffer size be 1 +
                                 (SplitRecordCount * DescriptorSize) calculated
                                 below.
  @param  OldRecord              A pointer to one old memory map entry.
  @param  DescriptorSize         Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
UINTN
SetNewRecord (
  IN IMAGE_PROPERTIES_RECORD       *ImageRecord,
  IN OUT EFI_MEMORY_DESCRIPTOR     *NewRecord,
  IN EFI_MEMORY_DESCRIPTOR         *OldRecord,
  IN UINTN                         DescriptorSize
  )
{
  EFI_MEMORY_DESCRIPTOR                     TempRecord;
  IMAGE_PROPERTIES_RECORD_CODE_SECTION      *ImageRecordCodeSection;
  LIST_ENTRY                                *ImageRecordCodeSectionLink;
  LIST_ENTRY                                *ImageRecordCodeSectionEndLink;
  LIST_ENTRY                                *ImageRecordCodeSectionList;
  UINTN                                     NewRecordCount;
  UINT64                                    PhysicalEnd;
  UINT64                                    ImageEnd;

  CopyMem (&TempRecord, OldRecord, sizeof(EFI_MEMORY_DESCRIPTOR));
  PhysicalEnd = TempRecord.PhysicalStart + EfiPagesToSize(TempRecord.NumberOfPages);
  NewRecordCount = 0;

  ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;

  ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
  ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
  while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
    ImageRecordCodeSection = CR (
                               ImageRecordCodeSectionLink,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION,
                               Link,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
                               );
    ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;

    if (TempRecord.PhysicalStart <= ImageRecordCodeSection->CodeSegmentBase) {
      //
      // DATA
      //
      if (!mPropertiesTableEnable) {
        NewRecord->Type = TempRecord.Type;
      } else {
        NewRecord->Type = EfiRuntimeServicesData;
      }
      NewRecord->PhysicalStart = TempRecord.PhysicalStart;
      NewRecord->VirtualStart  = 0;
      NewRecord->NumberOfPages = EfiSizeToPages(ImageRecordCodeSection->CodeSegmentBase - NewRecord->PhysicalStart);
      NewRecord->Attribute     = TempRecord.Attribute | EFI_MEMORY_XP;
      if (NewRecord->NumberOfPages != 0) {
        NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
        NewRecordCount ++;
      }

      //
      // CODE
      //
      if (!mPropertiesTableEnable) {
        NewRecord->Type = TempRecord.Type;
      } else {
        NewRecord->Type = EfiRuntimeServicesCode;
      }
      NewRecord->PhysicalStart = ImageRecordCodeSection->CodeSegmentBase;
      NewRecord->VirtualStart  = 0;
      NewRecord->NumberOfPages = EfiSizeToPages(ImageRecordCodeSection->CodeSegmentSize);
      NewRecord->Attribute     = (TempRecord.Attribute & (~EFI_MEMORY_XP)) | EFI_MEMORY_RO;
      if (NewRecord->NumberOfPages != 0) {
        NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
        NewRecordCount ++;
      }

      TempRecord.PhysicalStart = ImageRecordCodeSection->CodeSegmentBase + EfiPagesToSize (EfiSizeToPages(ImageRecordCodeSection->CodeSegmentSize));
      TempRecord.NumberOfPages = EfiSizeToPages(PhysicalEnd - TempRecord.PhysicalStart);
      if (TempRecord.NumberOfPages == 0) {
        break;
      }
    }
  }

  ImageEnd = ImageRecord->ImageBase + ImageRecord->ImageSize;

  //
  // Final DATA
  //
  if (TempRecord.PhysicalStart < ImageEnd) {
    if (!mPropertiesTableEnable) {
      NewRecord->Type = TempRecord.Type;
    } else {
      NewRecord->Type = EfiRuntimeServicesData;
    }
    NewRecord->PhysicalStart = TempRecord.PhysicalStart;
    NewRecord->VirtualStart  = 0;
    NewRecord->NumberOfPages = EfiSizeToPages (ImageEnd - TempRecord.PhysicalStart);
    NewRecord->Attribute     = TempRecord.Attribute | EFI_MEMORY_XP;
    NewRecordCount ++;
  }

  return NewRecordCount;
}
Пример #11
0
/**
  Checks the sorted timer list against the current system time.
  Signals any expired event timer.

  @param  CheckEvent             Not used
  @param  Context                Not used

**/
VOID
EFIAPI
CoreCheckTimers (
  IN EFI_EVENT            CheckEvent,
  IN VOID                 *Context
  )
{
  UINT64                  SystemTime;
  IEVENT                  *Event;

  //
  // Check the timer database for expired timers
  //
  CoreAcquireLock (&mEfiTimerLock);
  SystemTime = CoreCurrentSystemTime ();

  while (!IsListEmpty (&mEfiTimerList)) {
    Event = CR (mEfiTimerList.ForwardLink, IEVENT, Timer.Link, EVENT_SIGNATURE);

    //
    // If this timer is not expired, then we're done
    //
    if (Event->Timer.TriggerTime > SystemTime) {
      break;
    }

    //
    // Remove this timer from the timer queue
    //

    RemoveEntryList (&Event->Timer.Link);
    Event->Timer.Link.ForwardLink = NULL;

    //
    // Signal it
    //
    CoreSignalEvent (Event);

    //
    // If this is a periodic timer, set it
    //
    if (Event->Timer.Period != 0) {
      //
      // Compute the timers new trigger time
      //
      Event->Timer.TriggerTime = Event->Timer.TriggerTime + Event->Timer.Period;

      //
      // If that's before now, then reset the timer to start from now
      //
      if (Event->Timer.TriggerTime <= SystemTime) {
        Event->Timer.TriggerTime = SystemTime;
        CoreSignalEvent (mEfiCheckTimerEvent);
      }

      //
      // Add the timer
      //
      CoreInsertEventTimer (Event);
    }
  }

  CoreReleaseLock (&mEfiTimerLock);
}
Пример #12
0
int
camera_init (Camera *camera, GPContext *context)
{
	GPPortSettings settings;
	unsigned int speed, i;
	int result;
	RicohModel model = 0;

	/* Try to contact the camera. */
	CR (gp_port_set_timeout (camera->port, 5000));
	CR (gp_port_get_settings (camera->port, &settings));
	speed = (settings.serial.speed ? settings.serial.speed : 115200);
	for (i = 0; speeds[i].speed; i++) {
		GP_DEBUG ("Trying speed %i...", speeds[i].speed);
		settings.serial.speed = speeds[i].speed;
		CR (gp_port_set_settings (camera->port, settings));

