Пример #1
0
//*************************************************************************
// InitPICE()
//
//*************************************************************************
BOOLEAN InitPICE(void)
{
    ULONG ulHandleScancode=0,ulHandleKbdEvent=0;
	ARGS Args;
    KIRQL Dirql;
    KAFFINITY Affinity;
	ULONG ulAddr;

    ENTER_FUNC();

	DPRINT((0,"InitPICE(): trace step 0.5\n"));
    KeyboardIRQL = HalGetInterruptVector(Internal,
				     0,
				     0,
				     KEYBOARD_IRQ,
				     &Dirql,
				     &Affinity);
	DPRINT((0,"KeyboardIRQL: %x\n", KeyboardIRQL));

    DPRINT((0,"InitPICE(): trace step 1\n"));
    // enable monochrome passthrough on BX type chipset
    EnablePassThrough();

    DPRINT((0,"InitPICE(): trace step 2\n"));
    // now load all symbol files described in /etc/pice.conf
    if(!LoadSymbolsFromConfig(FALSE))
    {
        DPRINT((0,"InitPICE: LoadSymbolsFromConfig() failed\n"));
        LEAVE_FUNC();
        return FALSE;
    }

    DPRINT((0,"InitPICE(): trace step 3\n"));
    // init the output console
	// this might be one of the following depending setup
	// a) monochrome card
	// b) serial terminal (TODO)
    if(!ConsoleInit())
    {
        DPRINT((0,"InitPICE: ConsoleInit() failed\n"));
        UnloadSymbols();
        LEAVE_FUNC();
        return FALSE;
    }

    DPRINT((0,"InitPICE(): trace step 4\n"));
    // print the initial screen template
    PrintTemplate();
/*
    DPRINT((0,"InitPICE(): trace step 5\n"));
	// ask the user if he wants to abort the debugger load
    if(!CheckLoadAbort())
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (abort by user)\n");
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}
*/

    DPRINT((0,"InitPICE(): trace step 6\n"));
    // load the file /boot/System.map.
    // !!! It must be consistent with the current kernel at all cost!!!
    if(!LoadExports())
    {
		Print(OUTPUT_WINDOW,"pICE: failed to load exports\n");
        Print(OUTPUT_WINDOW,"press any key to continue...\n");
        while(!GetKeyPolled());
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
    }

    DPRINT((0,"InitPICE(): trace step 7\n"));
	ScanExports("_KernelAddressSpace", &ulAddr);
	my_init_mm = (PMADDRESS_SPACE) ulAddr;
	DPRINT((0,"init_mm %x @ %x\n",&my_init_mm,my_init_mm));
	if(!my_init_mm)
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (initial memory map not found)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
		DbgPrint("pICE: ABORT (initial memory map not found)\n");
		DbgPrint("pICE: press any key to continue...\n");
        while(!GetKeyPolled());
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}

	DPRINT((0,"InitPICE(): trace step 7.1\n"));
	ScanExports("_ModuleListHead",&ulAddr);
	pModuleListHead = (LIST_ENTRY*)ulAddr;
    DPRINT((0,"pModuleListHead @ %X\n",pModuleListHead));
	if(!pModuleListHead)
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (pModuleListHead not found)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
        while(!GetKeyPolled());
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}

	DPRINT((0,"InitPICE(): trace step 7.2\n"));
	ScanExports("_PsProcessListHead",&ulAddr);
	pPsProcessListHead = (LIST_ENTRY*)ulAddr;
    DPRINT((0,"pPsProcessListHead @ %X\n",pPsProcessListHead));
	if(!pPsProcessListHead)
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (PsProcessListHead not found)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
        while(!GetKeyPolled());
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}

    DPRINT((0,"InitPICE(): trace step 8\n"));
    // end of the kernel
	/*
	ScanExports("_end",(PULONG)&kernel_end);
    if(!kernel_end)
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (kernel size is unknown)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
        while(!GetKeyPolled());
		UnloadExports();
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}
	*/

    DPRINT((0,"InitPICE(): trace step 9\n"));

	// the loaded module list
	ScanExports("_NameSpaceRoot", &ulAddr);
	pNameSpaceRoot = (PDIRECTORY_OBJECT *)ulAddr;
	DPRINT((0,"pNameSpaceRoot @ %X\n",pNameSpaceRoot));
    if(!pNameSpaceRoot)
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (couldn't retreive name space root)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
        while(!GetKeyPolled());
		UnloadExports();
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}

    DPRINT((0,"InitPICE(): trace step 10\n"));
    // setup a linked list for use in module parsing routines.
	if(!InitModuleList(&pdebug_module_head, 100))
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (couldn't initialize kernel module list)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
		FreeModuleList( pdebug_module_head );
        while(!GetKeyPolled());
		UnloadExports();
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}
	pdebug_module_tail = pdebug_module_head;

    DPRINT((0,"InitPICE(): trace step 11\n"));
    // do a sanity check on exports
    if(!SanityCheckExports())
    {
		Print(OUTPUT_WINDOW,"pICE: ABORT (exports are conflicting with kernel symbols)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
        while(!GetKeyPolled());
		UnloadExports();
        UnloadSymbols();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
    }

    DPRINT((0,"InitPICE(): trace step 12\n"));


    DPRINT((0,"InitPICE(): trace step 13\n"));
    // patch the keyboard driver

	if(!PatchKeyboardDriver())
	{
		Print(OUTPUT_WINDOW,"pICE: ABORT (couldn't patch keyboard driver)\n");
		Print(OUTPUT_WINDOW,"pICE: press any key to continue...\n");
        while(!GetKeyPolled());
		UnloadSymbols();
		UnloadExports();
		ConsoleShutdown();
        LEAVE_FUNC();
		return FALSE;
	}

    DPRINT((0,"InitPICE(): trace step 14\n"));
    // partial init of shadow registers
    CurrentCS = GLOBAL_CODE_SEGMENT;
    CurrentEIP = (ULONG)RealIsr;

    CurrentDS = CurrentSS = GLOBAL_DATA_SEGMENT;
    __asm__("\n\t \
            mov %%esp,%%eax\n\t \
            mov %%eax,_CurrentESP\n\t \
            ":::"eax");


    // display version and symbol information
    Ver(NULL);

    // disable HW breakpoints
	__asm__("\n\t \
		xorl %%eax,%%eax\n\t \
		mov %%eax,%%dr6\n\t \
		mov %%eax,%%dr7\n\t \
        mov %%dr0,%%eax\n\t \
        mov %%dr1,%%eax\n\t \
        mov %%dr2,%%eax\n\t \
        mov %%dr3,%%eax"
		:::"eax"
		);

    DPRINT((0,"InitPICE(): trace step 15\n"));
    TakeIdtSnapshot();

    DPRINT((0,"InitPICE(): trace step 16\n"));
    // install all hooks
    InstallTraceHook();
    InstallGlobalKeyboardHook();
    InstallSyscallHook();
    InstallInt3Hook();
    InstallDblFltHook();
    InstallGPFaultHook();
    InstallIntEHook();
    InstallPrintkHook();

