Пример #1
0
CV_IMPL CvBox2D
cvFitEllipse2( const CvArr* array )
{
    CvBox2D box;
    double* Ad = 0, *bd = 0;

    CV_FUNCNAME( "cvFitEllipse2" );

    memset( &box, 0, sizeof(box));

    __BEGIN__;

    CvContour contour_header;
    CvSeq* ptseq = 0;
    CvSeqBlock block;
    int n;

    if( CV_IS_SEQ( array ))
    {
        ptseq = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( ptseq ))
            CV_ERROR( CV_StsBadArg, "Unsupported sequence type" );
    }
    else
    {
        CV_CALL( ptseq = cvPointSeqFromMat(
            CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
    }

    n = ptseq->total;
    if( n < 5 )
        CV_ERROR( CV_StsBadSize, "Number of points should be >= 6" );
#if 1
    icvFitEllipse_F( ptseq, &box );
#else
    /*
     *	New fitellipse algorithm, contributed by Dr. Daniel Weiss
     */
    {
    double gfp[5], rp[5], t;
    CvMat A, b, x;
    const double min_eps = 1e-6;
    int i, is_float;
    CvSeqReader reader;

    CV_CALL( Ad = (double*)cvAlloc( n*5*sizeof(Ad[0]) ));
    CV_CALL( bd = (double*)cvAlloc( n*sizeof(bd[0]) ));

    // first fit for parameters A - E
    A = cvMat( n, 5, CV_64F, Ad );
    b = cvMat( n, 1, CV_64F, bd );
    x = cvMat( 5, 1, CV_64F, gfp );

    cvStartReadSeq( ptseq, &reader );
    is_float = CV_SEQ_ELTYPE(ptseq) == CV_32FC2;

    for( i = 0; i < n; i++ )
    {
        CvPoint2D32f p;
        if( is_float )
            p = *(CvPoint2D32f*)(reader.ptr);
        else
        {
            p.x = (float)((int*)reader.ptr)[0];
            p.y = (float)((int*)reader.ptr)[1];
        }
        CV_NEXT_SEQ_ELEM( sizeof(p), reader );

        bd[i] = 10000.0; // 1.0?
        Ad[i*5] = -(double)p.x * p.x; // A - C signs inverted as proposed by APP
        Ad[i*5 + 1] = -(double)p.y * p.y;
        Ad[i*5 + 2] = -(double)p.x * p.y;
        Ad[i*5 + 3] = p.x;
        Ad[i*5 + 4] = p.y;
    }
    
    cvSolve( &A, &b, &x, CV_SVD );

    // now use general-form parameters A - E to find the ellipse center:
    // differentiate general form wrt x/y to get two equations for cx and cy
    A = cvMat( 2, 2, CV_64F, Ad );
    b = cvMat( 2, 1, CV_64F, bd );
    x = cvMat( 2, 1, CV_64F, rp );
    Ad[0] = 2 * gfp[0];
    Ad[1] = Ad[2] = gfp[2];
    Ad[3] = 2 * gfp[1];
    bd[0] = gfp[3];
    bd[1] = gfp[4];
    cvSolve( &A, &b, &x, CV_SVD );

    // re-fit for parameters A - C with those center coordinates
    A = cvMat( n, 3, CV_64F, Ad );
    b = cvMat( n, 1, CV_64F, bd );
    x = cvMat( 3, 1, CV_64F, gfp );
    for( i = 0; i < n; i++ )
    {
        CvPoint2D32f p;
        if( is_float )
            p = *(CvPoint2D32f*)(reader.ptr);
        else
        {
            p.x = (float)((int*)reader.ptr)[0];
            p.y = (float)((int*)reader.ptr)[1];
        }
        CV_NEXT_SEQ_ELEM( sizeof(p), reader );
        bd[i] = 1.0;
        Ad[i * 3] = (p.x - rp[0]) * (p.x - rp[0]);
        Ad[i * 3 + 1] = (p.y - rp[1]) * (p.y - rp[1]);
        Ad[i * 3 + 2] = (p.x - rp[0]) * (p.y - rp[1]);
    }
    cvSolve(&A, &b, &x, CV_SVD);

    // store angle and radii
    rp[4] = -0.5 * atan2(gfp[2], gfp[1] - gfp[0]); // convert from APP angle usage
    t = sin(-2.0 * rp[4]);
    if( fabs(t) > fabs(gfp[2])*min_eps )
        t = gfp[2]/t;
    else
        t = gfp[1] - gfp[0];
    rp[2] = fabs(gfp[0] + gfp[1] - t);
    if( rp[2] > min_eps )
        rp[2] = sqrt(2.0 / rp[2]);
    rp[3] = fabs(gfp[0] + gfp[1] + t);
    if( rp[3] > min_eps )
        rp[3] = sqrt(2.0 / rp[3]);

    box.center.x = (float)rp[0];
    box.center.y = (float)rp[1];
    box.size.width = (float)(rp[2]*2);
    box.size.height = (float)(rp[3]*2);
    if( box.size.width > box.size.height )
    {
        float tmp;
        CV_SWAP( box.size.width, box.size.height, tmp );
        box.angle = (float)(90 + rp[4]*180/CV_PI);
    }
    if( box.angle < -180 )
        box.angle += 360;
    if( box.angle > 360 )
        box.angle -= 360;
    }
#endif
    __END__;

    cvFree( &Ad );
    cvFree( &bd );

    return box;
}
Пример #2
0
CV_IMPL int
cvMinEnclosingCircle( const void* array, CvPoint2D32f * _center, float *_radius )
{
    const int max_iters = 100;
    const float eps = FLT_EPSILON*2;
    CvPoint2D32f center = { 0, 0 };
    float radius = 0;
    int result = 0;

    if( _center )
        _center->x = _center->y = 0.f;
    if( _radius )
        *_radius = 0;

    CV_FUNCNAME( "cvMinEnclosingCircle" );

    __BEGIN__;

    CvSeqReader reader;
    int i, k, count;
    CvPoint2D32f pts[8];
    CvContour contour_header;
    CvSeqBlock block;
    CvSeq* sequence = 0;
    int is_float;

    if( !_center || !_radius )
        CV_ERROR( CV_StsNullPtr, "Null center or radius pointers" );

    if( CV_IS_SEQ(array) )
    {
        sequence = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( sequence ))
            CV_ERROR( CV_StsBadArg, "The passed sequence is not a valid contour" );
    }
    else
    {
        CV_CALL( sequence = cvPointSeqFromMat(
            CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
    }

    if( sequence->total <= 0 )
        CV_ERROR_FROM_STATUS( CV_BADSIZE_ERR );

    CV_CALL( cvStartReadSeq( sequence, &reader, 0 ));

    count = sequence->total;
    is_float = CV_SEQ_ELTYPE(sequence) == CV_32FC2;

    if( !is_float )
    {
        CvPoint *pt_left, *pt_right, *pt_top, *pt_bottom;
        CvPoint pt;
        pt_left = pt_right = pt_top = pt_bottom = (CvPoint *)(reader.ptr);
        CV_READ_SEQ_ELEM( pt, reader );

        for( i = 1; i < count; i++ )
        {
            CvPoint* pt_ptr = (CvPoint*)reader.ptr;
            CV_READ_SEQ_ELEM( pt, reader );

            if( pt.x < pt_left->x )
                pt_left = pt_ptr;
            if( pt.x > pt_right->x )
                pt_right = pt_ptr;
            if( pt.y < pt_top->y )
                pt_top = pt_ptr;
            if( pt.y > pt_bottom->y )
                pt_bottom = pt_ptr;
        }

        pts[0] = cvPointTo32f( *pt_left );
        pts[1] = cvPointTo32f( *pt_right );
        pts[2] = cvPointTo32f( *pt_top );
        pts[3] = cvPointTo32f( *pt_bottom );
    }
    else
    {
        CvPoint2D32f *pt_left, *pt_right, *pt_top, *pt_bottom;
        CvPoint2D32f pt;
        pt_left = pt_right = pt_top = pt_bottom = (CvPoint2D32f *) (reader.ptr);
        CV_READ_SEQ_ELEM( pt, reader );

        for( i = 1; i < count; i++ )
        {
            CvPoint2D32f* pt_ptr = (CvPoint2D32f*)reader.ptr;
            CV_READ_SEQ_ELEM( pt, reader );

            if( pt.x < pt_left->x )
                pt_left = pt_ptr;
            if( pt.x > pt_right->x )
                pt_right = pt_ptr;
            if( pt.y < pt_top->y )
                pt_top = pt_ptr;
            if( pt.y > pt_bottom->y )
                pt_bottom = pt_ptr;
        }