		/*
		 * Note that ricoh_connect can only be called to 
		 * initialize the connection at 2400 bps. At other
		 * speeds, a different function needs to be used.
		 */
		result = (speeds[i].rspeed == RICOH_SPEED_2400) ? 
				ricoh_connect (camera, NULL, &model) :
				ricoh_get_mode (camera, NULL, NULL);
		if (result == GP_OK)
			break;
	}

	/* Contact made? If not, report error. */
	if (!speeds[i].speed) {
		gp_context_error (context, _("Could not contact camera."));
		return (GP_ERROR);
	}

	/* Contact made. Do we need to change the speed? */
	if (settings.serial.speed != speed) {
		for (i = 0; speeds[i].speed; i++)
			if (speeds[i].speed == speed)
				break;
		if (!speeds[i].speed) {
			gp_context_error (context, _("Speed %i is not "
				"supported!"), speed);
			return (GP_ERROR);
		}
		CR (ricoh_set_speed (camera, context, speeds[i].rspeed));
		settings.serial.speed = speed;
		CR (gp_port_set_settings (camera->port, settings));

		/* Check if the camera is still there. */
		CR (ricoh_get_mode (camera, context, NULL));
	}

	/* setup the function calls */
	camera->functions->exit = camera_exit;
	camera->functions->summary = camera_summary;
	camera->functions->capture = camera_capture;
	camera->functions->about = camera_about;
	camera->functions->get_config = camera_get_config;
	camera->functions->set_config = camera_set_config;
	CR (gp_filesystem_set_funcs (camera->fs, &fsfuncs, camera));
	/*
	 * Remember the model. It could be that there hasn't been the 
	 * need to call ricoh_connect. Then we don't have a model. Should
	 * we disconnect and reconnect in this case?
	 */
	camera->pl = malloc (sizeof (CameraPrivateLibrary));
	if (!camera->pl)
		return (GP_ERROR_NO_MEMORY);
	memset (camera->pl, 0, sizeof (CameraPrivateLibrary));
	camera->pl->model = model;

	return (GP_OK);
}
Пример #13
0
static int
camera_get_config (Camera *c, CameraWidget **window, GPContext *co)
{
	CameraWidget *s, *w;
	const char *copyright;
	time_t time;

	CR (gp_widget_new (GP_WIDGET_WINDOW, _("Configuration"), window));

	/* General settings */
	CR (gp_widget_new (GP_WIDGET_SECTION, _("General"), &s));
	CR (gp_widget_append (*window, s));

	/* Copyright */
	CR (gp_widget_new (GP_WIDGET_TEXT, _("Copyright"), &w));
	CR (gp_widget_set_name (w, "copyright"));
	CR (gp_widget_set_info (w, _("Copyright (max. 20 characters)")));
	CR (gp_widget_append (s, w));
	CR (ricoh_get_copyright (c, co, &copyright));
	CR (gp_widget_set_value (w, (void *) copyright));

	/* Date */
	CR (gp_widget_new (GP_WIDGET_DATE, _("Date & Time"), &w));
	CRW (gp_widget_set_name (w, "date"), w);
	CRW (gp_widget_set_info (w, _("Date & Time")), w);
	CRW (gp_widget_append (s, w), w);
	CR (ricoh_get_date (c, co, &time));
	CR (gp_widget_set_value (w, &time));

	/* Picture related settings */
	CR (gp_widget_new (GP_WIDGET_SECTION, _("Pictures"), &s));
	CRW (gp_widget_append (*window, s), w);

	R_ADD_RADIO (c, co, s, RicohResolution,  resolution,  "Resolution")
	R_ADD_RADIO (c, co, s, RicohExposure,    exposure,    "Exposure")
	R_ADD_RADIO (c, co, s, RicohMacro,       macro,       "Macro")
	R_ADD_RADIO (c, co, s, RicohFlash,       flash,       "Flash")
	R_ADD_RADIO (c, co, s, RicohZoom,        zoom,        "Zoom")
	R_ADD_RADIO (c, co, s, RicohCompression, compression, "Compression")
	R_ADD_RADIO (c, co, s, RicohWhiteLevel,  white_level, "White Level")
	R_ADD_RADIO (c, co, s, RicohRecMode,     rec_mode,    "Record Mode")

	return (GP_OK);
}
Пример #14
0
/**
  Read a disk from disk into HBufferImage.

  @param[in] Offset   The offset.
  @param[in] Size     The size.
  @param[in] Recover  if is for recover, no information print.

  @retval EFI_LOAD_ERROR        A load error occured.
  @retval EFI_SUCCESS           The operation was successful.
  @retval EFI_OUT_OF_RESOURCES  A memory allocation failed.
**/
EFI_STATUS
HMemImageRead (
  IN UINTN     Offset,
  IN UINTN     Size,
  IN BOOLEAN   Recover
  )
{

  EFI_STATUS                      Status;
  void                            *Buffer;
  CHAR16                          *Str;
  HEFI_EDITOR_LINE                *Line;

  HBufferImage.BufferType = FileTypeMemBuffer;

  Buffer                  = AllocateZeroPool (Size);
  if (Buffer == NULL) {
    StatusBarSetStatusString (L"Read Memory Failed");
    return EFI_OUT_OF_RESOURCES;
  }

  Status = HMemImage.IoFncs->Mem.Read (
                                  HMemImage.IoFncs,
                                  EfiPciWidthUint8,
                                  Offset,
                                  Size,
                                  Buffer
                                  );

  if (EFI_ERROR (Status)) {
    FreePool (Buffer);
    StatusBarSetStatusString (L"Memory Specified Not Accessible");
    return EFI_LOAD_ERROR;
  }

  HBufferImageFree ();

  Status = HBufferImageBufferToList (Buffer, Size);
  FreePool (Buffer);

  if (EFI_ERROR (Status)) {
    StatusBarSetStatusString (L"Read Memory Failed");
    return Status;
  }

  Status  = HMemImageSetMemOffsetSize (Offset, Size);

  HBufferImage.DisplayPosition.Row    = 2;
  HBufferImage.DisplayPosition.Column = 10;

  HBufferImage.MousePosition.Row      = 2;
  HBufferImage.MousePosition.Column   = 10;

  HBufferImage.LowVisibleRow          = 1;
  HBufferImage.HighBits               = TRUE;

  HBufferImage.BufferPosition.Row     = 1;
  HBufferImage.BufferPosition.Column  = 1;

  if (!Recover) {
    Str = CatSPrint(NULL, L"%d Lines Read", HBufferImage.NumLines);
    if (Str == NULL) {
      StatusBarSetStatusString (L"Read Memory Failed");
      return EFI_OUT_OF_RESOURCES;
    }