    DPRINT((0,"InitPICE(): trace step 16\n"));
    if(ulDoInitialBreak)
    {
        DPRINT((0,"about to do initial break...\n"));

        // simulate an initial break
        __asm__("\n\t \
            pushfl\n\t \
            pushl %cs\n\t \
            pushl $initialreturnpoint\n\t \
            pushl $" STR(REASON_CTRLF) "\n\t \
            jmp NewInt31Handler\n\t \
initialreturnpoint:");
    }
    else
    {
Пример #2
0
/*************************************************************************
	main
	====
**************************************************************************/
int main(void)
{
    IODIR0 |= (1<<10);//Debug LED on the olimex 2148 dev board set to output mode
    IODIR0 |= (1<<11);//Debug LED on the olimex 2148 dev board set to output mode

    // PLL and MAM
    HalSysInit();

#ifdef LPC214x
    // init DBG
    ConsoleInit(60000000 / (16 * BAUD_RATE));
#else
    // init DBG
    ConsoleInit(72000000 / (16 * BAUD_RATE));
#endif

    DBG("Initialising USB stack\n");

    // initialise stack
    USBInit();

    // register descriptors
    USBRegisterDescriptors(abDescriptors);

    // register class request handler
    USBRegisterRequestHandler(REQTYPE_TYPE_CLASS, HandleClassRequest, abClassReqData);

    // register endpoint handlers
    USBHwRegisterEPIntHandler(INT_IN_EP, NULL);

    // register frame handler
    USBHwRegisterFrameHandler(USBFrameHandler);

    // register device event handler
    USBHwRegisterDevIntHandler(USBDevIntHandler);

    inputIsocDataBuffer[0] = 0;

    USBInitializeUSBDMA(udcaHeadArray);
    USBEnableDMAForEndpoint(ISOC_IN_EP);

    DBG("Starting USB communication\n");

#ifdef LPC214x
    (*(&VICVectCntl0+INT_VECT_NUM)) = 0x20 | 22; // choose highest priority ISR slot
    (*(&VICVectAddr0+INT_VECT_NUM)) = (int)USBIntHandler;
#else
    VICVectCntl22 = 0x01;
    VICVectAddr22 = (int)USBIntHandler;
#endif

    // set up USB interrupt
    VICIntSelect &= ~(1<<22);               // select IRQ for USB
    VICIntEnable |= (1<<22);

    enableIRQ();

    // connect to bus
    USBHwConnect(TRUE);

    int x = 0;

    const int interval = 200000;
    // echo any character received (do USB stuff in interrupt)

    for(;;) {
        x++;

        if (x == interval) {
            IOSET0 = (1<<11);//turn on led on olimex dev board
        } else if (x >= (interval*2)) {
            IOCLR0 = (1<<11);//turn off led on olimex dev board
            x = 0;
        }
    }

    return 0;
}
Пример #3
0
int main(void)
#endif
{   
    BYTE i, j;
    BYTE TxSynCount = 0;
    BYTE TxNum = 0;
    BYTE RxNum = 0;
    BOOL bReceivedMessage = FALSE;
    
    /*******************************************************************/
    // Initialize the system
    /*******************************************************************/
    BoardInit();         
    ConsoleInit();    
    DemoOutput_Greeting();

    /*******************************************************************/
    // Function MiApp_ProtocolInit initialize the protocol stack. The
    // only input parameter indicates if previous network configuration
    // should be restored. In this example, if button 1 is pressed and
    // hold when powering up, we assume the user would like to enable
    // the Network Freezer and load previous network configuration
    // from NVM.
    /*******************************************************************/
    if( (PUSH_BUTTON_1 == 0) && ( MiApp_ProtocolInit(TRUE) == TRUE ) )
    {   
        DemoOutput_NetworkFreezer();
        LED_1 = 1;
        while(PUSH_BUTTON_1 == 0);
    }
    else
    {
        /*******************************************************************/
        // Function MiApp_ProtocolInit initialize the protocol stack. In 
        // this example, if button 1 is released when powering up, we assume 
        // that the user want the network to start from scratch.
        /*******************************************************************/
        MiApp_ProtocolInit(FALSE);   

        LED_1 = 0;
        LED_2 = 0;

        myChannel = 0xFF;
        DemoOutput_StartActiveScan();

        /*******************************************************************/
        // Function MiApp_SearchConnection will return the number of 
        // existing connections in all channels. It will help to decide 
        // which channel to operate on and which connection to add.
        // The return value is the number of connections. The connection 
        //     data are stored in global variable ActiveScanResults. 
        //     Maximum active scan result is defined as 
        //     ACTIVE_SCAN_RESULT_SIZE
        // The first parameter is the scan duration, which has the same 
        //     definition in Energy Scan. 10 is roughly 1 second. 9 is a 
        //     half second and 11 is 2 seconds. Maximum scan duration is 14, 
        //     or roughly 16 seconds.
        // The second parameter is the channel map. Bit 0 of the 
        //     double word parameter represents channel 0. For the 2.4GHz 
        //     frequency band, all possible channels are channel 11 to 
        //     channel 26. As the result, the bit map is 0x07FFF800. Stack 
        //     will filter out all invalid channels, so the application 
        //     only needs to pay attention to the channels that are not 
        //     preferred.
        /*******************************************************************/
        i = MiApp_SearchConnection(10, 0xFFFFFFFF);
        DemoOutput_ActiveScanResults(i);

        /*******************************************************************/
        // Function MiApp_ConnectionMode sets the connection mode for the 
        // protocol stack. Possible connection modes are:
        //  - ENABLE_ALL_CONN       accept all connection request
        //  - ENABLE_PREV_CONN      accept only known device to connect
        //  - ENABL_ACTIVE_SCAN_RSP do not accept connection request, but 
        //                          allow response to active scan
        //  - DISABLE_ALL_CONN      disable all connection request, including
        //                          active scan request
        /*******************************************************************/
        MiApp_ConnectionMode(ENABLE_ALL_CONN);
    
        if( i > 0 )
        {
            /*******************************************************************/
            // Function MiApp_EstablishConnection try to establish a new 
            // connection with peer device. 
            // The first parameter is the index to the active scan result, which 
            //      is acquired by discovery process (active scan). If the value
            //      of the index is 0xFF, try to establish a connection with any 
            //      peer.
            // The second parameter is the mode to establish connection, either 
            //      direct or indirect. Direct mode means connection within the 
            //      radio range; Indirect mode means connection may or may not 
            //      in the radio range. 
            /*******************************************************************/
            if( MiApp_EstablishConnection(0, CONN_MODE_DIRECT) == 0xFF )
            {
                DemoOutput_JoinFail();
            }
        }    
        else
        {         
            DemoOutput_EnergyScan();
            /*******************************************************************/
            // Function MiApp_StartConnection tries to start a new network
            //
            // The first parameter is the mode of start connection. There are 
            // two valid connection modes:
            //   - START_CONN_DIRECT        start the connection on current 
            //                              channel
            //   - START_CONN_ENERGY_SCN    perform an energy scan first, 
            //                              before starting the connection on 
            //                              the channel with least noise
            //   - START_CONN_CS_SCN        perform a carrier sense scan 
            //                              first, before starting the 
            //                              connection on the channel with 
            //                              least carrier sense noise. Not
            //                              supported for current radios
            //
            // The second parameter is the scan duration, which has the same 
            //     definition in Energy Scan. 10 is roughly 1 second. 9 is a 
            //     half second and 11 is 2 seconds. Maximum scan duration is 
            //     14, or roughly 16 seconds.
            //
            // The third parameter is the channel map. Bit 0 of the 
            //     double word parameter represents channel 0. For the 2.4GHz 
            //     frequency band, all possible channels are channel 11 to 
            //     channel 26. As the result, the bit map is 0x07FFF800. Stack 
            //     will filter out all invalid channels, so the application 
            //     only needs to pay attention to the channels that are not 
            //     preferred.
            /*******************************************************************/
            MiApp_StartConnection(START_CONN_ENERGY_SCN, 10, 0xFFFFFFFF);
        }
        