        pts[0] = *pt_left;
        pts[1] = *pt_right;
        pts[2] = *pt_top;
        pts[3] = *pt_bottom;
    }

    for( k = 0; k < max_iters; k++ )
    {
        double min_delta = 0, delta;
        CvPoint2D32f ptfl;
        
        icvFindEnslosingCicle4pts_32f( pts, &center, &radius );
        cvStartReadSeq( sequence, &reader, 0 );

        for( i = 0; i < count; i++ )
        {
            if( !is_float )
            {
                ptfl.x = (float)((CvPoint*)reader.ptr)->x;
                ptfl.y = (float)((CvPoint*)reader.ptr)->y;
            }
            else
            {
                ptfl = *(CvPoint2D32f*)reader.ptr;
            }
            CV_NEXT_SEQ_ELEM( sequence->elem_size, reader );

            delta = icvIsPtInCircle( ptfl, center, radius );
            if( delta < min_delta )
            {
                min_delta = delta;
                pts[3] = ptfl;
            }
        }
        result = min_delta >= 0;
        if( result )
            break;
    }

    if( !result )
    {
        cvStartReadSeq( sequence, &reader, 0 );
        radius = 0.f;

        for( i = 0; i < count; i++ )
        {
            CvPoint2D32f ptfl;
            float t, dx, dy;

            if( !is_float )
            {
                ptfl.x = (float)((CvPoint*)reader.ptr)->x;
                ptfl.y = (float)((CvPoint*)reader.ptr)->y;
            }
            else
            {
                ptfl = *(CvPoint2D32f*)reader.ptr;
            }

            CV_NEXT_SEQ_ELEM( sequence->elem_size, reader );
            dx = center.x - ptfl.x;
            dy = center.y - ptfl.y;
            t = dx*dx + dy*dy;
            radius = MAX(radius,t);
        }

        radius = (float)(sqrt(radius)*(1 + eps));
        result = 1;
    }

    __END__;

    *_center = center;
    *_radius = radius;

    return result;
}
Пример #3
0
/* calculates length of a curve (e.g. contour perimeter) */
CV_IMPL  double
cvArcLength( const void *array, CvSlice slice, int is_closed )
{
    double perimeter = 0;

    CV_FUNCNAME( "cvArcLength" );

    __BEGIN__;

    int i, j = 0, count;
    const int N = 16;
    float buf[N];
    CvMat buffer = cvMat( 1, N, CV_32F, buf ); 
    CvSeqReader reader;
    CvContour contour_header;
    CvSeq* contour = 0;
    CvSeqBlock block;

    if( CV_IS_SEQ( array ))
    {
        contour = (CvSeq*)array;
        if( !CV_IS_SEQ_POLYLINE( contour ))
            CV_ERROR( CV_StsBadArg, "Unsupported sequence type" );
        if( is_closed < 0 )
            is_closed = CV_IS_SEQ_CLOSED( contour );
    }
    else
    {
        is_closed = is_closed > 0;
        CV_CALL( contour = cvPointSeqFromMat(
            CV_SEQ_KIND_CURVE | (is_closed ? CV_SEQ_FLAG_CLOSED : 0),
            array, &contour_header, &block ));
    }

    if( contour->total > 1 )
    {
        int is_float = CV_SEQ_ELTYPE( contour ) == CV_32FC2;
        
        cvStartReadSeq( contour, &reader, 0 );
        cvSetSeqReaderPos( &reader, slice.start_index );
        count = cvSliceLength( slice, contour );

        count -= !is_closed && count == contour->total;

        /* scroll the reader by 1 point */
        reader.prev_elem = reader.ptr;
        CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );

        for( i = 0; i < count; i++ )
        {
            float dx, dy;

            if( !is_float )
            {
                CvPoint* pt = (CvPoint*)reader.ptr;
                CvPoint* prev_pt = (CvPoint*)reader.prev_elem;

                dx = (float)pt->x - (float)prev_pt->x;
                dy = (float)pt->y - (float)prev_pt->y;
            }
            else
            {
                CvPoint2D32f* pt = (CvPoint2D32f*)reader.ptr;
                CvPoint2D32f* prev_pt = (CvPoint2D32f*)reader.prev_elem;

                dx = pt->x - prev_pt->x;
                dy = pt->y - prev_pt->y;
            }

            reader.prev_elem = reader.ptr;
            CV_NEXT_SEQ_ELEM( contour->elem_size, reader );

            buffer.data.fl[j] = dx * dx + dy * dy;
            if( ++j == N || i == count - 1 )
            {
                buffer.cols = j;
                cvPow( &buffer, &buffer, 0.5 );
                for( ; j > 0; j-- )
                    perimeter += buffer.data.fl[j-1];
            }
        }
    }

    __END__;

    return perimeter;
}
Пример #4
0
CV_IMPL double
cvPointPolygonTest(const CvArr* _contour, CvPoint2D32f pt, int measure_dist) {
    double result = 0;

    CvSeqBlock block;
    CvContour header;
    CvSeq* contour = (CvSeq*)_contour;
    CvSeqReader reader;
    int i, total, counter = 0;
    int is_float;
    double min_dist_num = FLT_MAX, min_dist_denom = 1;
    CvPoint ip = {0, 0};

    if (!CV_IS_SEQ(contour)) {
        contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE + CV_SEQ_FLAG_CLOSED,
                                    _contour, &header, &block);
    } else if (CV_IS_SEQ_POINT_SET(contour)) {
        if (contour->header_size == sizeof(CvContour) && !measure_dist) {
            CvRect r = ((CvContour*)contour)->rect;
            if (pt.x < r.x || pt.y < r.y ||
                    pt.x >= r.x + r.width || pt.y >= r.y + r.height) {
                return -100;
            }
        }
    } else if (CV_IS_SEQ_CHAIN(contour)) {
        CV_Error(CV_StsBadArg,
                 "Chains are not supported. Convert them to polygonal representation using cvApproxChains()");
    } else {
        CV_Error(CV_StsBadArg, "Input contour is neither a valid sequence nor a matrix");
    }

    total = contour->total;
    is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;
    cvStartReadSeq(contour, &reader, -1);

    if (!is_float && !measure_dist && (ip.x = cvRound(pt.x)) == pt.x && (ip.y = cvRound(pt.y)) == pt.y) {
        // the fastest "pure integer" branch
        CvPoint v0, v;
        CV_READ_SEQ_ELEM(v, reader);

        for (i = 0; i < total; i++) {
            int dist;
            v0 = v;
            CV_READ_SEQ_ELEM(v, reader);

            if ((v0.y <= ip.y && v.y <= ip.y) ||
                    (v0.y > ip.y && v.y > ip.y) ||
                    (v0.x < ip.x && v.x < ip.x)) {
                if (ip.y == v.y && (ip.x == v.x || (ip.y == v0.y &&
                                                    ((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x))))) {
                    return 0;
                }
                continue;
            }

            dist = (ip.y - v0.y) * (v.x - v0.x) - (ip.x - v0.x) * (v.y - v0.y);
            if (dist == 0) {
                return 0;
            }
            if (v.y < v0.y) {
                dist = -dist;
            }
            counter += dist > 0;
        }

        result = counter % 2 == 0 ? -100 : 100;
    } else {
        CvPoint2D32f v0, v;
        CvPoint iv;

        if (is_float) {
            CV_READ_SEQ_ELEM(v, reader);
        } else {
            CV_READ_SEQ_ELEM(iv, reader);
            v = cvPointTo32f(iv);
        }

        if (!measure_dist) {
            for (i = 0; i < total; i++) {
                double dist;
                v0 = v;
                if (is_float) {
                    CV_READ_SEQ_ELEM(v, reader);
                } else {
                    CV_READ_SEQ_ELEM(iv, reader);
                    v = cvPointTo32f(iv);
                }

                if ((v0.y <= pt.y && v.y <= pt.y) ||
                        (v0.y > pt.y && v.y > pt.y) ||
                        (v0.x < pt.x && v.x < pt.x)) {
                    if (pt.y == v.y && (pt.x == v.x || (pt.y == v0.y &&
                                                        ((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x))))) {
                        return 0;
                    }
                    continue;
                }

                dist = (double)(pt.y - v0.y) * (v.x - v0.x) - (double)(pt.x - v0.x) * (v.y - v0.y);
                if (dist == 0) {
                    return 0;
                }
                if (v.y < v0.y) {
                    dist = -dist;
                }
                counter += dist > 0;
            }