    StatusBarSetStatusString (Str);
    SHELL_FREE_NON_NULL (Str);

    HMainEditor.SelectStart = 0;
    HMainEditor.SelectEnd   = 0;

  }

  //
  // has line
  //
  if (HBufferImage.Lines != NULL) {
    HBufferImage.CurrentLine = CR (HBufferImage.ListHead->ForwardLink, HEFI_EDITOR_LINE, Link, EFI_EDITOR_LINE_LIST);
  } else {
    //
    // create a dummy line
    //
    Line = HBufferImageCreateLine ();
    if (Line == NULL) {
      StatusBarSetStatusString (L"Read Memory Failed");
      return EFI_OUT_OF_RESOURCES;
    }

    HBufferImage.CurrentLine = Line;
  }

  HBufferImage.Modified           = FALSE;
  HBufferImageNeedRefresh         = TRUE;
  HBufferImageOnlyLineNeedRefresh = FALSE;
  HBufferImageMouseNeedRefresh    = TRUE;

  return EFI_SUCCESS;

}
Пример #15
0
inline void
SUMMA_NNA
( T alpha, const DistMatrix<T>& A,
           const DistMatrix<T>& B,
  T beta,        DistMatrix<T>& C )
{
#ifndef RELEASE
    CallStackEntry entry("gemm::SUMMA_NNA");
    if( A.Grid() != B.Grid() || B.Grid() != C.Grid() )
        LogicError("{A,B,C} must have the same grid");
    if( A.Height() != C.Height() ||
        B.Width()  != C.Width()  ||
        A.Width()  != B.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal matrices: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B ~ " << B.Height() << " x " << B.Width() << "\n"
            << "  C ~ " << C.Height() << " x " << C.Width() << "\n";
        LogicError( msg.str() );
    }
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<T> BL(g), BR(g),
                  B0(g), B1(g), B2(g);
    DistMatrix<T> CL(g), CR(g),
                  C0(g), C1(g), C2(g);

    // Temporary distributions
    DistMatrix<T,VR,STAR> B1_VR_STAR(g);
    DistMatrix<T,STAR,MR> B1Trans_STAR_MR(g);
    DistMatrix<T,MC,STAR> D1_MC_STAR(g);

    B1_VR_STAR.AlignWith( A );
    B1Trans_STAR_MR.AlignWith( A );
    D1_MC_STAR.AlignWith( A );

    // Start the algorithm
    Scale( beta, C );
    LockedPartitionRight( B, BL, BR, 0 );
    PartitionRight( C, CL, CR, 0 );
    while( BR.Width() > 0 )
    {
        LockedRepartitionRight
        ( BL, /**/     BR,
          B0, /**/ B1, B2 );

        RepartitionRight
        ( CL, /**/     CR,
          C0, /**/ C1, C2 );

        //--------------------------------------------------------------------//
        B1_VR_STAR = B1;
        B1Trans_STAR_MR.TransposeFrom( B1_VR_STAR );

        // D1[MC,*] := alpha A[MC,MR] B1[MR,*]
        LocalGemm( NORMAL, TRANSPOSE, alpha, A, B1Trans_STAR_MR, D1_MC_STAR );

        // C1[MC,MR] += scattered result of D1[MC,*] summed over grid rows
        C1.SumScatterUpdate( T(1), D1_MC_STAR );
        //--------------------------------------------------------------------//

        SlideLockedPartitionRight
        ( BL,     /**/ BR,
          B0, B1, /**/ B2 );

        SlidePartitionRight
        ( CL,     /**/ CR,
          C0, C1, /**/ C2 );
    }
}
Пример #16
0
/**
  Read a disk from disk into HBufferImage.

  @param[in] DeviceName   filename to read.
  @param[in] Offset       The offset.
  @param[in] Size         The size.
  @param[in] Recover      if is for recover, no information print.

  @retval EFI_SUCCESS           The operation was successful.
  @retval EFI_OUT_OF_RESOURCES  A memory allocation failed.
  @retval EFI_LOAD_ERROR        A load error occured.
  @retval EFI_INVALID_PARAMETER A parameter was invalid.  
**/
EFI_STATUS
HDiskImageRead (
  IN CONST CHAR16   *DeviceName,
  IN UINTN    Offset,
  IN UINTN    Size,
  IN BOOLEAN  Recover
  )
{
  CONST EFI_DEVICE_PATH_PROTOCOL  *DevicePath;
  EFI_DEVICE_PATH_PROTOCOL        *DupDevicePath;
  EFI_DEVICE_PATH_PROTOCOL        *DupDevicePathForFree;
  EFI_HANDLE                      Handle;
  EFI_BLOCK_IO_PROTOCOL           *BlkIo;
  EFI_STATUS                      Status;

  VOID                            *Buffer;
  CHAR16                          *Str;
  UINTN                           Bytes;

  HEFI_EDITOR_LINE                *Line;

  HBufferImage.BufferType = FileTypeDiskBuffer;

  DevicePath              = gEfiShellProtocol->GetDevicePathFromMap(DeviceName);
  if (DevicePath == NULL) {
    StatusBarSetStatusString (L"Cannot Find Device");
    return EFI_INVALID_PARAMETER;
  }
  DupDevicePath = DuplicateDevicePath(DevicePath);
  DupDevicePathForFree = DupDevicePath;
  //
  // get blkio interface
  //
  Status = gBS->LocateDevicePath(&gEfiBlockIoProtocolGuid,&DupDevicePath,&Handle);
  FreePool(DupDevicePathForFree);
  if (EFI_ERROR (Status)) {
    StatusBarSetStatusString (L"Read Disk Failed");
    return Status;
  }
  Status = gBS->OpenProtocol(Handle, &gEfiBlockIoProtocolGuid, (VOID**)&BlkIo, gImageHandle, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL);
  if (EFI_ERROR (Status)) {
    StatusBarSetStatusString (L"Read Disk Failed");
    return Status;
  }
  //
  // if Offset exceeds LastBlock,
  //   return error
  //
  if (Offset > BlkIo->Media->LastBlock || Offset + Size > BlkIo->Media->LastBlock) {
    StatusBarSetStatusString (L"Invalid Offset + Size");
    return EFI_LOAD_ERROR;
  }

  Bytes   = BlkIo->Media->BlockSize * Size;
  Buffer  = AllocateZeroPool (Bytes);

  if (Buffer == NULL) {
    StatusBarSetStatusString (L"Read Disk Failed");
    return EFI_OUT_OF_RESOURCES;
  }