        // Turn on LED 1 to indicate ready to accept new connections
        LED_1 = 1;
    }
    
    DumpConnection(0xFF);
    DemoOutput_StartConnection();                    
    DemoOutput_Instruction();

    while(1)
    {
        /*******************************************************************/
        // Function MiApp_MessageAvailable will return a boolean to indicate 
        // if a message for application layer has been received by the 
        // transceiver. If a message has been received, all information will 
        // be stored in the rxMessage, structure of RECEIVED_MESSAGE.
        /*******************************************************************/
        if( MiApp_MessageAvailable() )
        {
            DemoOutput_HandleMessage();
            
            /*******************************************************************/
            // Function MiApp_DiscardMessage is used to release the current 
            // received message. After calling this function, the stack can 
            // start to process the next received message.
            /*******************************************************************/          
            MiApp_DiscardMessage();
            
            // Toggle LED2 to indicate receiving a packet.
            LED_2 ^= 1;
            bReceivedMessage = TRUE;
            
            DemoOutput_UpdateTxRx(TxNum, ++RxNum);
        }
        else
        {
            /*******************************************************************/
            // If no packet received, now we can check if we want to send out
            // any information.
            // Function ButtonPressed will return if any of the two buttons
            // has been pushed.
            /*******************************************************************/
            BYTE PressedButton = ButtonPressed();
            switch( PressedButton )
            {
                case 1: 
                    {
                        DWORD ChannelMap = ~((DWORD)0x00000001 << currentChannel);
                        DemoOutput_InitFreqHop();

                        /*******************************************************************/
                        // Function MiApp_InitChannelHopping will start the process of 
                        // channel hopping. This function can be only called by Frquency 
                        // Agility starter and the device must have the energy detection 
                        // feature turned on. This function will do an energy detection 
                        // scan of all input channels and start the process of jumping to 
                        // the channel with least noise
                        //
                        // The only parameter of this function is the bit map of the 
                        // allowed channels. Bit 0 of the double word parameter represents 
                        // channel 0. For the 2.4GHz frequency band, the possible channels 
                        // are channel 11 to channel 26. As the result, the bit map is 
                        // 0x07FFF800. 
                        //
                        // Microchip proprietary stack does not limit the application when to
                        // do channel hopping. The typical triggers for channel hopping are:
                        //  1.  Continuous data transmission failures
                        //  2.  Periodical try the channel hopping process every few hours
                        //      or once per day
                        //  3.  Receive a request to start the channel hopping process. This
                        //      demo is an example of manually issue the request. In the 
                        //      real application, a Frequency Agility follower can send a 
                        //      message to request channel hopping and the Frequency Agility
                        //      starter will decide if start the process.
                        /*******************************************************************/
                        if( MiApp_InitChannelHopping(ChannelMap & 0xFFFFFFFF) == TRUE )
                        {
                            DemoOutput_FreqHopSuccess();
                        }
                        else
                        {
                            DemoOutput_FreqHopFail();
                        }    
                    }
                    break;
                 
                case 2:
                    
                    /*******************************************************************/                
                    // Button 2 (RB4 on PICDEM Z or RD7 on Explorer 16) pressed. We need
                    //  to send out the bitmap of word "P2P" encrypted.
                    // First call function MiApp_FlushTx to reset the Transmit buffer. 
                    //  Then fill the buffer one byte by one byte by calling function 
                    //  MiApp_WriteData
                    /*******************************************************************/
                    MiApp_FlushTx();                    
                    for(i = 0; i < 11; i++)
                    {
                        MiApp_WriteData(DE[(TxSynCount%6)][i]);
                    }
                    TxSynCount++;

                    /*******************************************************************/
                    // Function MiApp_UnicastConnection is one of the functions to 
                    // unicast a message.
                    //    The first parameter is the index of connection table for 
                    //       the peer device. In this demo, since there are only two
                    //       devices involved, the peer device must be stored in the 
                    //       first P2P Connection Entry of the connection table.
                    //    The second parameter is the boolean to indicate if we need 
                    //       to secure the frame. If encryption is applied, the 
                    //       security level and security key are defined in the 
                    //       configuration file for the transceiver
                    //
                    // Another way to unicast a message is by calling function
                    // MiApp_UnicastAddress. Instead of supplying the index of the 
                    // connection table of the peer device, this function requires the 
                    // input parameter of destination address directly.
                    /*******************************************************************/
                    if( MiApp_UnicastConnection(0, TRUE) == FALSE )
                    {
                        DemoOutput_UnicastFail();
                    }
                    else
                    {
                        TxNum++;
                    }
                    DemoOutput_UpdateTxRx(TxNum, RxNum);  
                    break;
                    
                default:
                    break;
            }   
        }
    }
}
Пример #4
0
Tcl_Channel
TclWinOpenConsoleChannel(
    HANDLE handle,
    char *channelName,
    int permissions)
{
    char encoding[4 + TCL_INTEGER_SPACE];
    ConsoleInfo *infoPtr;
    DWORD id, modes;

    ConsoleInit();

    /*
     * See if a channel with this handle already exists.
     */

    infoPtr = (ConsoleInfo *) ckalloc((unsigned) sizeof(ConsoleInfo));
    memset(infoPtr, 0, sizeof(ConsoleInfo));

    infoPtr->validMask = permissions;
    infoPtr->handle = handle;
    infoPtr->channel = (Tcl_Channel) NULL;

    wsprintfA(encoding, "cp%d", GetConsoleCP());

    infoPtr->threadId = Tcl_GetCurrentThread();

    /*
     * Use the pointer for the name of the result channel. This keeps the
     * channel names unique, since some may share handles (stdin/stdout/stderr
     * for instance).
     */

    wsprintfA(channelName, "file%lx", (int) infoPtr);

    infoPtr->channel = Tcl_CreateChannel(&consoleChannelType, channelName,
	    (ClientData) infoPtr, permissions);

    if (permissions & TCL_READABLE) {
	/*
	 * Make sure the console input buffer is ready for only character
	 * input notifications and the buffer is set for line buffering. IOW,
	 * we only want to catch when complete lines are ready for reading.
	 */