            result = counter % 2 == 0 ? -100 : 100;
        } else {
            for (i = 0; i < total; i++) {
                double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1;

                v0 = v;
                if (is_float) {
                    CV_READ_SEQ_ELEM(v, reader);
                } else {
                    CV_READ_SEQ_ELEM(iv, reader);
                    v = cvPointTo32f(iv);
                }

                dx = v.x - v0.x; dy = v.y - v0.y;
                dx1 = pt.x - v0.x; dy1 = pt.y - v0.y;
                dx2 = pt.x - v.x; dy2 = pt.y - v.y;

                if (dx1* dx + dy1* dy <= 0) {
                    dist_num = dx1 * dx1 + dy1 * dy1;
                } else if (dx2* dx + dy2* dy >= 0) {
                    dist_num = dx2 * dx2 + dy2 * dy2;
                } else {
                    dist_num = (dy1 * dx - dx1 * dy);
                    dist_num *= dist_num;
                    dist_denom = dx * dx + dy * dy;
                }

                if (dist_num * min_dist_denom < min_dist_num * dist_denom) {
                    min_dist_num = dist_num;
                    min_dist_denom = dist_denom;
                    if (min_dist_num == 0) {
                        break;
                    }
                }

                if ((v0.y <= pt.y && v.y <= pt.y) ||
                        (v0.y > pt.y && v.y > pt.y) ||
                        (v0.x < pt.x && v.x < pt.x)) {
                    continue;
                }

                dist_num = dy1 * dx - dx1 * dy;
                if (dy < 0) {
                    dist_num = -dist_num;
                }
                counter += dist_num > 0;
            }

            result = sqrt(min_dist_num / min_dist_denom);
            if (counter % 2 == 0) {
                result = -result;
            }
        }
    }

    return result;
}
Пример #5
0
/* Calculates bounding rectagnle of a point set or retrieves already calculated */
CV_IMPL  CvRect
cvBoundingRect( CvArr* array, int update )
{
    CvSeqReader reader;
    CvRect  rect = { 0, 0, 0, 0 };
    CvContour contour_header;
    CvSeq* ptseq = 0;
    CvSeqBlock block;

    CV_FUNCNAME( "cvBoundingRect" );

    __BEGIN__;

    CvMat stub, *mat = 0;
    int  xmin = 0, ymin = 0, xmax = -1, ymax = -1, i, j, k;
    int calculate = update;

    if( CV_IS_SEQ( array ))
    {
        ptseq = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( ptseq ))
            CV_ERROR( CV_StsBadArg, "Unsupported sequence type" );

        if( ptseq->header_size < (int)sizeof(CvContour))
        {
            /*if( update == 1 )
                CV_ERROR( CV_StsBadArg, "The header is too small to fit the rectangle, "
                                        "so it could not be updated" );*/
            update = 0;
            calculate = 1;
        }
    }
    else
    {
        CV_CALL( mat = cvGetMat( array, &stub ));
        if( CV_MAT_TYPE(mat->type) == CV_32SC2 ||
            CV_MAT_TYPE(mat->type) == CV_32FC2 )
        {
            CV_CALL( ptseq = cvPointSeqFromMat(
                CV_SEQ_KIND_GENERIC, mat, &contour_header, &block ));
            mat = 0;
        }
        else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
                CV_MAT_TYPE(mat->type) != CV_8SC1 )
            CV_ERROR( CV_StsUnsupportedFormat,
                "The image/matrix format is not supported by the function" );
        update = 0;
        calculate = 1;
    }

    if( !calculate )
    {
        rect = ((CvContour*)ptseq)->rect;
        EXIT;
    }

    if( mat )
    {
        CvSize size = cvGetMatSize(mat);
        xmin = size.width;
        ymin = -1;

        for( i = 0; i < size.height; i++ )
        {
            uchar* _ptr = mat->data.ptr + i*mat->step;
            uchar* ptr = (uchar*)cvAlignPtr(_ptr, 4);
            int have_nz = 0, k_min, offset = (int)(ptr - _ptr);
            j = 0;
            offset = MIN(offset, size.width);
            for( ; j < offset; j++ )
                if( _ptr[j] )
                {
                    have_nz = 1;
                    break;
                }
            if( j < offset )
            {
                if( j < xmin )
                    xmin = j;
                if( j > xmax )
                    xmax = j;
            }
            if( offset < size.width )
            {
                xmin -= offset;
                xmax -= offset;
                size.width -= offset;
                j = 0;
                for( ; j <= xmin - 4; j += 4 )
                    if( *((int*)(ptr+j)) )
                        break;
                for( ; j < xmin; j++ )
                    if( ptr[j] )
                    {
                        xmin = j;
                        if( j > xmax )
                            xmax = j;
                        have_nz = 1;
                        break;
                    }
                k_min = MAX(j-1, xmax);
                k = size.width - 1;
                for( ; k > k_min && (k&3) != 3; k-- )
                    if( ptr[k] )
                        break;
                if( k > k_min && (k&3) == 3 )
                {
                    for( ; k > k_min+3; k -= 4 )
                        if( *((int*)(ptr+k-3)) )
                            break;
                }
                for( ; k > k_min; k-- )
                    if( ptr[k] )
                    {
                        xmax = k;
                        have_nz = 1;
                        break;
                    }
                if( !have_nz )
                {
                    j &= ~3;
                    for( ; j <= k - 3; j += 4 )
                        if( *((int*)(ptr+j)) )
                            break;
                    for( ; j <= k; j++ )
                        if( ptr[j] )
                        {
                            have_nz = 1;
                            break;
                        }
                }
                xmin += offset;
                xmax += offset;
                size.width += offset;
            }
            if( have_nz )
            {
                if( ymin < 0 )
                    ymin = i;
                ymax = i;
            }
        }

        if( xmin >= size.width )
            xmin = ymin = 0;
    }
    else if( ptseq->total )
    {   
        int  is_float = CV_SEQ_ELTYPE(ptseq) == CV_32FC2;
        cvStartReadSeq( ptseq, &reader, 0 );

        if( !is_float )
        {
            CvPoint pt;
            /* init values */
            CV_READ_SEQ_ELEM( pt, reader );
            xmin = xmax = pt.x;
            ymin = ymax = pt.y;

            for( i = 1; i < ptseq->total; i++ )
            {            
                CV_READ_SEQ_ELEM( pt, reader );
        
                if( xmin > pt.x )
                    xmin = pt.x;
        
                if( xmax < pt.x )
                    xmax = pt.x;

                if( ymin > pt.y )
                    ymin = pt.y;

                if( ymax < pt.y )
                    ymax = pt.y;
            }
        }
        else
        {
            CvPoint pt;
            Cv32suf v;
            /* init values */
            CV_READ_SEQ_ELEM( pt, reader );
            xmin = xmax = CV_TOGGLE_FLT(pt.x);
            ymin = ymax = CV_TOGGLE_FLT(pt.y);

            for( i = 1; i < ptseq->total; i++ )
            {            
                CV_READ_SEQ_ELEM( pt, reader );
                pt.x = CV_TOGGLE_FLT(pt.x);
                pt.y = CV_TOGGLE_FLT(pt.y);
        
                if( xmin > pt.x )
                    xmin = pt.x;
        
                if( xmax < pt.x )
                    xmax = pt.x;

                if( ymin > pt.y )
                    ymin = pt.y;

                if( ymax < pt.y )
                    ymax = pt.y;
            }

            v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f);
            v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f);
            /* because right and bottom sides of
               the bounding rectangle are not inclusive
               (note +1 in width and height calculation below),
               cvFloor is used here instead of cvCeil */
            v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f);
            v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
        }
    }

    rect.x = xmin;
    rect.y = ymin;
    rect.width = xmax - xmin + 1;
    rect.height = ymax - ymin + 1;

    if( update )
        ((CvContour*)ptseq)->rect = rect;

    __END__;

    return rect;
}
Пример #6
0
/* it must have more than 3 points  */
CV_IMPL CvSeq*
cvConvexityDefects( const CvArr* array,
                    const CvArr* hullarray,
                    CvMemStorage* storage )
{
    CvSeq* defects = 0;

    CV_FUNCNAME( "cvConvexityDefects" );

    __BEGIN__;

    int i, index;
    CvPoint* hull_cur;

    /* is orientation of hull different from contour one */
    int rev_orientation;

    CvContour contour_header;
    union { CvContour c; CvSeq s; } hull_header;
    CvSeqBlock block, hullblock;
    CvSeq *ptseq = (CvSeq*)array, *hull = (CvSeq*)hullarray;