  //
  // read from disk
  //
  Status = BlkIo->ReadBlocks (
                    BlkIo,
                    BlkIo->Media->MediaId,
                    Offset,
                    Bytes,
                    Buffer
                    );

  if (EFI_ERROR (Status)) {
    FreePool (Buffer);
    StatusBarSetStatusString (L"Read Disk Failed");
    return EFI_LOAD_ERROR;
  }

  HBufferImageFree ();

  //
  // convert buffer to line list
  //
  Status = HBufferImageBufferToList (Buffer, Bytes);
  FreePool (Buffer);

  if (EFI_ERROR (Status)) {
    StatusBarSetStatusString (L"Read Disk Failed");
    return Status;
  }

  Status = HDiskImageSetDiskNameOffsetSize (DeviceName, Offset, Size);
  if (EFI_ERROR (Status)) {
    StatusBarSetStatusString (L"Read Disk Failed");
    return EFI_OUT_OF_RESOURCES;
  }
  //
  // initialize some variables
  //
  HDiskImage.BlockSize                = BlkIo->Media->BlockSize;

  HBufferImage.DisplayPosition.Row    = 2;
  HBufferImage.DisplayPosition.Column = 10;

  HBufferImage.MousePosition.Row      = 2;
  HBufferImage.MousePosition.Column   = 10;

  HBufferImage.LowVisibleRow          = 1;
  HBufferImage.HighBits               = TRUE;

  HBufferImage.BufferPosition.Row     = 1;
  HBufferImage.BufferPosition.Column  = 1;

  if (!Recover) {
    Str = CatSPrint(NULL, L"%d Lines Read", HBufferImage.NumLines);
    if (Str == NULL) {
      StatusBarSetStatusString (L"Read Disk Failed");
      return EFI_OUT_OF_RESOURCES;
    }

    StatusBarSetStatusString (Str);
    SHELL_FREE_NON_NULL (Str);

    HMainEditor.SelectStart = 0;
    HMainEditor.SelectEnd   = 0;

  }

  //
  // has line
  //
  if (HBufferImage.Lines != NULL) {
    HBufferImage.CurrentLine = CR (
                                HBufferImage.ListHead->ForwardLink,
                                HEFI_EDITOR_LINE,
                                Link,
                                EFI_EDITOR_LINE_LIST
                                );
  } else {
    //
    // create a dummy line
    //
    Line = HBufferImageCreateLine ();
    if (Line == NULL) {
      StatusBarSetStatusString (L"Read Disk Failed");
      return EFI_OUT_OF_RESOURCES;
    }

    HBufferImage.CurrentLine = Line;
  }

  HBufferImage.Modified           = FALSE;
  HBufferImageNeedRefresh         = TRUE;
  HBufferImageOnlyLineNeedRefresh = FALSE;
  HBufferImageMouseNeedRefresh    = TRUE;

  return EFI_SUCCESS;
}
Пример #17
0
inline void 
SUMMA_NNDot
( T alpha, const DistMatrix<T>& A,
           const DistMatrix<T>& B,
  T beta,        DistMatrix<T>& C )
{
#ifndef RELEASE
    CallStackEntry entry("gemm::SUMMA_NNDot");
    if( A.Grid() != B.Grid() || B.Grid() != C.Grid() )
        LogicError("{A,B,C} must have the same grid");
    if( A.Height() != C.Height() ||
        B.Width()  != C.Width()  ||
        A.Width()  != B.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal matrices: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B ~ " << B.Height() << " x " << B.Width() << "\n"
            << "  C ~ " << C.Height() << " x " << C.Width() << "\n";
        LogicError( msg.str() );
    }
#endif
    const Grid& g = A.Grid();

    if( A.Height() > B.Width() )
    {
        // Matrix views
        DistMatrix<T> AT(g), AB(g),
                      A0(g), A1(g), A2(g);         
        DistMatrix<T> BL(g),  B0(g),
                      BR(g),  B1(g),
                              B2(g);
        DistMatrix<T> CT(g), C0(g), C1L(g), C1R(g),
                      CB(g), C1(g), C10(g), C11(g), C12(g),
                             C2(g);

        // Temporary distributions
        DistMatrix<T,STAR,VC> A1_STAR_VC(g);
        DistMatrix<T,VC,STAR> B1_VC_STAR(g);
        DistMatrix<T,STAR,STAR> C11_STAR_STAR(g);

        // Star the algorithm
        Scale( beta, C );
        LockedPartitionDown
        ( A, AT,
             AB, 0 );
        PartitionDown
        ( C, CT,
             CB, 0 );
        while( AB.Height() > 0 )
        {
            LockedRepartitionDown
            ( AT,  A0,
             /**/ /**/
                   A1,
              AB,  A2 );

            RepartitionDown
            ( CT,  C0,
             /**/ /**/
                   C1,
              CB,  C2 );

            A1_STAR_VC = A1; 
            B1_VC_STAR.AlignWith( A1_STAR_VC );

            LockedPartitionRight( B, BL, BR, 0 );
            PartitionRight( C1, C1L, C1R, 0 );
            while( BR.Width() > 0 )
            {
                LockedRepartitionRight
                ( BL, /**/ BR,
                  B0, /**/ B1, B2 );

                RepartitionRight
                ( C1L, /**/ C1R,
                  C10, /**/ C11, C12 );

                //------------------------------------------------------------//
                B1_VC_STAR = B1;
                LocalGemm
                ( NORMAL, NORMAL, 
                  alpha, A1_STAR_VC, B1_VC_STAR, C11_STAR_STAR );
                C11.SumScatterUpdate( T(1), C11_STAR_STAR );
                //------------------------------------------------------------//

                SlideLockedPartitionRight
                ( BL,     /**/ BR,
                  B0, B1, /**/ B2 );

                SlidePartitionRight
                ( C1L,      /**/ C1R,
                  C10, C11, /**/ C12 );
            }

            SlideLockedPartitionDown
            ( AT,  A0,
                   A1,
             /**/ /**/
              AB,  A2 );

            SlidePartitionDown
            ( CT,  C0,
                   C1,
             /**/ /**/
              CB,  C2 );
        }
    }
    else
    {
        // Matrix views
        DistMatrix<T> AT(g), AB(g),
                      A0(g), A1(g), A2(g);         
        DistMatrix<T> BL(g),  B0(g),
                      BR(g),  B1(g),
                              B2(g);
        DistMatrix<T> 
            CL(g), CR(g),         C1T(g),  C01(g),
            C0(g), C1(g), C2(g),  C1B(g),  C11(g),
                                           C21(g);