	GetConsoleMode(infoPtr->handle, &modes);
	modes &= ~(ENABLE_WINDOW_INPUT | ENABLE_MOUSE_INPUT);
	modes |= ENABLE_LINE_INPUT;
	SetConsoleMode(infoPtr->handle, modes);

	infoPtr->readable = CreateEvent(NULL, TRUE, TRUE, NULL);
	infoPtr->startReader = CreateEvent(NULL, FALSE, FALSE, NULL);
	infoPtr->stopReader = CreateEvent(NULL, FALSE, FALSE, NULL);
	infoPtr->readThread = CreateThread(NULL, 256, ConsoleReaderThread,
		infoPtr, 0, &id);
	SetThreadPriority(infoPtr->readThread, THREAD_PRIORITY_HIGHEST);
    }

    if (permissions & TCL_WRITABLE) {
	infoPtr->writable = CreateEvent(NULL, TRUE, TRUE, NULL);
	infoPtr->startWriter = CreateEvent(NULL, FALSE, FALSE, NULL);
	infoPtr->stopWriter = CreateEvent(NULL, FALSE, FALSE, NULL);
	infoPtr->writeThread = CreateThread(NULL, 256, ConsoleWriterThread,
		infoPtr, 0, &id);
	SetThreadPriority(infoPtr->writeThread, THREAD_PRIORITY_HIGHEST);
    }

    /*
     * Files have default translation of AUTO and ^Z eof char, which means
     * that a ^Z will be accepted as EOF when reading.
     */

    Tcl_SetChannelOption(NULL, infoPtr->channel, "-translation", "auto");
    Tcl_SetChannelOption(NULL, infoPtr->channel, "-eofchar", "\032 {}");
    if (tclWinProcs->useWide)
	Tcl_SetChannelOption(NULL, infoPtr->channel, "-encoding", "unicode");
    else
	Tcl_SetChannelOption(NULL, infoPtr->channel, "-encoding", encoding);

    return infoPtr->channel;
}
Пример #5
0
void main() {
	task* TI1;
	task* TI2;
	char* Data;
	char* Encoded;

	register unsigned int i;

        _asm;
        di
        ld sp,#0xffff
        ld a,#0x0
        ld bc,#0x0
        ld de,#0x0
        ld hl,#0x0
        ld ix,#0x0
        ld iy,#0x0
        _endasm;

	_SimWriteProtect((void*)0x0000, (void*)0x3fff);

        _SimPrintString("\n-------------------\n");
        _SimPrintString("System reset\n");
        _SimPrintString("-------------------\n");

	IntsOff();

	_SimPrintString("Interrupts disabled. Booting...\n");

	TestMemory();
	HardwareInit();
        LocksInit();
        SchedulingInit();
	SupervisorMode();
	TimeInit();
	SystemInit();
	MemoryInit();
	//KeyboardInit();
	//TapeInit();
	ConsoleInit();
	ConsoleWrite("LJL OS 0.1 FOR ZX SPECTRUM 48\n");
	ConsoleWrite("\nCONSOLE OUTPUT\n\n");
/*
        TapeSave((void*)0x4000, (void*)0x5800);
	TapeLoad((void*)0x4000, (void*)0x5800);
	for(i=0; i<0x4000; i+=0x100) {
		ConsoleWrite(".");
		SaveBlock((void*)i);
	}
	Halt("Saved");
*/
	MainEntry=Task1;
	TI1=CreateTask(MainEntry, 100);
	MainEntry=Task2;
	TI2=CreateTask(MainEntry, 100);
	ConsoleWrite("TASKS CREATED\n");
	SetScheduler(DefaultScheduler);
	ConsoleWrite("SCHEDULER SET\n");
        Resume();
	//ConsoleWrite("RESUMING\n");
	//if(!IsMultitasking()) Halt("NOT MULTITASKING");
	for(;;);
	Halt("SYSTEM SHUTDOWN");
}
Пример #6
0
int main(void)
#endif
{   
    BYTE i, j;
    BYTE TxSynCount = 0;
    BOOL bReceivedMessage = FALSE;
    _U16  m;

    
     #define BAUDRG 77
    /*******************************************************************/
    // Initialize the system
    /*******************************************************************/

    ANCON0 = 0XFF;     /*desactiva entradas analogicas*/
    ANCON1 = 0XFF;     /*desactiva entradas analogicas*/

    PPSUnLock();
    PPSOutput(PPS_RP10, PPS_TX2CK2);    // TX2 RP17/RC6
    PPSInput(PPS_RX2DT2, PPS_RP9);     // RX2 RP18/RC7

    PPSOutput(PPS_RP23, PPS_SDO2);    // SDO2 RP23/RD6
    PPSInput(PPS_SDI2, PPS_RP24);     // SDI2 RP24/RD7
    PPSOutput(PPS_RP22, PPS_SCK2);    // SCK2 RP22/RD5

    PPSLock();

     System_PeripheralPinSelect( ExternalInterrupt3, 19);  /*external interrupt 3 B3*/

     BoardInit();
     ConsoleInit();

     Open2USART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_EIGHT_BIT & USART_ASYNCH_MODE & USART_ADDEN_OFF, BAUDRG);
     baud2USART(BAUD_IDLE_TX_PIN_STATE_HIGH & BAUD_IDLE_RX_PIN_STATE_HIGH & BAUD_AUTO_OFF & BAUD_WAKEUP_OFF & BAUD_16_BIT_RATE & USART_RX_INT_OFF);

     Gpios_PinDirection(GPIOS_PORTD, 7, GPIOS_INPUT);  /*pin C0 como salida para SDI*/
     Gpios_PinDirection(GPIOS_PORTD, 6, GPIOS_OUTPUT); /*pin C1 como salida para SDO*/
     Gpios_PinDirection(GPIOS_PORTD, 5, GPIOS_OUTPUT); /*pin C2 como salida para SCK*/

     Spi_Init(SPI_PORT1, SPI_64DIV); /*Inicializamos SPI2*/
     Spi_Init(SPI_PORT2, SPI_64DIV); /*Inicializamos SPI2*/
     //Spi_SetMode(SPI_PORT1, 1);
     //Spi_SetMode(SPI_PORT1, 1);


    LED_1 = 1;
    LED_2 = 1;

    Read_MAC_Address();

    LED_1 = 0;
    LED_2 = 0;

                    ConsolePutROMString((ROM char *)"\r\n<MAC Addr:");
                 
                    PrintChar(myLongAddress[3]);
                    PrintChar(myLongAddress[2]);
                    PrintChar(myLongAddress[1]);
                    PrintChar(myLongAddress[0]);

                    ConsolePutROMString((ROM char *)"\r>");

        
    Printf("\r\nStarting Testing Interface for MiWi(TM) PRO Stack ...");
    #if defined(MRF24J40)
    Printf("\r\n     RF Transceiver: MRF24J40");
    #elif defined(MRF49XA)
    Printf("\r\n     RF Transceiver: MRF49XA");
    #elif defined(MRF89XA)
    Printf("\r\n     RF Transceiver: MRF89XA");
    #endif
    Printf("\r\n   Demo Instruction:");
    Printf("\r\n                     Press Enter to bring up the menu.");
    Printf("\r\n                     Type in hyper terminal to choose");
    Printf("\r\n                     menu item. ");
    Printf("\r\n\r\n");
   