    CvSeqReader hull_reader;
    CvSeqReader ptseq_reader;
    CvSeqWriter writer;
    int is_index;

    if( CV_IS_SEQ( ptseq ))
    {
        if( !CV_IS_SEQ_POINT_SET( ptseq ))
            CV_ERROR( CV_StsUnsupportedFormat,
                "Input sequence is not a sequence of points" );
        if( !storage )
            storage = ptseq->storage;
    }
    else
    {
        CV_CALL( ptseq = cvPointSeqFromMat(
            CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
    }

    if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 )
        CV_ERROR( CV_StsUnsupportedFormat,
            "Floating-point coordinates are not supported here" );

    if( CV_IS_SEQ( hull ))
    {
        int hulltype = CV_SEQ_ELTYPE( hull );
        if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX )
            CV_ERROR( CV_StsUnsupportedFormat,
                "Convex hull must represented as a sequence "
                "of indices or sequence of pointers" );
        if( !storage )
            storage = hull->storage;
    }
    else
    {
        CvMat* mat = (CvMat*)hull;

        if( !CV_IS_MAT( hull ))
            CV_ERROR(CV_StsBadArg, "Convex hull is neither sequence nor matrix");

        if( mat->cols != 1 && mat->rows != 1 ||
            !CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 )
            CV_ERROR( CV_StsBadArg,
            "The matrix should be 1-dimensional and continuous array of int's" );

        if( mat->cols + mat->rows - 1 > ptseq->total )
            CV_ERROR( CV_StsBadSize, "Convex hull is larger than the point sequence" );

        CV_CALL( hull = cvMakeSeqHeaderForArray(
            CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
            sizeof(CvContour), CV_ELEM_SIZE(mat->type), mat->data.ptr,
            mat->cols + mat->rows - 1, &hull_header.s, &hullblock ));
    }

    is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX;

    if( !storage )
        CV_ERROR( CV_StsNullPtr, "NULL storage pointer" );

    CV_CALL( defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq),
                                    sizeof(CvConvexityDefect), storage ));

    if( ptseq->total < 4 || hull->total < 3)
    {
        //CV_ERROR( CV_StsBadSize,
        //    "point seq size must be >= 4, convex hull size must be >= 3" );
        EXIT;
    }

    /* recognize co-orientation of ptseq and its hull */
    {
        int sign = 0;
        int index1, index2, index3;

        if( !is_index )
        {
            CvPoint* pos = *CV_SEQ_ELEM( hull, CvPoint*, 0 );
            CV_CALL( index1 = cvSeqElemIdx( ptseq, pos ));

            pos = *CV_SEQ_ELEM( hull, CvPoint*, 1 );
            CV_CALL( index2 = cvSeqElemIdx( ptseq, pos ));

            pos = *CV_SEQ_ELEM( hull, CvPoint*, 2 );
            CV_CALL( index3 = cvSeqElemIdx( ptseq, pos ));
        }
        else
        {
Пример #7
0
CV_IMPL  CvBox2D
cvMinAreaRect2( const CvArr* array, CvMemStorage* storage )
{
    cv::Ptr<CvMemStorage> temp_storage;
    CvBox2D box;
    cv::AutoBuffer<CvPoint2D32f> _points;
    CvPoint2D32f* points;
    
    memset(&box, 0, sizeof(box));

    int i, n;
    CvSeqReader reader;
    CvContour contour_header;
    CvSeqBlock block;
    CvSeq* ptseq = (CvSeq*)array;
    CvPoint2D32f out[3];

    if( CV_IS_SEQ(ptseq) )
    {
        if( !CV_IS_SEQ_POINT_SET(ptseq) &&
            (CV_SEQ_KIND(ptseq) != CV_SEQ_KIND_CURVE || !CV_IS_SEQ_CONVEX(ptseq) ||
            CV_SEQ_ELTYPE(ptseq) != CV_SEQ_ELTYPE_PPOINT ))
            CV_Error( CV_StsUnsupportedFormat,
                "Input sequence must consist of 2d points or pointers to 2d points" );
        if( !storage )
            storage = ptseq->storage;
    }
    else
    {
        ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
    }

    if( storage )
    {
        temp_storage = cvCreateChildMemStorage( storage );
    }
    else
    {
        temp_storage = cvCreateMemStorage(1 << 10);
    }

    if( !CV_IS_SEQ_CONVEX( ptseq ))
    {
        ptseq = cvConvexHull2( ptseq, temp_storage, CV_CLOCKWISE, 1 );
    }
    else if( !CV_IS_SEQ_POINT_SET( ptseq ))
    {
        CvSeqWriter writer;
        
        if( !CV_IS_SEQ(ptseq->v_prev) || !CV_IS_SEQ_POINT_SET(ptseq->v_prev))
            CV_Error( CV_StsBadArg,
            "Convex hull must have valid pointer to point sequence stored in v_prev" );
        cvStartReadSeq( ptseq, &reader );
        cvStartWriteSeq( CV_SEQ_KIND_CURVE|CV_SEQ_FLAG_CONVEX|CV_SEQ_ELTYPE(ptseq->v_prev),
                         sizeof(CvContour), CV_ELEM_SIZE(ptseq->v_prev->flags),
                         temp_storage, &writer );
            
        for( i = 0; i < ptseq->total; i++ )
        {
            CvPoint pt = **(CvPoint**)(reader.ptr);
            CV_WRITE_SEQ_ELEM( pt, writer );
        }

        ptseq = cvEndWriteSeq( &writer );
    }

    n = ptseq->total;

    _points.allocate(n);
    points = _points;
    cvStartReadSeq( ptseq, &reader );

    if( CV_SEQ_ELTYPE( ptseq ) == CV_32SC2 )
    {
        for( i = 0; i < n; i++ )
        {
            CvPoint pt;
            CV_READ_SEQ_ELEM( pt, reader );
            points[i].x = (float)pt.x;
            points[i].y = (float)pt.y;
        }
    }
    else
    {
        for( i = 0; i < n; i++ )
        {
            CV_READ_SEQ_ELEM( points[i], reader );
        }
    }
    
    if( n > 2 )
    {
        icvRotatingCalipers( points, n, CV_CALIPERS_MINAREARECT, (float*)out );
        box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
        box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
        box.size.height = (float)sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
        box.size.width = (float)sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
        box.angle = (float)atan2( -(double)out[1].y, (double)out[1].x );
    }
    else if( n == 2 )
    {
        box.center.x = (points[0].x + points[1].x)*0.5f;
        box.center.y = (points[0].y + points[1].y)*0.5f;
        double dx = points[1].x - points[0].x;
        double dy = points[1].y - points[0].y;
        box.size.height = (float)sqrt(dx*dx + dy*dy);
        box.size.width = 0;
        box.angle = (float)atan2( -dy, dx );
    }
    else
    {
        if( n == 1 )
            box.center = points[0];
    }

    box.angle = (float)(box.angle*180/CV_PI);
    return box;
}
Пример #8
0
CV_IMPL CvSeq*
cvConvexHull2( const CvArr* array, void* hull_storage,
               int orientation, int return_points )
{
    CvMat* mat = 0;
    CvContour contour_header;
    CvSeq hull_header;
    CvSeqBlock block, hullblock;
    CvSeq* ptseq = 0;
    CvSeq* hullseq = 0;

    if( CV_IS_SEQ( array ))
    {
        ptseq = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( ptseq ))
            CV_Error( CV_StsBadArg, "Unsupported sequence type" );
        if( hull_storage == 0 )
            hull_storage = ptseq->storage;
    }
    else
    {
        ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
    }

    bool isStorage = isStorageOrMat(hull_storage);

    if(isStorage)
    {
        if( return_points )
        {
            hullseq = cvCreateSeq(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
                                  CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
                                  sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage );
        }
        else
        {
            hullseq = cvCreateSeq(
                                  CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
                                  CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
                                  sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage );
        }
    }
    else
    {
        mat = (CvMat*)hull_storage;

        if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
            CV_Error( CV_StsBadArg,
                     "The hull matrix should be continuous and have a single row or a single column" );

        if( mat->cols + mat->rows - 1 < ptseq->total )
            CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );

        if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
           CV_MAT_TYPE(mat->type) != CV_32SC1 )
            CV_Error( CV_StsUnsupportedFormat,
                     "The hull matrix must have the same type as input or 32sC1 (integers)" );

        hullseq = cvMakeSeqHeaderForArray(
                                          CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
                                          sizeof(hull_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
                                          mat->cols + mat->rows - 1, &hull_header, &hullblock );
        cvClearSeq( hullseq );
    }