        // Temporary distributions
        DistMatrix<T,STAR,VR> A1_STAR_VR(g);
        DistMatrix<T,VR,STAR> B1_VR_STAR(g);
        DistMatrix<T,STAR,STAR> C11_STAR_STAR(g);

        // Star the algorithm
        Scale( beta, C );
        LockedPartitionRight( B, BL, BR, 0 );
        PartitionRight( C, CL, CR, 0 );
        while( BR.Width() > 0 )
        {
            LockedRepartitionRight
            ( BL, /**/ BR,
              B0, /**/ B1, B2 );

            RepartitionRight
            ( CL, /**/ CR,
              C0, /**/ C1, C2 );

            B1_VR_STAR = B1;
            A1_STAR_VR.AlignWith( B1_VR_STAR );

            LockedPartitionDown
            ( A, AT,
                 AB, 0 );
            PartitionDown
            ( C1, C1T,
                  C1B, 0 );
            while( AB.Height() > 0 )
            {
                LockedRepartitionDown
                ( AT,  A0,
                 /**/ /**/
                       A1,
                  AB,  A2 );

                RepartitionDown
                ( C1T,  C01,
                 /***/ /***/
                        C11,
                  C1B,  C21 );

                //------------------------------------------------------------//
                A1_STAR_VR = A1;
                LocalGemm
                ( NORMAL, NORMAL, 
                  alpha, A1_STAR_VR, B1_VR_STAR, C11_STAR_STAR );
                C11.SumScatterUpdate( T(1), C11_STAR_STAR );
                //------------------------------------------------------------//

                SlideLockedPartitionDown
                ( AT,  A0,
                       A1,
                 /**/ /**/
                  AB,  A2 );

                SlidePartitionDown
                ( C1T,  C01,
                        C11,
                 /***/ /***/
                  C1B,  C21 );
            }

            SlideLockedPartitionRight
            ( BL,     /**/ BR,
              B0, B1, /**/ B2 ); 

            SlidePartitionRight
            ( CL,     /**/ CR,
              C0, C1, /**/ C2 );
        }
    }
}
Пример #18
0
VOID
EFIAPI
PlatformBdsPolicyBehavior (
  IN OUT LIST_ENTRY                  *DriverOptionList,
  IN OUT LIST_ENTRY                  *BootOptionList,
  IN PROCESS_CAPSULES                ProcessCapsules,
  IN BASEM_MEMORY_TEST               BaseMemoryTest
  )
/*++

Routine Description:

  The function will excute with as the platform policy, current policy
  is driven by boot mode. IBV/OEM can customize this code for their specific
  policy action.

Arguments:

  DriverOptionList - The header of the driver option link list

  BootOptionList   - The header of the boot option link list

  ProcessCapsules  - A pointer to ProcessCapsules()

  BaseMemoryTest   - A pointer to BaseMemoryTest()

Returns:

  None.

--*/
{
  EFI_STATUS                         Status;
  UINT16                             Timeout;
  EFI_EVENT                          UserInputDurationTime;
  LIST_ENTRY                     *Link;
  BDS_COMMON_OPTION                  *BootOption;
  UINTN                              Index;
  EFI_INPUT_KEY                      Key;
  EFI_TPL                            OldTpl;
  EFI_BOOT_MODE                      BootMode;

  DEBUG ((EFI_D_INFO, "PlatformBdsPolicyBehavior\n"));

  ConnectRootBridge ();

  //
  // Try to restore variables from the hard disk early so
  // they can be used for the other BDS connect operations.
  //
  PlatformBdsRestoreNvVarsFromHardDisk ();

  //
  // Init the time out value
  //
  Timeout = PcdGet16 (PcdPlatformBootTimeOut);

  //
  // Load the driver option as the driver option list
  //
  PlatformBdsGetDriverOption (DriverOptionList);

  //
  // Get current Boot Mode
  //
  Status = BdsLibGetBootMode (&BootMode);
  DEBUG ((EFI_D_ERROR, "Boot Mode:%x\n", BootMode));

  //
  // Go the different platform policy with different boot mode
  // Notes: this part code can be change with the table policy
  //
  ASSERT (BootMode == BOOT_WITH_FULL_CONFIGURATION);
  //
  // Connect platform console
  //
  Status = PlatformBdsConnectConsole (gPlatformConsole);
  if (EFI_ERROR (Status)) {
    //
    // Here OEM/IBV can customize with defined action
    //
    PlatformBdsNoConsoleAction ();
  }
  //
  // Create a 300ms duration event to ensure user has enough input time to enter Setup
  //
  Status = gBS->CreateEvent (
                  EVT_TIMER,
                  0,
                  NULL,
                  NULL,
                  &UserInputDurationTime
                  );
  ASSERT (Status == EFI_SUCCESS);
  Status = gBS->SetTimer (UserInputDurationTime, TimerRelative, 3000000);
  ASSERT (Status == EFI_SUCCESS);
  //
  // Memory test and Logo show
  //
  PlatformBdsDiagnostics (IGNORE, TRUE, BaseMemoryTest);

  //
  // Perform some platform specific connect sequence
  //
  PlatformBdsConnectSequence ();

  //
  // Give one chance to enter the setup if we
  // have the time out
  //
  if (Timeout != 0) {
    //PlatformBdsEnterFrontPage (Timeout, FALSE);
  }

  DEBUG ((EFI_D_INFO, "BdsLibConnectAll\n"));
  BdsLibConnectAll ();
  BdsLibEnumerateAllBootOption (BootOptionList);

  //
  // Please uncomment above ConnectAll and EnumerateAll code and remove following first boot
  // checking code in real production tip.
  //
  // In BOOT_WITH_FULL_CONFIGURATION boot mode, should always connect every device
  // and do enumerate all the default boot options. But in development system board, the boot mode
  // cannot be BOOT_ASSUMING_NO_CONFIGURATION_CHANGES because the machine box
  // is always open. So the following code only do the ConnectAll and EnumerateAll at first boot.
  //
  Status = BdsLibBuildOptionFromVar (BootOptionList, L"BootOrder");
  if (EFI_ERROR(Status)) {
    //
    // If cannot find "BootOrder" variable,  it may be first boot.
    // Try to connect all devices and enumerate all boot options here.
    //
    BdsLibConnectAll ();
    BdsLibEnumerateAllBootOption (BootOptionList);
  }