    /*******************************************************************/
    // Following block display demo information on LCD of Explore 16 or 
    // PIC18 Explorer demo board.
    /*******************************************************************/
    #if defined(MRF49XA)
        LCDDisplay((char *)"MiWi PRO Test Interface MRF49XA", 0, TRUE); 
    #elif defined(MRF24J40)
        LCDDisplay((char *)"MiWi PRO Test Interface MRF24J40", 0, TRUE);
    #elif defined(MRF89XA)
        LCDDisplay((char *)"MiWi PRO Test Interface MRF89XA", 0, TRUE); 
    #endif
    
    //if( (PUSH_BUTTON_1 == 0) || ( MiApp_ProtocolInit(TRUE) == FALSE ) )
    if (PUSH_BUTTON_1 == 1)
    {  

        MiApp_ProtocolInit(FALSE);


        LED_1 = 0;
        LED_2 = 0;

        #ifdef ENABLE_ACTIVE_SCAN
        
            myChannel = 0xFF;
            ConsolePutROMString((ROM char *)"\r\nStarting Active Scan...");
            
            LCDDisplay((char *)"Active Scanning", 0, FALSE);
    
            /*******************************************************************/
            // Function MiApp_SearchConnection will return the number of 
            // existing connections in all channels. It will help to decide 
            // which channel to operate on and which connection to add.
            // The return value is the number of connections. The connection 
            //     data are stored in global variable ActiveScanResults. 
            //     Maximum active scan result is defined as 
            //     ACTIVE_SCAN_RESULT_SIZE
            // The first parameter is the scan duration, which has the same 
            //     definition in Energy Scan. 10 is roughly 1 second. 9 is a 
            //     half second and 11 is 2 seconds. Maximum scan duration is 14, 
            //     or roughly 16 seconds.
            // The second parameter is the channel map. Bit 0 of the 
            //     double word parameter represents channel 0. For the 2.4GHz 
            //     frequency band, all possible channels are channel 11 to 
            //     channel 26. As the result, the bit map is 0x07FFF800. Stack 
            //     will filter out all invalid channels, so the application 
            //     only needs to pay attention to the channels that are not 
            //     preferred.
            /*******************************************************************/
            i = MiApp_SearchConnection(10, 0x02000000);
            
            if( i > 0 )
            {
                // now print out the scan result.
                Printf("\r\nActive Scan Results: \r\n");
                for(j = 0; j < i; j++)
                {
                    Printf("Channel: ");
                    PrintDec(ActiveScanResults[j].Channel );
                    Printf("   RSSI: ");
                    PrintChar(ActiveScanResults[j].RSSIValue);
                    Printf("\r\n");
                    myChannel = ActiveScanResults[j].Channel;
                    Printf("PeerInfo: ");
                    PrintChar( ActiveScanResults[j].PeerInfo[0]);
                }
            }
        #endif

    

        /*******************************************************************/
        // Function MiApp_ConnectionMode sets the connection mode for the 
        // protocol stack. Possible connection modes are:
        //  - ENABLE_ALL_CONN       accept all connection request
        //  - ENABLE_PREV_CONN      accept only known device to connect
        //  - ENABL_ACTIVE_SCAN_RSP do not accept connection request, but 
        //                          allow response to active scan
        //  - DISABLE_ALL_CONN      disable all connection request, including
        //                          active scan request
        /*******************************************************************/
        MiApp_ConnectionMode(ENABLE_ALL_CONN);
    
    
        if( i > 0 )
        {
            /*******************************************************************/
            // Function MiApp_EstablishConnection try to establish a new 
            // connection with peer device. 
            // The first parameter is the index to the active scan result, which 
            //      is acquired by discovery process (active scan). If the value
            //      of the index is 0xFF, try to establish a connection with any 
            //      peer.
            // The second parameter is the mode to establish connection, either 
            //      direct or indirect. Direct mode means connection within the 
            //      radio range; Indirect mode means connection may or may not 
            //      in the radio range. 
            /*******************************************************************/
            if( MiApp_EstablishConnection(0, CONN_MODE_DIRECT) == 0xFF )
            {
                Printf("\r\nJoin Fail");
            }
        }    
        else
        {
            /*******************************************************************/
            // Function MiApp_StartConnection tries to start a new network 
            //
            // The first parameter is the mode of start connection. There are 
            // two valid connection modes:
            //   - START_CONN_DIRECT        start the connection on current 
            //                              channel
            //   - START_CONN_ENERGY_SCN    perform an energy scan first, 
            //                              before starting the connection on 
            //                              the channel with least noise
            //   - START_CONN_CS_SCN        perform a carrier sense scan 
            //                              first, before starting the 
            //                              connection on the channel with 
            //                              least carrier sense noise. Not 
            //                              supported on currrent radios
            //
            // The second parameter is the scan duration, which has the same 
            //     definition in Energy Scan. 10 is roughly 1 second. 9 is a 
            //     half second and 11 is 2 seconds. Maximum scan duration is 
            //     14, or roughly 16 seconds.
            //
            // The third parameter is the channel map. Bit 0 of the 
            //     double word parameter represents channel 0. For the 2.4GHz 
            //     frequency band, all possible channels are channel 11 to 
            //     channel 26. As the result, the bit map is 0x07FFF800. Stack 
            //     will filter out all invalid channels, so the application 
            //     only needs to pay attention to the channels that are not 
            //     preferred.
            /*******************************************************************/
            #ifdef ENABLE_ED_SCAN
                //LCDDisplay((char *)"Active Scanning Energy Scanning", 0, FALSE);
                ConsolePutROMString((ROM char *)"\r\nActive Scanning Energy Scanning");
                MiApp_StartConnection(START_CONN_ENERGY_SCN, 10, 0x02000000);
            #endif
        }
        
        // Turn on LED 1 to indicate ready to accept new connections
        LED_1 = 1;
    }
    else
    {
        //LCDDisplay((char *)" Network Freezer    ENABLED", 0, TRUE);
        Printf("\r\nNetwork Freezer Feature is enabled. There will be no hand-shake process.\r\n");
        LED_1 = 1;
        DumpConnection(0xFF);
    }
                   