    int hulltype = CV_SEQ_ELTYPE(hullseq);
    int total = ptseq->total;
    if( total == 0 )
    {
        if( !isStorage )
            CV_Error( CV_StsBadSize,
                     "Point sequence can not be empty if the output is matrix" );
        return 0;
    }

    cv::AutoBuffer<double> _ptbuf;
    cv::Mat h0;
    cv::convexHull(cv::cvarrToMat(ptseq, false, false, 0, &_ptbuf), h0,
                   orientation == CV_CLOCKWISE, CV_MAT_CN(hulltype) == 2);


    if( hulltype == CV_SEQ_ELTYPE_PPOINT )
    {
        const int* idx = h0.ptr<int>();
        int ctotal = (int)h0.total();
        for( int i = 0; i < ctotal; i++ )
        {
            void* ptr = cvGetSeqElem(ptseq, idx[i]);
            cvSeqPush( hullseq, &ptr );
        }
    }
    else
        cvSeqPushMulti(hullseq, h0.ptr(), (int)h0.total());

    if (isStorage)
    {
        return hullseq;
    }
    else
    {
        if( mat->rows > mat->cols )
            mat->rows = hullseq->total;
        else
            mat->cols = hullseq->total;
        return 0;
    }
}
Пример #9
0
CV_IMPL CvSeq*
cvConvexHull2( const CvArr* array, void* hull_storage,
               int orientation, int return_points )
{
    union { CvContour* c; CvSeq* s; } hull;
    CvPoint** pointer = 0;
    CvPoint2D32f** pointerf = 0;
    int* stack = 0;

    CV_FUNCNAME( "cvConvexHull2" );

    hull.s = 0;

    __BEGIN__;

    CvMat* mat = 0;
    CvSeqReader reader;
    CvSeqWriter writer;
    CvContour contour_header;
    union { CvContour c; CvSeq s; } hull_header;
    CvSeqBlock block, hullblock;
    CvSeq* ptseq = 0;
    CvSeq* hullseq = 0;
    int is_float;
    int* t_stack;
    int t_count;
    int i, miny_ind = 0, maxy_ind = 0, total;
    int hulltype;
    int stop_idx;
    sklansky_func sklansky;

    if( CV_IS_SEQ( array ))
    {
        ptseq = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( ptseq ))
            CV_ERROR( CV_StsBadArg, "Unsupported sequence type" );
        if( hull_storage == 0 )
            hull_storage = ptseq->storage;
    }
    else
    {
        CV_CALL( ptseq = cvPointSeqFromMat(
            CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
    }

    if( CV_IS_STORAGE( hull_storage ))
    {
        if( return_points )
        {
            CV_CALL( hullseq = cvCreateSeq(
                CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
                CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
                sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage ));
        }
        else
        {
            CV_CALL( hullseq = cvCreateSeq(
                CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
                CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
                sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage ));
        }
    }
    else
    {
        if( !CV_IS_MAT( hull_storage ))
            CV_ERROR(CV_StsBadArg, "Destination must be valid memory storage or matrix");

        mat = (CvMat*)hull_storage;

        if( mat->cols != 1 && mat->rows != 1 || !CV_IS_MAT_CONT(mat->type))
            CV_ERROR( CV_StsBadArg,
            "The hull matrix should be continuous and have a single row or a single column" );

        if( mat->cols + mat->rows - 1 < ptseq->total )
            CV_ERROR( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );

        if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
            CV_MAT_TYPE(mat->type) != CV_32SC1 )
            CV_ERROR( CV_StsUnsupportedFormat,
            "The hull matrix must have the same type as input or 32sC1 (integers)" );

        CV_CALL( hullseq = cvMakeSeqHeaderForArray(
            CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
            sizeof(contour_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
            mat->cols + mat->rows - 1, &hull_header.s, &hullblock ));

        cvClearSeq( hullseq );
    }

    total = ptseq->total;
    if( total == 0 )
    {
        if( mat )
            CV_ERROR( CV_StsBadSize,
            "Point sequence can not be empty if the output is matrix" );
        EXIT;
    }

    cvStartAppendToSeq( hullseq, &writer );

    is_float = CV_SEQ_ELTYPE(ptseq) == CV_32FC2;
    hulltype = CV_SEQ_ELTYPE(hullseq);
    sklansky = !is_float ? (sklansky_func)icvSklansky_32s :
                           (sklansky_func)icvSklansky_32f;

    CV_CALL( pointer = (CvPoint**)cvAlloc( ptseq->total*sizeof(pointer[0]) ));
    CV_CALL( stack = (int*)cvAlloc( (ptseq->total + 2)*sizeof(stack[0]) ));
    pointerf = (CvPoint2D32f**)pointer;

    cvStartReadSeq( ptseq, &reader );

    for( i = 0; i < total; i++ )
    {
        pointer[i] = (CvPoint*)reader.ptr;
        CV_NEXT_SEQ_ELEM( ptseq->elem_size, reader );
    }

    // sort the point set by x-coordinate, find min and max y
    if( !is_float )
    {
        icvSortPointsByPointers_32s( pointer, total, 0 );
        for( i = 1; i < total; i++ )
        {
            int y = pointer[i]->y;
            if( pointer[miny_ind]->y > y )
                miny_ind = i;
            if( pointer[maxy_ind]->y < y )
                maxy_ind = i;
        }
    }
    else
    {
        icvSortPointsByPointers_32f( pointerf, total, 0 );
        for( i = 1; i < total; i++ )
        {
            float y = pointerf[i]->y;
            if( pointerf[miny_ind]->y > y )
                miny_ind = i;
            if( pointerf[maxy_ind]->y < y )
                maxy_ind = i;
        }
    }

    if( pointer[0]->x == pointer[total-1]->x &&
        pointer[0]->y == pointer[total-1]->y )
    {
        if( hulltype == CV_SEQ_ELTYPE_PPOINT )
        {
            CV_WRITE_SEQ_ELEM( pointer[0], writer );
        }
        else if( hulltype == CV_SEQ_ELTYPE_INDEX )
        {
            int index = 0;
            CV_WRITE_SEQ_ELEM( index, writer );
        }
        else
        {
            CvPoint pt = pointer[0][0];
            CV_WRITE_SEQ_ELEM( pt, writer );
        }
        goto finish_hull;
    }

    /*upper half */
    {
        int *tl_stack = stack;
        int tl_count = sklansky( pointer, 0, maxy_ind, tl_stack, -1, 1 );
        int *tr_stack = tl_stack + tl_count;
        int tr_count = sklansky( pointer, ptseq->total - 1, maxy_ind, tr_stack, -1, -1 );

        /* gather upper part of convex hull to output */
        if( orientation == CV_COUNTER_CLOCKWISE )
        {
            CV_SWAP( tl_stack, tr_stack, t_stack );
            CV_SWAP( tl_count, tr_count, t_count );
        }

        if( hulltype == CV_SEQ_ELTYPE_PPOINT )
        {
            for( i = 0; i < tl_count - 1; i++ )
                CV_WRITE_SEQ_ELEM( pointer[tl_stack[i]], writer );

            for( i = tr_count - 1; i > 0; i-- )
                CV_WRITE_SEQ_ELEM( pointer[tr_stack[i]], writer );
        }
        else if( hulltype == CV_SEQ_ELTYPE_INDEX )
        {
            CV_CALL( icvCalcAndWritePtIndices( pointer, tl_stack,
                                               0, tl_count-1, ptseq, &writer ));
            CV_CALL( icvCalcAndWritePtIndices( pointer, tr_stack,
                                               tr_count-1, 0, ptseq, &writer ));
        }
        else
        {
            for( i = 0; i < tl_count - 1; i++ )
                CV_WRITE_SEQ_ELEM( pointer[tl_stack[i]][0], writer );

            for( i = tr_count - 1; i > 0; i-- )
                CV_WRITE_SEQ_ELEM( pointer[tr_stack[i]][0], writer );
        }
        stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1;
    }