  //
  // To give the User a chance to enter Setup here, if user set TimeOut is 0.
  // BDS should still give user a chance to enter Setup
  //
  // Connect first boot option, and then check user input before exit
  //
  for (Link = BootOptionList->ForwardLink; Link != BootOptionList;Link = Link->ForwardLink) {
    BootOption = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);
    if (!IS_LOAD_OPTION_TYPE (BootOption->Attribute, LOAD_OPTION_ACTIVE)) {
      //
      // skip the header of the link list, becuase it has no boot option
      //
      continue;
    } else {
      //
      // Make sure the boot option device path connected, but ignore the BBS device path
      //
      if (DevicePathType (BootOption->DevicePath) != BBS_DEVICE_PATH) {
        BdsLibConnectDevicePath (BootOption->DevicePath);
      }
      break;
    }
  }

  //
  // Check whether the user input after the duration time has expired
  //
  OldTpl = EfiGetCurrentTpl();
  gBS->RestoreTPL (TPL_APPLICATION);
  gBS->WaitForEvent (1, &UserInputDurationTime, &Index);
  gBS->CloseEvent (UserInputDurationTime);
  Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
  gBS->RaiseTPL (OldTpl);

  if (!EFI_ERROR (Status)) {
    //
    // Enter Setup if user input
    //
    Timeout = 0xffff;
    PlatformBdsEnterFrontPage (Timeout, FALSE);
  }

  return ;
}
Пример #19
0
/**

  This function attempts to boot for the boot order specified
  by platform policy.

**/
VOID
BdsBootDeviceSelect (
  VOID
  )
{
  EFI_STATUS        Status;
  LIST_ENTRY        *Link;
  BDS_COMMON_OPTION *BootOption;
  UINTN             ExitDataSize;
  CHAR16            *ExitData;
  UINT16            Timeout;
  LIST_ENTRY        BootLists;
  CHAR16            Buffer[20];
  BOOLEAN           BootNextExist;
  LIST_ENTRY        *LinkBootNext;
  EFI_EVENT         ConnectConInEvent;

  //
  // Got the latest boot option
  //
  BootNextExist = FALSE;
  LinkBootNext  = NULL;
  ConnectConInEvent = NULL;
  InitializeListHead (&BootLists);

  //
  // First check the boot next option
  //
  ZeroMem (Buffer, sizeof (Buffer));

  //
  // Create Event to signal ConIn connection request
  //
  if (PcdGetBool (PcdConInConnectOnDemand)) {
    Status = gBS->CreateEventEx (
                    EVT_NOTIFY_SIGNAL,
                    TPL_CALLBACK,
                    BdsEmptyCallbackFunction,
                    NULL,
                    &gConnectConInEventGuid,
                    &ConnectConInEvent
                    );
    if (EFI_ERROR(Status)) {
      ConnectConInEvent = NULL;
    }
  }

  if (mBootNext != NULL) {
    //
    // Indicate we have the boot next variable, so this time
    // boot will always have this boot option
    //
    BootNextExist = TRUE;

    //
    // Clear the this variable so it's only exist in this time boot
    //
    Status = gRT->SetVariable (
                    L"BootNext",
                    &gEfiGlobalVariableGuid,
                    EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
                    0,
                    NULL
                    );
    //
    // Deleting variable with current variable implementation shouldn't fail.
    //
    ASSERT_EFI_ERROR (Status);

    //
    // Add the boot next boot option
    //
    UnicodeSPrint (Buffer, sizeof (Buffer), L"Boot%04x", *mBootNext);
    BootOption = BdsLibVariableToOption (&BootLists, Buffer);

    //
    // If fail to get boot option from variable, just return and do nothing.
    //
    if (BootOption == NULL) {
      return;
    }

    BootOption->BootCurrent = *mBootNext;
  }
  //
  // Parse the boot order to get boot option
  //
  BdsLibBuildOptionFromVar (&BootLists, L"BootOrder");

  //
  // When we didn't have chance to build boot option variables in the first 
  // full configuration boot (e.g.: Reset in the first page or in Device Manager),
  // we have no boot options in the following mini configuration boot.
  // Give the last chance to enumerate the boot options.
  //
  if (IsListEmpty (&BootLists)) {
    BdsLibEnumerateAllBootOption (&BootLists);
  }

  Link = BootLists.ForwardLink;

  //
  // Parameter check, make sure the loop will be valid
  //
  if (Link == NULL) {
    return ;
  }
  //
  // Here we make the boot in a loop, every boot success will
  // return to the front page
  //
  for (;;) {
    //
    // Check the boot option list first
    //
    if (Link == &BootLists) {
      //
      // When LazyConIn enabled, signal connect ConIn event before enter UI
      //
      if (PcdGetBool (PcdConInConnectOnDemand) && ConnectConInEvent != NULL) {
        gBS->SignalEvent (ConnectConInEvent);
      }

      //
      // There are two ways to enter here:
      // 1. There is no active boot option, give user chance to
      //    add new boot option
      // 2. All the active boot option processed, and there is no
      //    one is success to boot, then we back here to allow user
      //    add new active boot option
      //
      Timeout = 0xffff;
      PlatformBdsEnterFrontPage (Timeout, FALSE);
      InitializeListHead (&BootLists);
      BdsLibBuildOptionFromVar (&BootLists, L"BootOrder");
      Link = BootLists.ForwardLink;
      continue;
    }
    //
    // Get the boot option from the link list
    //
    BootOption = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);

    //
    // According to EFI Specification, if a load option is not marked
    // as LOAD_OPTION_ACTIVE, the boot manager will not automatically
    // load the option.
    //
    if (!IS_LOAD_OPTION_TYPE (BootOption->Attribute, LOAD_OPTION_ACTIVE)) {
      //
      // skip the header of the link list, because it has no boot option
      //
      Link = Link->ForwardLink;
      continue;
    }
    //
    // Make sure the boot option device path connected,
    // but ignore the BBS device path
    //
    if (DevicePathType (BootOption->DevicePath) != BBS_DEVICE_PATH) {
      //
      // Notes: the internal shell can not been connected with device path
      // so we do not check the status here
      //
      BdsLibConnectDevicePath (BootOption->DevicePath);
    }

    //
    // Restore to original mode before launching boot option.
    //
    BdsSetConsoleMode (FALSE);
    
    //
    // All the driver options should have been processed since
    // now boot will be performed.
    //
    Status = BdsLibBootViaBootOption (BootOption, BootOption->DevicePath, &ExitDataSize, &ExitData);
    if (Status != EFI_SUCCESS) {
      //
      // Call platform action to indicate the boot fail
      //
      BootOption->StatusString = GetStringById (STRING_TOKEN (STR_BOOT_FAILED));
      PlatformBdsBootFail (BootOption, Status, ExitData, ExitDataSize);