    LCDDisplay((char *)"Start Connection on Channel %d", currentChannel, TRUE);
    LCDDisplay((char *)"Testing Menu on  Hyper Terminal", 0, FALSE);

    while(1)
    {
        /*******************************************************************/
        // Function MiApp_MessageAvailable will return a boolean to indicate 
        // if a message for application layer has been received by the 
        // transceiver. If a message has been received, all information will 
        // be stored in the rxMessage, structure of RECEIVED_MESSAGE.
        /*******************************************************************/
        if( MiApp_MessageAvailable() )
        {
            /*******************************************************************/
            // If a packet has been received, following code prints out some of
            // the information available in rxFrame.
            /*******************************************************************/
            if( rxMessage.flags.bits.secEn )
            {
                ConsolePutROMString((ROM char *)"Secured ");
            }

            if( rxMessage.flags.bits.broadcast )
            {
                ConsolePutROMString((ROM char *)"Broadcast Packet with RSSI ");
            }
            else
            {
                ConsolePutROMString((ROM char *)"Unicast Packet with RSSI ");
            }
            PrintChar(rxMessage.PacketRSSI);
            if( rxMessage.flags.bits.srcPrsnt )
            {
                ConsolePutROMString((ROM char *)" from ");
                if( rxMessage.flags.bits.altSrcAddr )
                {
                    PrintChar(rxMessage.SourceAddress[1]);
                    PrintChar(rxMessage.SourceAddress[0]);
                }
                else
                {    
                    for(i = 0; i < MY_ADDRESS_LENGTH; i++)
                    {
                        PrintChar(rxMessage.SourceAddress[MY_ADDRESS_LENGTH-1-i]);
                    }
                }    
            }

            ConsolePutROMString((ROM char *)": ");
            
            
            for(i = 0; i < rxMessage.PayloadSize; i++)
            {
                ConsolePut(rxMessage.Payload[i]);
            }
            
            // Toggle LED2 to indicate receiving a packet.
            LED_2 ^= 1;
            
            /*******************************************************************/
            // Function MiApp_DiscardMessage is used to release the current 
            // received message. After calling this function, the stack can 
            // start to process the next received message.
            /*******************************************************************/          
            MiApp_DiscardMessage();
            
            bReceivedMessage = TRUE;
            
            /*******************************************************************/
            // Following block update the total received and transmitted messages
            // on the LCD of the demo board. 
            /*******************************************************************/
            LCDTRXCount(TxNum, ++RxNum);
        }
        else
        {
         ++m;

         if(m > 8000)
         {
             m=0;
             //LED_1 ^= 1;
             
                MiApp_FlushTx();
    	        MiApp_WriteData('H');
    	        MiApp_WriteData('o');
    	        MiApp_WriteData('l');
    	        MiApp_WriteData('a');
                MiApp_WriteData('a');
                MiApp_WriteData('a');
    	        MiApp_WriteData(0x0D);
    	        MiApp_WriteData(0x0A);
               MiApp_BroadcastPacket(FALSE);

         }



            if ( ConsoleIsGetReady() )
            {
                //ProcessMenu();
            } 
        }
    }
}
Пример #7
0
int main ()
{
	

	unsigned char zigbee_mode = 0;

	HardwareInit();
	ConsoleInit();
	InitSymbolTimer();
	uart_init();
	initMSDCLTimers();
	IFS1bits.U2RXIF = 0;
	

	ConsolePutROMString( (ROM char *)"\r\nW to exit");

	SendModuleStartData();
	while( StartNetworkFlag == FALSE )
	{
		HanddleUART2();	
		if(IFS1bits.U2RXIF)
		{
			zigbee_mode = U2RXREG;
			if(zigbee_mode == 'W')
				break;
		}
	}
	StartNetworkFlag = FALSE;
	zigbee_mode = 0;
	
    ConsolePutROMString( (ROM char *)"\r\n*********************************" );
	ConsolePutROMString( (ROM char *)"\r\nMicrochip SE Profile 1.0.version.0.5.3" );
	ConsolePutROMString( (ROM char *)"\r\n*********************************" );
	ConsolePutROMString( (ROM char *)"\r\nE:Comission device as ESP\r\n" );
	ConsolePutROMString( (ROM char *)"\r\nM:Comission device as MTR\r\n" );
	
	{
		
		TICK startTime = TickGet();
		
		do
		{
			IFS1bits.U2RXIF = 0;
			do
			{
				if( TickGetDiff(TickGet(),startTime) > (2 * ONE_SECOND))
				{
					break;
				}
			}
			while( !IFS1bits.U2RXIF );
			if( TickGetDiff(TickGet(),startTime) > (2 * ONE_SECOND))
			{
				break;
			}
			zigbee_mode = U2RXREG;
			ConsolePut(zigbee_mode);
		}while( (zigbee_mode != 'M') && (zigbee_mode != 'm') && (zigbee_mode != 'E') && (zigbee_mode != 'e') );
		
		NVMRead ( (BYTE*)&MSDCL_Commission, MSDCL_Commission_Locations, sizeof(MSDCL_Commission));

		if( ( MSDCL_Commission.ValidCleanStartUp != MSDCL_COMMISSION_DATA_VALID )
			 && (MSDCL_Commission.ValidCleanStartUp != MSDCL_DEFAULT_MTR) && 
			 (MSDCL_Commission.ValidCleanStartUp != MSDCL_DEFAULT_ESP) &&  (zigbee_mode != 'E') && (zigbee_mode != 'e') )
		{
			zigbee_mode = 'M';
	 	}   
	 			
		if( ((zigbee_mode == 'M') || (zigbee_mode == 'm') || (MSDCL_Commission.ValidCleanStartUp == MSDCL_DEFAULT_MTR))
			&& (zigbee_mode != 'E') && (zigbee_mode != 'e') )
		{
			NowIam = 0;
 			NowIam = A_ROUTER | A_FFD; // These variables are exported in Zigbee.def
			I_AM_TRUST_CENTER = 0; 		//Trust center enabled Enabled
			USE_COMMON_TC_LINK_KEY = 1;
			MAX_ENERGY_THRESHOLD = 112;
			DEFAULT_STARTUP_CONTROL = DEFAULT_STARTUP_CONTROL_MTR;
			MSDCL_Commission.StartupStatus = STARTUP_CONTROL_JOIN_NEW_NETWORK;
			ALLOWED_CHANNELS = ALLOWED_CHANNELS_PRE_CONFIG;
			if(MSDCL_Commission.ValidCleanStartUp != MSDCL_DEFAULT_MTR)
			{
				MSDCL_Commission.ValidCleanStartUp = MSDCL_DEFAULT_MTR;
				NVMWrite( MSDCL_Commission_Locations, (BYTE*)&MSDCL_Commission, sizeof(MSDCL_Commission) );
			}
		}
		else if( (zigbee_mode == 'E') || (zigbee_mode == 'e') || (MSDCL_Commission.ValidCleanStartUp == MSDCL_DEFAULT_ESP)  )
		{
			NowIam = 0;
 			NowIam = A_CORDINATOR | A_FFD; // These variables are exported in Zigbee.def
			I_AM_TRUST_CENTER = 1; 		//Trust center enabled Enabled
			USE_COMMON_TC_LINK_KEY = 1;
			MAX_ENERGY_THRESHOLD = 241;
			DEFAULT_STARTUP_CONTROL = DEFAULT_STARTUP_CONTROL_ESP;
			MSDCL_Commission.StartupStatus = STARTUP_CONTROL_FORM_NEW_NETWORK;
			ALLOWED_CHANNELS = ALLOWED_CHANNELS_PRE_CONFIG;
			if(MSDCL_Commission.ValidCleanStartUp != MSDCL_DEFAULT_ESP)
			{
				MSDCL_Commission.ValidCleanStartUp = MSDCL_DEFAULT_ESP;
				NVMWrite( MSDCL_Commission_Locations, (BYTE*)&MSDCL_Commission, sizeof(MSDCL_Commission) );
			}
		}