    /* lower half */
    {
        int *bl_stack = stack;
        int bl_count = sklansky( pointer, 0, miny_ind, bl_stack, 1, -1 );
        int *br_stack = stack + bl_count;
        int br_count = sklansky( pointer, ptseq->total - 1, miny_ind, br_stack, 1, 1 );

        if( orientation != CV_COUNTER_CLOCKWISE )
        {
            CV_SWAP( bl_stack, br_stack, t_stack );
            CV_SWAP( bl_count, br_count, t_count );
        }

        if( stop_idx >= 0 )
        {
            int check_idx = bl_count > 2 ? bl_stack[1] :
                            bl_count + br_count > 2 ? br_stack[2-bl_count] : -1;
            if( check_idx == stop_idx || check_idx >= 0 &&
                pointer[check_idx]->x == pointer[stop_idx]->x &&
                pointer[check_idx]->y == pointer[stop_idx]->y )
            {
                /* if all the points lie on the same line, then
                   the bottom part of the convex hull is the mirrored top part
                   (except the exteme points).*/
                bl_count = MIN( bl_count, 2 );
                br_count = MIN( br_count, 2 );
            }
        }

        if( hulltype == CV_SEQ_ELTYPE_PPOINT )
        {
            for( i = 0; i < bl_count - 1; i++ )
                CV_WRITE_SEQ_ELEM( pointer[bl_stack[i]], writer );

            for( i = br_count - 1; i > 0; i-- )
                CV_WRITE_SEQ_ELEM( pointer[br_stack[i]], writer );
        }
        else if( hulltype == CV_SEQ_ELTYPE_INDEX )
        {
            CV_CALL( icvCalcAndWritePtIndices( pointer, bl_stack,
                                               0, bl_count-1, ptseq, &writer ));
            CV_CALL( icvCalcAndWritePtIndices( pointer, br_stack,
                                               br_count-1, 0, ptseq, &writer ));
        }
        else
        {
            for( i = 0; i < bl_count - 1; i++ )
                CV_WRITE_SEQ_ELEM( pointer[bl_stack[i]][0], writer );

            for( i = br_count - 1; i > 0; i-- )
                CV_WRITE_SEQ_ELEM( pointer[br_stack[i]][0], writer );
        }
    }

finish_hull:
    CV_CALL( cvEndWriteSeq( &writer ));

    if( mat )
    {
        if( mat->rows > mat->cols )
            mat->rows = hullseq->total;
        else
            mat->cols = hullseq->total;
    }
    else
    {
        hull.s = hullseq;
        hull.c->rect = cvBoundingRect( ptseq,
            ptseq->header_size < (int)sizeof(CvContour) ||
            &ptseq->flags == &contour_header.flags );

        /*if( ptseq != (CvSeq*)&contour_header )
            hullseq->v_prev = ptseq;*/
    }

    __END__;

    cvFree( &pointer );
    cvFree( &stack );

    return hull.s;
}
Пример #10
0
/* Calculates bounding rectagnle of a point set or retrieves already calculated */
CV_IMPL  CvRect
cvBoundingRect( CvArr* array, int update )
{
    CvSeqReader reader;
    CvRect  rect = { 0, 0, 0, 0 };
    CvContour contour_header;
    CvSeq* ptseq = 0;
    CvSeqBlock block;

    CvMat stub, *mat = 0;
    int  xmin = 0, ymin = 0, xmax = -1, ymax = -1, i, j, k;
    int calculate = update;

    if( CV_IS_SEQ( array ))
    {
        ptseq = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( ptseq ))
            CV_Error( CV_StsBadArg, "Unsupported sequence type" );

        if( ptseq->header_size < (int)sizeof(CvContour))
        {
            update = 0;
            calculate = 1;
        }
    }
    else
    {
        mat = cvGetMat( array, &stub );
        if( CV_MAT_TYPE(mat->type) == CV_32SC2 ||
            CV_MAT_TYPE(mat->type) == CV_32FC2 )
        {
            ptseq = cvPointSeqFromMat(CV_SEQ_KIND_GENERIC, mat, &contour_header, &block);
            mat = 0;
        }
        else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
                CV_MAT_TYPE(mat->type) != CV_8SC1 )
            CV_Error( CV_StsUnsupportedFormat,
                "The image/matrix format is not supported by the function" );
        update = 0;
        calculate = 1;
    }

    if( !calculate )
        return ((CvContour*)ptseq)->rect;

    if( mat )
    {
        CvSize size = cvGetMatSize(mat);
        xmin = size.width;
        ymin = -1;

        for( i = 0; i < size.height; i++ )
        {
            uchar* _ptr = mat->data.ptr + i*mat->step;
            uchar* ptr = (uchar*)cvAlignPtr(_ptr, 4);
            int have_nz = 0, k_min, offset = (int)(ptr - _ptr);
            j = 0;
            offset = MIN(offset, size.width);
            for( ; j < offset; j++ )
                if( _ptr[j] )
                {
                    have_nz = 1;
                    break;
                }
            if( j < offset )
            {
                if( j < xmin )
                    xmin = j;
                if( j > xmax )
                    xmax = j;
            }
            if( offset < size.width )
            {
                xmin -= offset;
                xmax -= offset;
                size.width -= offset;
                j = 0;
                for( ; j <= xmin - 4; j += 4 )
                    if( *((int*)(ptr+j)) )
                        break;
                for( ; j < xmin; j++ )
                    if( ptr[j] )
                    {
                        xmin = j;
                        if( j > xmax )
                            xmax = j;
                        have_nz = 1;
                        break;
                    }
                k_min = MAX(j-1, xmax);
                k = size.width - 1;
                for( ; k > k_min && (k&3) != 3; k-- )
                    if( ptr[k] )
                        break;
                if( k > k_min && (k&3) == 3 )
                {
                    for( ; k > k_min+3; k -= 4 )
                        if( *((int*)(ptr+k-3)) )
                            break;
                }
                for( ; k > k_min; k-- )
                    if( ptr[k] )
                    {
                        xmax = k;
                        have_nz = 1;
                        break;
                    }
                if( !have_nz )
                {
                    j &= ~3;
                    for( ; j <= k - 3; j += 4 )
                        if( *((int*)(ptr+j)) )
                            break;
                    for( ; j <= k; j++ )
                        if( ptr[j] )
                        {
                            have_nz = 1;
                            break;
                        }
                }
                xmin += offset;
                xmax += offset;
                size.width += offset;
            }
            if( have_nz )
            {
                if( ymin < 0 )
                    ymin = i;
                ymax = i;
            }
        }

        if( xmin >= size.width )
            xmin = ymin = 0;
    }
    else if( ptseq->total )
    {
        int  is_float = CV_SEQ_ELTYPE(ptseq) == CV_32FC2;
        cvStartReadSeq( ptseq, &reader, 0 );
        CvPoint pt;
        CV_READ_SEQ_ELEM( pt, reader );
    #if CV_SSE4_2
        if(cv::checkHardwareSupport(CV_CPU_SSE4_2))
        {
            if( !is_float )
            {
                __m128i minval, maxval;
                minval = maxval = _mm_loadl_epi64((const __m128i*)(&pt)); //min[0]=pt.x, min[1]=pt.y

                for( i = 1; i < ptseq->total; i++)
                {
                    __m128i ptXY = _mm_loadl_epi64((const __m128i*)(reader.ptr));
                    CV_NEXT_SEQ_ELEM(sizeof(pt), reader);
                    minval = _mm_min_epi32(ptXY, minval);
                    maxval = _mm_max_epi32(ptXY, maxval);
                }
                xmin = _mm_cvtsi128_si32(minval);
                ymin = _mm_cvtsi128_si32(_mm_srli_si128(minval, 4));
                xmax = _mm_cvtsi128_si32(maxval);
                ymax = _mm_cvtsi128_si32(_mm_srli_si128(maxval, 4));
            }
            else
            {
                __m128 minvalf, maxvalf, z = _mm_setzero_ps(), ptXY = _mm_setzero_ps();
                minvalf = maxvalf = _mm_loadl_pi(z, (const __m64*)(&pt));

                for( i = 1; i < ptseq->total; i++ )
                {
                    ptXY = _mm_loadl_pi(ptXY, (const __m64*)reader.ptr);
                    CV_NEXT_SEQ_ELEM(sizeof(pt), reader);

                    minvalf = _mm_min_ps(minvalf, ptXY);
                    maxvalf = _mm_max_ps(maxvalf, ptXY);
                }

                float xyminf[2], xymaxf[2];
                _mm_storel_pi((__m64*)xyminf, minvalf);
                _mm_storel_pi((__m64*)xymaxf, maxvalf);
                xmin = cvFloor(xyminf[0]);
                ymin = cvFloor(xyminf[1]);
                xmax = cvFloor(xymaxf[0]);
                ymax = cvFloor(xymaxf[1]);
            }
        }
        else
    #endif
        {
            if( !is_float )
            {
                xmin = xmax = pt.x;
                ymin = ymax = pt.y;

                for( i = 1; i < ptseq->total; i++ )
                {
                    CV_READ_SEQ_ELEM( pt, reader );

                    if( xmin > pt.x )
                        xmin = pt.x;

                    if( xmax < pt.x )
                        xmax = pt.x;