      //
      // Check the next boot option
      //
      Link = Link->ForwardLink;

    } else {
      //
      // Call platform action to indicate the boot success
      //
      BootOption->StatusString = GetStringById (STRING_TOKEN (STR_BOOT_SUCCEEDED));
      PlatformBdsBootSuccess (BootOption);

      //
      // Boot success, then stop process the boot order, and
      // present the boot manager menu, front page
      //

      //
      // When LazyConIn enabled, signal connect ConIn Event before enter UI
      //
      if (PcdGetBool (PcdConInConnectOnDemand) && ConnectConInEvent != NULL) {
        gBS->SignalEvent (ConnectConInEvent);
      }

      Timeout = 0xffff;
      PlatformBdsEnterFrontPage (Timeout, FALSE);

      //
      // Rescan the boot option list, avoid potential risk of the boot
      // option change in front page
      //
      if (BootNextExist) {
        LinkBootNext = BootLists.ForwardLink;
      }

      InitializeListHead (&BootLists);
      if (LinkBootNext != NULL) {
        //
        // Reserve the boot next option
        //
        InsertTailList (&BootLists, LinkBootNext);
      }

      BdsLibBuildOptionFromVar (&BootLists, L"BootOrder");
      Link = BootLists.ForwardLink;
    }
  }

}
Пример #20
0
 friend constexpr meta::rebind_t<Final, common_type_t<UT, UT2>> operator%(Final const& x, UT2 const& y)  noexcept
 {
   using CR = common_type_t<UT, UT2>;
   using CT = meta::rebind_t<Final, CR>;
   return CT(CT(x)._backdoor()._underlying() % CR(y));
 }
Пример #21
0
/**
  This function invokes Boot Manager. If all devices have not a chance to be connected,
  the connect all will be triggered. It then enumerate all boot options. If
  a boot option from the Boot Manager page is selected, Boot Manager will boot
  from this boot option.

**/
VOID
CallBootManager (
  VOID
  )
{
  EFI_STATUS                  Status;
  BDS_COMMON_OPTION           *Option;
  LIST_ENTRY                  *Link;
  CHAR16                      *ExitData;
  UINTN                       ExitDataSize;
  EFI_STRING_ID               Token;
  EFI_INPUT_KEY               Key;
  CHAR16                      *HelpString;
  EFI_STRING_ID               HelpToken;
  UINT16                      *TempStr;
  EFI_HII_HANDLE              HiiHandle;
  EFI_BROWSER_ACTION_REQUEST  ActionRequest;
  UINTN                       TempSize;
  VOID                        *StartOpCodeHandle;
  VOID                        *EndOpCodeHandle;
  EFI_IFR_GUID_LABEL          *StartLabel;
  EFI_IFR_GUID_LABEL          *EndLabel;
  UINT16                      DeviceType;
  BOOLEAN                     IsLegacyOption;
  BOOLEAN                     NeedEndOp;

  DeviceType = (UINT16) -1;
  gOption    = NULL;
  InitializeListHead (&mBootOptionsList);

  //
  // Connect all prior to entering the platform setup menu.
  //
  if (!gConnectAllHappened) {
    BdsLibConnectAllDriversToAllControllers ();
    gConnectAllHappened = TRUE;
  }

  BdsLibEnumerateAllBootOption (&mBootOptionsList);

  //
  // Group the legacy boot options for the same device type
  //
  GroupMultipleLegacyBootOption4SameType ();

  InitializeListHead (&mBootOptionsList);
  BdsLibBuildOptionFromVar (&mBootOptionsList, L"BootOrder");

  HiiHandle = gBootManagerPrivate.HiiHandle;

  //
  // Allocate space for creation of UpdateData Buffer
  //
  StartOpCodeHandle = HiiAllocateOpCodeHandle ();
  ASSERT (StartOpCodeHandle != NULL);

  EndOpCodeHandle = HiiAllocateOpCodeHandle ();
  ASSERT (EndOpCodeHandle != NULL);

  //
  // Create Hii Extend Label OpCode as the start opcode
  //
  StartLabel = (EFI_IFR_GUID_LABEL *) HiiCreateGuidOpCode (StartOpCodeHandle, &gEfiIfrTianoGuid, NULL, sizeof (EFI_IFR_GUID_LABEL));
  StartLabel->ExtendOpCode = EFI_IFR_EXTEND_OP_LABEL;
  StartLabel->Number       = LABEL_BOOT_OPTION;

  //
  // Create Hii Extend Label OpCode as the end opcode
  //
  EndLabel = (EFI_IFR_GUID_LABEL *) HiiCreateGuidOpCode (EndOpCodeHandle, &gEfiIfrTianoGuid, NULL, sizeof (EFI_IFR_GUID_LABEL));
  EndLabel->ExtendOpCode = EFI_IFR_EXTEND_OP_LABEL;
  EndLabel->Number       = LABEL_BOOT_OPTION_END;

  mKeyInput = 0;
  NeedEndOp = FALSE;
  for (Link = GetFirstNode (&mBootOptionsList); !IsNull (&mBootOptionsList, Link); Link = GetNextNode (&mBootOptionsList, Link)) {
    Option = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);

    //
    // At this stage we are creating a menu entry, thus the Keys are reproduceable
    //
    mKeyInput++;

    //
    // Don't display the hidden/inactive boot option
    //
    if (((Option->Attribute & LOAD_OPTION_HIDDEN) != 0) || ((Option->Attribute & LOAD_OPTION_ACTIVE) == 0)) {
      continue;
    }

    //
    // Group the legacy boot option in the sub title created dynamically
    //
    IsLegacyOption = (BOOLEAN) (
                       (DevicePathType (Option->DevicePath) == BBS_DEVICE_PATH) &&
                       (DevicePathSubType (Option->DevicePath) == BBS_BBS_DP)
                       );

    if (!IsLegacyOption && NeedEndOp) {
      NeedEndOp = FALSE;
      HiiCreateEndOpCode (StartOpCodeHandle);
    }

    if (IsLegacyOption && DeviceType != ((BBS_BBS_DEVICE_PATH *) Option->DevicePath)->DeviceType) {
      if (NeedEndOp) {
        HiiCreateEndOpCode (StartOpCodeHandle);
      }