	if((MSDCL_Commission.ValidCleanStartUp == MSDCL_COMMISSION_DATA_VALID) )
	{
	 	switch( MSDCL_Commission.StartupStatus )
	 	{
		 	case STARTUP_CONTROL_FORM_NEW_NETWORK:
		 		ConsolePutROMString( (ROM char *)"\r\nStarting as ESP\r\n" );
				NowIam = 0;
	 			NowIam = A_CORDINATOR | A_FFD; // These variables are exported in Zigbee.def
				I_AM_TRUST_CENTER = 1; 		//Trust center enabled Enabled
				USE_COMMON_TC_LINK_KEY = 1;
				MAX_ENERGY_THRESHOLD = 241;
				ALLOWED_CHANNELS = MSDCL_Commission.ChannelMask.Val ;
				DEFAULT_STARTUP_CONTROL = DEFAULT_STARTUP_CONTROL_ESP;
		 	break;
		 	
		 	case STARTUP_CONTROL_PART_OF_NETWORK_NO_EXPLICIT_ACTION:
		 	case STARTUP_CONTROL_JOIN_NEW_NETWORK:
		 	case STARTUP_CONTROL_START_FROM_SCRATCH_AS_ROUTER:
		 	default:
		 		ConsolePutROMString( (ROM char *)"\r\nStarting as MTR\r\n" );
				NowIam = 0;
	 			NowIam = A_ROUTER | A_FFD; // These variables are exported in Zigbee.def
				I_AM_TRUST_CENTER = 1; 		//Trust center enabled Enabled
				USE_COMMON_TC_LINK_KEY = 0;
				MAX_ENERGY_THRESHOLD = 112;
				ALLOWED_CHANNELS = MSDCL_Commission.ChannelMask.Val ;
				DEFAULT_STARTUP_CONTROL = DEFAULT_STARTUP_CONTROL_MTR;
		 	break;
		}
	}
	
	}
	
//	if (NOW_I_AM_A_CORDINATOR())
//		USE_COMMON_TC_LINK_KEY = 1;
//	else
//		USE_COMMON_TC_LINK_KEY = 0;
		
	if(NOW_I_AM_A_ROUTER())
		I_AM_TRUST_CENTER = 0;

	
	if(NOW_I_AM_A_ROUTER())
		appNextSeqNum_PTR = &appNextSeqNum_MTR;
	else if (NOW_I_AM_A_CORDINATOR())
		appNextSeqNum_PTR = &appNextSeqNum_ESP;
	
	if(NOW_I_AM_A_ROUTER())
		App_AttributeStorageTable = App_AttributeStorageTable_MTR;
	else if (NOW_I_AM_A_CORDINATOR())
		App_AttributeStorageTable = App_AttributeStorageTable_ESP;
		
	if(NOW_I_AM_A_ROUTER())
		Config_Node_Descriptor.NodeLogicalType = 0x01;
	else if (NOW_I_AM_A_CORDINATOR())
		Config_Node_Descriptor.NodeLogicalType = 0x00;
		
	if( NOW_I_AM_A_ROUTER() )
		pAppListOfDeviceServerInfo[0] = &Meter_DeviceServerinfo;
	else if( NOW_I_AM_A_CORDINATOR() )
		pAppListOfDeviceServerInfo[0] = &ESP_DeviceServerinfo;
		
	if( NOW_I_AM_A_ROUTER() )
		pAppListOfDeviceClientInfo[0] = &Meter_DeviceClientinfo;
	else if( NOW_I_AM_A_CORDINATOR() )
		pAppListOfDeviceClientInfo[0] = &ESP_DeviceClientinfo;
		
	if( NOW_I_AM_A_ROUTER() )
		Config_Simple_Descriptors = Config_Simple_Descriptors_MTR;
	else if( NOW_I_AM_A_CORDINATOR() )
		Config_Simple_Descriptors = Config_Simple_Descriptors_ESP;

	if( MSDCL_Commission.ValidCleanStartUp == MSDCL_COMMISSION_DATA_VALID)
	{
		if( ChannelsToBeScanned.Val == 0 )
		{
			ChannelsToBeScanned.Val = MSDCL_Commission.ChannelMask.Val & 0x03FFF800UL;
		}
	}
	else
	{
		if( ChannelsToBeScanned.Val == 0 )
		{
			ChannelsToBeScanned.Val = ALLOWED_CHANNELS_PRE_CONFIG & 0x03FFF800UL;
		}
	}
	{
		unsigned long channelMaskToScan = 0x00000800UL;
		
		if( ( ChannelsToBeScanned.Val & 0x03FFF800UL ) == 0 )
		{
			ChannelsToBeScanned.Val = ALLOWED_CHANNELS_PRE_CONFIG & 0x03FFF800UL;
		}
		
		ChannelsToBeScanned.Val &= 0x03FFF800UL;
	
		while( !(ChannelsToBeScanned.Val & channelMaskToScan) )
		{
			channelMaskToScan <<= 1;	
		}
		ALLOWED_CHANNELS = channelMaskToScan;
		ChannelsToBeScanned.Val &= channelMaskToScan ^ 0xFFFFFFFFUL;
		
		//ALLOWED_CHANNELS = 0x3FFFC00UL;
	}
	

	//ALLOWED_CHANNELS = 0b000000000111111111101111100000000000;
	ALLOWED_CHANNELS = 0b0000000000010000000000000000000000;

	while(1)
	{	
		if (NOW_I_AM_A_CORDINATOR())
			main_ESP(); 
		else
		{
			
			main_MTR();
		}
	}
}
Пример #8
0
Tcl_Channel
TclWinOpenConsoleChannel(
    HANDLE handle,
    char *channelName,
    int permissions)
{
    char encoding[4 + TCL_INTEGER_SPACE];
    ConsoleInfo *infoPtr;
    DWORD modes;

    ConsoleInit();

    /*
     * See if a channel with this handle already exists.
     */

    infoPtr = ckalloc(sizeof(ConsoleInfo));
    memset(infoPtr, 0, sizeof(ConsoleInfo));

    infoPtr->validMask = permissions;
    infoPtr->handle = handle;
    infoPtr->channel = (Tcl_Channel) NULL;

    wsprintfA(encoding, "cp%d", GetConsoleCP());

    infoPtr->threadId = Tcl_GetCurrentThread();

    /*
     * Use the pointer for the name of the result channel. This keeps the
     * channel names unique, since some may share handles (stdin/stdout/stderr
     * for instance).
     */

    sprintf(channelName, "file%" TCL_I_MODIFIER "x", (size_t) infoPtr);

    infoPtr->channel = Tcl_CreateChannel(&consoleChannelType, channelName,
	    infoPtr, permissions);

    if (permissions & TCL_READABLE) {
	/*
	 * Make sure the console input buffer is ready for only character
	 * input notifications and the buffer is set for line buffering. IOW,
	 * we only want to catch when complete lines are ready for reading.
	 */