                    if( ymin > pt.y )
                        ymin = pt.y;

                    if( ymax < pt.y )
                        ymax = pt.y;
                }
            }
            else
            {
                Cv32suf v;
                // init values
                xmin = xmax = CV_TOGGLE_FLT(pt.x);
                ymin = ymax = CV_TOGGLE_FLT(pt.y);

                for( i = 1; i < ptseq->total; i++ )
                {
                    CV_READ_SEQ_ELEM( pt, reader );
                    pt.x = CV_TOGGLE_FLT(pt.x);
                    pt.y = CV_TOGGLE_FLT(pt.y);

                    if( xmin > pt.x )
                        xmin = pt.x;

                    if( xmax < pt.x )
                        xmax = pt.x;

                    if( ymin > pt.y )
                        ymin = pt.y;

                    if( ymax < pt.y )
                        ymax = pt.y;
                }

                v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f);
                v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f);
                // because right and bottom sides of the bounding rectangle are not inclusive
                // (note +1 in width and height calculation below), cvFloor is used here instead of cvCeil
                v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f);
                v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
            }
        }
        rect.x = xmin;
        rect.y = ymin;
        rect.width = xmax - xmin + 1;
        rect.height = ymax - ymin + 1;
    }
    if( update )
        ((CvContour*)ptseq)->rect = rect;
    return rect;
}
Пример #11
0
CV_IMPL int
cvMinEnclosingCircle( const void* array, CvPoint2D32f * _center, float *_radius )
{
    const int max_iters = 100;
    const float eps = FLT_EPSILON*2;
    CvPoint2D32f center = { 0, 0 };
    float radius = 0;
    int result = 0;

    if( _center )
        _center->x = _center->y = 0.f;
    if( _radius )
        *_radius = 0;

    CvSeqReader reader;
    int k, count;
    CvPoint2D32f pts[8];
    CvContour contour_header;
    CvSeqBlock block;
    CvSeq* sequence = 0;
    int is_float;

    if( !_center || !_radius )
        CV_Error( CV_StsNullPtr, "Null center or radius pointers" );

    if( CV_IS_SEQ(array) )
    {
        sequence = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( sequence ))
            CV_Error( CV_StsBadArg, "The passed sequence is not a valid contour" );
    }
    else
    {
        sequence = cvPointSeqFromMat(
            CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
    }

    if( sequence->total <= 0 )
        CV_Error( CV_StsBadSize, "" );

    cvStartReadSeq( sequence, &reader, 0 );

    count = sequence->total;
    is_float = CV_SEQ_ELTYPE(sequence) == CV_32FC2;

    if( !is_float )
    {
        CvPoint *pt_left, *pt_right, *pt_top, *pt_bottom;
        CvPoint pt;
        pt_left = pt_right = pt_top = pt_bottom = (CvPoint *)(reader.ptr);
        CV_READ_SEQ_ELEM( pt, reader );

        for(int i = 1; i < count; i++ )
        {
            CvPoint* pt_ptr = (CvPoint*)reader.ptr;
            CV_READ_SEQ_ELEM( pt, reader );

            if( pt.x < pt_left->x )
                pt_left = pt_ptr;
            if( pt.x > pt_right->x )
                pt_right = pt_ptr;
            if( pt.y < pt_top->y )
                pt_top = pt_ptr;
            if( pt.y > pt_bottom->y )
                pt_bottom = pt_ptr;
        }

        pts[0] = cvPointTo32f( *pt_left );
        pts[1] = cvPointTo32f( *pt_right );
        pts[2] = cvPointTo32f( *pt_top );
        pts[3] = cvPointTo32f( *pt_bottom );
    }
    else
    {
        CvPoint2D32f *pt_left, *pt_right, *pt_top, *pt_bottom;
        CvPoint2D32f pt;
        pt_left = pt_right = pt_top = pt_bottom = (CvPoint2D32f *) (reader.ptr);
        CV_READ_SEQ_ELEM( pt, reader );

        for(int i = 1; i < count; i++ )
        {
            CvPoint2D32f* pt_ptr = (CvPoint2D32f*)reader.ptr;
            CV_READ_SEQ_ELEM( pt, reader );

            if( pt.x < pt_left->x )
                pt_left = pt_ptr;
            if( pt.x > pt_right->x )
                pt_right = pt_ptr;
            if( pt.y < pt_top->y )
                pt_top = pt_ptr;
            if( pt.y > pt_bottom->y )
                pt_bottom = pt_ptr;
        }

        pts[0] = *pt_left;
        pts[1] = *pt_right;
        pts[2] = *pt_top;
        pts[3] = *pt_bottom;
    }

    for( k = 0; k < max_iters; k++ )
    {
        double min_delta = 0, delta;
        CvPoint2D32f ptfl, farAway = { 0, 0};
        /*only for first iteration because the alg is repared at the loop's foot*/
        if(k==0)
            icvFindEnslosingCicle4pts_32f( pts, &center, &radius );

        cvStartReadSeq( sequence, &reader, 0 );

        for(int i = 0; i < count; i++ )
        {
            if( !is_float )
            {
                ptfl.x = (float)((CvPoint*)reader.ptr)->x;
                ptfl.y = (float)((CvPoint*)reader.ptr)->y;
            }
            else
            {
                ptfl = *(CvPoint2D32f*)reader.ptr;
            }
            CV_NEXT_SEQ_ELEM( sequence->elem_size, reader );

            delta = icvIsPtInCircle( ptfl, center, radius );
            if( delta < min_delta )
            {
                min_delta = delta;
                farAway = ptfl;
            }
        }
        result = min_delta >= 0;
        if( result )
            break;

        CvPoint2D32f ptsCopy[4];
        /* find good replacement partner for the point which is at most far away,
        starting with the one that lays in the actual circle (i=3) */
        for(int i = 3; i >=0; i-- )
        {
            for(int j = 0; j < 4; j++ )
            {
                ptsCopy[j]=(i != j)? pts[j]: farAway;
            }

            icvFindEnslosingCicle4pts_32f(ptsCopy, &center, &radius );
            if( icvIsPtInCircle( pts[i], center, radius )>=0){ // replaced one again in the new circle?
                pts[i] = farAway;
                break;
            }
        }
    }

    if( !result )
    {
        cvStartReadSeq( sequence, &reader, 0 );
        radius = 0.f;

        for(int i = 0; i < count; i++ )
        {
            CvPoint2D32f ptfl;
            float t, dx, dy;

            if( !is_float )
            {
                ptfl.x = (float)((CvPoint*)reader.ptr)->x;
                ptfl.y = (float)((CvPoint*)reader.ptr)->y;
            }
            else
            {
                ptfl = *(CvPoint2D32f*)reader.ptr;
            }

            CV_NEXT_SEQ_ELEM( sequence->elem_size, reader );
            dx = center.x - ptfl.x;
            dy = center.y - ptfl.y;
            t = dx*dx + dy*dy;
            radius = MAX(radius,t);
        }

        radius = (float)(sqrt(radius)*(1 + eps));
        result = 1;
    }

    *_center = center;
    *_radius = radius;

    return result;
}
Пример #12
0
/* Calculates bounding rectagnle of a point set or retrieves already calculated */
CV_IMPL  CvRect
cvBoundingRect( CvArr* array, int update )
{
    CvSeqReader reader;
    CvRect  rect = { 0, 0, 0, 0 };
    CvContour contour_header;
    CvSeq* ptseq = 0;
    CvSeqBlock block;

    CV_FUNCNAME( "cvBoundingRect" );