      DeviceType = ((BBS_BBS_DEVICE_PATH *) Option->DevicePath)->DeviceType;
      Token      = HiiSetString (
                     HiiHandle,
                     0,
                     mDeviceTypeStr[
                       MIN (DeviceType & 0xF, sizeof (mDeviceTypeStr) / sizeof (mDeviceTypeStr[0]) - 1)
                       ],
                     NULL
                     );
      HiiCreateSubTitleOpCode (StartOpCodeHandle, Token, 0, 0, 1);
      NeedEndOp = TRUE;
    }

    ASSERT (Option->Description != NULL);

    Token = HiiSetString (HiiHandle, 0, Option->Description, NULL);

    TempStr = DevicePathToStr (Option->DevicePath);
    TempSize = StrSize (TempStr);
    HelpString = AllocateZeroPool (TempSize + StrSize (L"Device Path : "));
    ASSERT (HelpString != NULL);
    StrCat (HelpString, L"Device Path : ");
    StrCat (HelpString, TempStr);

    HelpToken = HiiSetString (HiiHandle, 0, HelpString, NULL);

    HiiCreateActionOpCode (
      StartOpCodeHandle,
      mKeyInput,
      Token,
      HelpToken,
      EFI_IFR_FLAG_CALLBACK,
      0
      );
  }

  if (NeedEndOp) {
    HiiCreateEndOpCode (StartOpCodeHandle);
  }

  HiiUpdateForm (
    HiiHandle,
    &gBootManagerFormSetGuid,
    BOOT_MANAGER_FORM_ID,
    StartOpCodeHandle,
    EndOpCodeHandle
    );

  HiiFreeOpCodeHandle (StartOpCodeHandle);
  HiiFreeOpCodeHandle (EndOpCodeHandle);

  ActionRequest = EFI_BROWSER_ACTION_REQUEST_NONE;
  Status = gFormBrowser2->SendForm (
                           gFormBrowser2,
                           &HiiHandle,
                           1,
                           &gBootManagerFormSetGuid,
                           0,
                           NULL,
                           &ActionRequest
                           );
  if (ActionRequest == EFI_BROWSER_ACTION_REQUEST_RESET) {
    EnableResetRequired ();
  }

  if (gOption == NULL) {
    return ;
  }

  //
  // Will leave browser, check any reset required change is applied? if yes, reset system
  //
  SetupResetReminder ();

  //
  // Restore to original mode before launching boot option.
  //
  BdsSetConsoleMode (FALSE);

  //
  // parse the selected option
  //
  Status = BdsLibBootViaBootOption (gOption, gOption->DevicePath, &ExitDataSize, &ExitData);

  if (!EFI_ERROR (Status)) {
    gOption->StatusString = GetStringById (STRING_TOKEN (STR_BOOT_SUCCEEDED));
    PlatformBdsBootSuccess (gOption);
  } else {
    gOption->StatusString = GetStringById (STRING_TOKEN (STR_BOOT_FAILED));
    PlatformBdsBootFail (gOption, Status, ExitData, ExitDataSize);
    gST->ConOut->OutputString (
                  gST->ConOut,
                  GetStringById (STRING_TOKEN (STR_ANY_KEY_CONTINUE))
                  );
    gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
  }
}
Пример #22
0
inline void
SymmRUC
( T alpha, const DistMatrix<T>& A, const DistMatrix<T>& B,
  T beta,        DistMatrix<T>& C,
  bool conjugate=false )
{
#ifndef RELEASE
    PushCallStack("internal::SymmRUC");
    if( A.Grid() != B.Grid() || B.Grid() != C.Grid() )
        throw std::logic_error("{A,B,C} must be distributed on the same grid");
#endif
    const Grid& g = A.Grid();
    const Orientation orientation = ( conjugate ? ADJOINT : TRANSPOSE );

    // Matrix views
    DistMatrix<T> 
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),  AColPan(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),  ARowPan(g),
                         A20(g), A21(g), A22(g);
    DistMatrix<T> BL(g), BR(g),
                  B0(g), B1(g), B2(g);
    DistMatrix<T> CL(g), CR(g),
                  C0(g), C1(g), C2(g),
                  CLeft(g), CRight(g);

    // Temporary distributions
    DistMatrix<T,MC,  STAR> B1_MC_STAR(g);
    DistMatrix<T,VR,  STAR> AColPan_VR_STAR(g);
    DistMatrix<T,STAR,MR  > AColPanTrans_STAR_MR(g);
    DistMatrix<T,MR,  STAR> ARowPanTrans_MR_STAR(g);

    B1_MC_STAR.AlignWith( C );

    // Start the algorithm
    Scale( beta, C );
    LockedPartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    LockedPartitionRight( B, BL, BR, 0 );
    PartitionRight( C, CL, CR, 0 );
    while( CR.Width() > 0 )
    {
        LockedRepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        LockedRepartitionRight
        ( BL, /**/ BR,
          B0, /**/ B1, B2 );

        RepartitionRight
        ( CL, /**/ CR,
          C0, /**/ C1, C2 );

        LockedView1x2( ARowPan, A11, A12 );
        LockedView2x1
        ( AColPan, A01,
                   A11 );

        View1x2( CLeft, C0, C1 );
        View1x2( CRight, C1, C2 );

        AColPan_VR_STAR.AlignWith( CLeft );
        AColPanTrans_STAR_MR.AlignWith( CLeft );
        ARowPanTrans_MR_STAR.AlignWith( CRight );
        //--------------------------------------------------------------------//
        B1_MC_STAR = B1;

        AColPan_VR_STAR = AColPan;
        AColPanTrans_STAR_MR.TransposeFrom( AColPan_VR_STAR, conjugate );
        ARowPanTrans_MR_STAR.TransposeFrom( ARowPan, conjugate );
        MakeTriangular( LOWER, ARowPanTrans_MR_STAR );
        MakeTrapezoidal( RIGHT, LOWER, -1, AColPanTrans_STAR_MR );

        LocalGemm
        ( NORMAL, orientation, 
          alpha, B1_MC_STAR, ARowPanTrans_MR_STAR, T(1), CRight );

        LocalGemm
        ( NORMAL, NORMAL,
          alpha, B1_MC_STAR, AColPanTrans_STAR_MR, T(1), CLeft );
        //--------------------------------------------------------------------//
        AColPan_VR_STAR.FreeAlignments();
        AColPanTrans_STAR_MR.FreeAlignments();
        ARowPanTrans_MR_STAR.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );

        SlideLockedPartitionRight
        ( BL,     /**/ BR,
          B0, B1, /**/ B2 );

        SlidePartitionRight
        ( CL,     /**/ CR,
          C0, C1, /**/ C2 );
    }
#ifndef RELEASE
    PopCallStack();
#endif
}