    __BEGIN__;

    int calculate = update;

    if( CV_IS_SEQ( array ))
    {
        ptseq = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( ptseq ))
            CV_ERROR( CV_StsBadArg, "Unsupported sequence type" );

        if( ptseq->header_size < (int)sizeof(CvContour))
        {
            if( update == 1 )
                CV_ERROR( CV_StsBadArg, "The header is too small to fit the rectangle, "
                                        "so it could not be updated" );
            calculate = 1;
        }
    }
    else
    {
        CV_CALL( ptseq = cvPointSeqFromMat(
            CV_SEQ_KIND_GENERIC, array, &contour_header, &block ));
        calculate = 1;
    }

    if( calculate )
    {
        if( ptseq->total )
        {   
            int  is_float = CV_SEQ_ELTYPE(ptseq) == CV_32FC2;
            int  xmin, ymin, xmax, ymax, i;
            cvStartReadSeq( ptseq, &reader, 0 );

            if( !is_float )
            {
                CvPoint pt;
                /* init values */
                CV_READ_SEQ_ELEM( pt, reader );
                xmin = xmax = pt.x;
                ymin = ymax = pt.y;
    
                for( i = 1; i < ptseq->total; i++ )
                {            
                    CV_READ_SEQ_ELEM( pt, reader );
            
                    if( xmin > pt.x )
                        xmin = pt.x;
            
                    if( xmax < pt.x )
                        xmax = pt.x;

                    if( ymin > pt.y )
                        ymin = pt.y;

                    if( ymax < pt.y )
                        ymax = pt.y;
                }
            }
            else
            {
                CvPoint pt;
                /* init values */
                CV_READ_SEQ_ELEM( pt, reader );
                xmin = xmax = CV_TOGGLE_FLT(pt.x);
                ymin = ymax = CV_TOGGLE_FLT(pt.y);
    
                for( i = 1; i < ptseq->total; i++ )
                {            
                    CV_READ_SEQ_ELEM( pt, reader );
                    pt.x = CV_TOGGLE_FLT(pt.x);
                    pt.y = CV_TOGGLE_FLT(pt.y);
            
                    if( xmin > pt.x )
                        xmin = pt.x;
            
                    if( xmax < pt.x )
                        xmax = pt.x;

                    if( ymin > pt.y )
                        ymin = pt.y;

                    if( ymax < pt.y )
                        ymax = pt.y;
                }

                xmin = CV_TOGGLE_FLT(xmin);
                ymin = CV_TOGGLE_FLT(ymin);
                xmax = CV_TOGGLE_FLT(xmax);
                ymax = CV_TOGGLE_FLT(ymax);

                xmin = cvFloor( (float&)xmin );
                ymin = cvFloor( (float&)ymin );
                /* because right and bottom sides of
                   the bounding rectangle are not inclusive,
                   cvFloor is used here (instead of cvCeil) */
                xmax = cvFloor( (float&)xmax );
                ymax = cvFloor( (float&)ymax );
            }

            rect.x = xmin;
            rect.y = ymin;
            rect.width = xmax - xmin + 1;
            rect.height = ymax - ymin + 1;
        }

        if( update )
            ((CvContour*)ptseq)->rect = rect;
    }
    else
    {
        rect = ((CvContour*)ptseq)->rect;
    }

    __END__;

    return rect;
}
Пример #13
0
CV_IMPL void*
cvLoad( const char* filename, CvMemStorage* memstorage,
        const char* name, const char** _real_name )
{
    void* ptr = 0;
    const char* real_name = 0;
    cv::FileStorage fs(cvOpenFileStorage(filename, memstorage, CV_STORAGE_READ));

    CvFileNode* node = 0;

    if( !fs.isOpened() )
        return 0;

    if( name )
    {
        node = cvGetFileNodeByName( *fs, 0, name );
    }
    else
    {
        int i, k;
        for( k = 0; k < (*fs)->roots->total; k++ )
        {
            CvSeq* seq;
            CvSeqReader reader;

            node = (CvFileNode*)cvGetSeqElem( (*fs)->roots, k );
            CV_Assert(node != NULL);
            if( !CV_NODE_IS_MAP( node->tag ))
                return 0;
            seq = node->data.seq;
            node = 0;

            cvStartReadSeq( seq, &reader, 0 );

            // find the first element in the map
            for( i = 0; i < seq->total; i++ )
            {
                if( CV_IS_SET_ELEM( reader.ptr ))
                {
                    node = (CvFileNode*)reader.ptr;
                    goto stop_search;
                }
                CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
            }
        }

stop_search:
        ;
    }

    if( !node )
        CV_Error( CV_StsObjectNotFound, "Could not find the/an object in file storage" );

    real_name = cvGetFileNodeName( node );
    ptr = cvRead( *fs, node, 0 );

    // sanity check
    if( !memstorage && (CV_IS_SEQ( ptr ) || CV_IS_SET( ptr )) )
        CV_Error( CV_StsNullPtr,
        "NULL memory storage is passed - the loaded dynamic structure can not be stored" );

    if( cvGetErrStatus() < 0 )
    {
        cvRelease( (void**)&ptr );
        real_name = 0;
    }

    if( _real_name)
    {
    if (real_name)
    {
        *_real_name = (const char*)cvAlloc(strlen(real_name));
            memcpy((void*)*_real_name, real_name, strlen(real_name));
    } else {
        *_real_name = 0;
    }
    }

    return ptr;
}
Пример #14
0
static void ocl_cvMoments( const void* array, CvMoments* mom, int binary )
{
    const int TILE_SIZE = 256;
    int type, depth, cn, coi = 0;
    CvMat stub, *mat = (CvMat*)array;
    CvContour contourHeader;
    CvSeq* contour = 0;
    CvSeqBlock block;
    if( CV_IS_SEQ( array ))
    {
        contour = (CvSeq*)array;
        if( !CV_IS_SEQ_POINT_SET( contour ))
            CV_Error( CV_StsBadArg, "The passed sequence is not a valid contour" );
    }

    if( !moments )
        CV_Error( CV_StsNullPtr, "" );

    memset( mom, 0, sizeof(*mom));

    if( !contour )
    {

        mat = cvGetMat( mat, &stub, &coi );
        type = CV_MAT_TYPE( mat->type );

        if( type == CV_32SC2 || type == CV_32FC2 )
        {
            contour = cvPointSeqFromMat(
                          CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED,
                          mat, &contourHeader, &block );
        }
    }
    if( contour )
    {
        icvContourMoments( contour, mom );
        return;
    }

    type = CV_MAT_TYPE( mat->type );
    depth = CV_MAT_DEPTH( type );
    cn = CV_MAT_CN( type );

    cv::Size size = cvGetMatSize( mat );
    if( cn > 1 && coi == 0 )
        CV_Error( CV_StsBadArg, "Invalid image type" );

    if( size.width <= 0 || size.height <= 0 )
        return;

    cv::Mat src0(mat);
    cv::ocl::oclMat src(src0);
    cv::Size tileSize;
    int blockx,blocky;
    if(size.width%TILE_SIZE == 0)
        blockx = size.width/TILE_SIZE;
    else
        blockx = size.width/TILE_SIZE + 1;
    if(size.height%TILE_SIZE == 0)
        blocky = size.height/TILE_SIZE;
    else
        blocky = size.height/TILE_SIZE + 1;
    cv::ocl::oclMat dst_m(blocky * 10, blockx, CV_64FC1);
    cl_mem sum = openCLCreateBuffer(src.clCxt,CL_MEM_READ_WRITE,10*sizeof(double));
    int tile_width  = std::min(size.width,TILE_SIZE);
    int tile_height = std::min(size.height,TILE_SIZE);
    size_t localThreads[3]  = { tile_height, 1, 1};
    size_t globalThreads[3] = { size.height, blockx, 1};
    std::vector<std::pair<size_t , const void *> > args,args_sum;
    args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&src.data ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.step ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&tileSize.width ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&tileSize.height ));
    args.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m.data ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst_m.cols ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst_m.step ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&blocky ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&type ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&depth ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&cn ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&coi ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&binary ));
    args.push_back( std::make_pair( sizeof(cl_int) , (void *)&TILE_SIZE ));
    openCLExecuteKernel(dst_m.clCxt, &moments, "CvMoments", globalThreads, localThreads, args, -1, depth);

    size_t localThreadss[3]  = { 128, 1, 1};
    size_t globalThreadss[3] = { 128, 1, 1};
    args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.rows ));
    args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&src.cols ));
    args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&tile_height ));
    args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&tile_width ));
    args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&TILE_SIZE ));
    args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&sum ));
    args_sum.push_back( std::make_pair( sizeof(cl_mem) , (void *)&dst_m.data ));
    args_sum.push_back( std::make_pair( sizeof(cl_int) , (void *)&dst_m.step ));
    openCLExecuteKernel(dst_m.clCxt, &moments, "dst_sum", globalThreadss, localThreadss, args_sum, -1, -1);
    double* dstsum = new double[10];
    memset(dstsum,0,10*sizeof(double));
    openCLReadBuffer(dst_m.clCxt,sum,(void *)dstsum,10*sizeof(double));
    mom->m00 = dstsum[0];
    mom->m10 = dstsum[1];
    mom->m01 = dstsum[2];
    mom->m20 = dstsum[3];
    mom->m11 = dstsum[4];
    mom->m02 = dstsum[5];
    mom->m30 = dstsum[6];
    mom->m21 = dstsum[7];
    mom->m12 = dstsum[8];
    mom->m03 = dstsum[9];
    delete [] dstsum;

    icvCompleteMomentState( mom );
}