	GetConsoleMode(infoPtr->handle, &modes);
	modes &= ~(ENABLE_WINDOW_INPUT | ENABLE_MOUSE_INPUT);
	modes |= ENABLE_LINE_INPUT;
	SetConsoleMode(infoPtr->handle, modes);
	StartChannelThread(infoPtr, &infoPtr->reader, ConsoleReaderThread);
    }

    if (permissions & TCL_WRITABLE) {
	StartChannelThread(infoPtr, &infoPtr->writer, ConsoleWriterThread);
    }

    /*
     * Files have default translation of AUTO and ^Z eof char, which means
     * that a ^Z will be accepted as EOF when reading.
     */

    Tcl_SetChannelOption(NULL, infoPtr->channel, "-translation", "auto");
    Tcl_SetChannelOption(NULL, infoPtr->channel, "-eofchar", "\032 {}");
#ifdef UNICODE
    Tcl_SetChannelOption(NULL, infoPtr->channel, "-encoding", "unicode");
#else
    Tcl_SetChannelOption(NULL, infoPtr->channel, "-encoding", encoding);
#endif
    return infoPtr->channel;
}
Пример #9
0
void NandDumper(){
	ConsoleSetTitle(strings[STR_DUMP], strings[STR_NAND]);
	File myFile;
	int isEmuNand = SYS_NAND;
	if(checkEmuNAND() && (isEmuNand = NandSwitch()) == UNK_NAND) return;
	isEmuNand--;
	ConsoleInit();
	ConsoleSetTitle(strings[STR_DUMP], strings[STR_NAND]);
	unsigned char* buf = (void*)0x21000000;
	unsigned int nsectors = 0x200;  //sectors in a row
	wchar_t tmpstr[STR_MAX_LEN];
	wchar_t ProgressBar[41] = {0,};
	for(int i=0; i<PROGRESS_WIDTH; i++)
		wcscat(ProgressBar, strings[STR_PROGRESS]);
	unsigned int progress = 0;
	wchar_t filename[_MAX_LFN];
	swprintf(filename, _MAX_LFN, L"rxTools/nand/%sNAND.bin",
		isEmuNand ? L"EMU" : L"");
	if(FileOpen(&myFile, filename, 1)){
		print(strings[STR_DUMPING], isEmuNand ? strings[STR_EMUNAND] : strings[STR_SYSNAND], filename);
		ConsoleShow();
		int x, y;
		ConsoleGetXY(&x, &y);
		y += FONT_HEIGHT * 6;
		x += FONT_HWIDTH * 2;

		DrawString(BOT_SCREEN, ProgressBar, x, y, ConsoleGetTextColor(), ConsoleGetBackgroundColor());
		swprintf(tmpstr, STR_MAX_LEN, strings[STR_PRESS_BUTTON_ACTION], strings[STR_BUTTON_B], strings[STR_CANCEL]);
		DrawString(BOT_SCREEN, tmpstr, x, y + FONT_HEIGHT*2, ConsoleGetTextColor(), ConsoleGetBackgroundColor());

		for(int count = 0; count < getNandSize()/NAND_SECTOR_SIZE/nsectors; count++){

			if(isEmuNand) sdmmc_sdcard_readsectors(count*nsectors, nsectors, buf);
			else sdmmc_nand_readsectors(count*nsectors, nsectors, buf);

			FileWrite(&myFile, buf, nsectors*NAND_SECTOR_SIZE, count*NAND_SECTOR_SIZE*nsectors);
			TryScreenShot();
			if((count % (int)(getNandSize()/NAND_SECTOR_SIZE/nsectors/PROGRESS_WIDTH)) == 0 && count != 0){
				DrawString(BOT_SCREEN, strings[STR_PROGRESS_OK], x+(FONT_WIDTH*(progress++)), y, ConsoleGetTextColor(), ConsoleGetBackgroundColor());
			}
			unsigned int pad = GetInput();
			if (pad & BUTTON_B) {
				FileClose(&myFile);
				goto end;
			}
		}
		if(isEmuNand){
			sdmmc_sdcard_readsectors(checkEmuNAND()/0x200, 1, buf);
			FileWrite(&myFile, buf, 0x200, 0);
		}
		FileClose(&myFile);
		print(strings[STR_COMPLETED]);
		ConsoleShow();
	}else{
		print(strings[STR_FAILED]);
		ConsoleShow();
	}

end:
	print(strings[STR_PRESS_BUTTON_ACTION], strings[STR_BUTTON_A], strings[STR_CONTINUE]);
	ConsoleShow();
	WaitForButton(BUTTON_A);
}
Пример #10
0
int main(void)
#endif
{   
    BYTE i, j;
    BYTE OperatingChannel = 0xFF;
    BYTE TxSynCount = 0;
    BYTE TxSynCount2 = 0;
    BYTE TxPersistFailures = 0;
    BOOL ReadyToSleep = FALSE;
    BYTE TxNum = 0;
    BYTE RxNum = 0;
    BYTE PressedButton = 0;
    
    /*******************************************************************/
    // Initialize the system
    /*******************************************************************/
    BoardInit();         
    ConsoleInit();  
    DemoOutput_Greeting();

    /*********************************************************************/
    // Function MiApp_ProtocolInit intialize the protocol stack.
    // The return value is a boolean to indicate the status of the 
    //      operation.
    // The only parameter indicates if Network Freezer should be invoked.
    //      When Network Freezer feature is invoked, all previous network
    //      configurations will be restored to the states before the 
    //      reset or power cycle
    //
    // In this example, we assume that the user wants to apply Network
    //      Freezer feature and restore the network configuration if
    //      button 1 is pressed and hold when powering up.
    /*********************************************************************/
    if( (PUSH_BUTTON_1 == 0) && ( MiApp_ProtocolInit(TRUE) == TRUE ) )
    {  
        DemoOutput_NetworkFreezer();
        while(PUSH_BUTTON_1 == 0 );
    }
    else
    {
        /*********************************************************************/
        // Function MiApp_ProtocolInit intialize the protocol stack.
        // The return value is a boolean to indicate the status of the 
        //      operation.
        // The only parameter indicates if Network Freezer should be invoked.
        //      When Network Freezer feature is invoked, all previous network
        //      configurations will be restored to the states before the 
        //      reset or power cycle
        //
        // In this example, we assume that the user wants to start from
        // scratch and ignore previous network configuration if button 1
        // is released when powering up.
        /*********************************************************************/
        MiApp_ProtocolInit(FALSE);   
        DemoOutput_StartActiveScan();
            
        while(1)
        {
            /*********************************************************************/
            // Function MiApp_SearchConnection will return the number of existing 
            // connections in all channels. It will help to decide which channel 
            // to operate on and which connection to add
            // The return value is the number of connections. The connection data
            //     are stored in global variable ActiveScanResults. Maximum active
            //     scan result is defined as ACTIVE_SCAN_RESULT_SIZE
            // The first parameter is the scan duration, which has the same 
            //     definition in Energy Scan. 10 is roughly 1 second. 9 is a half 
            //     second and 11 is 2 seconds. Maximum scan duration is 14, or 
            //     roughly 16 seconds.
            // The second parameter is the channel map. Bit 0 of the double
            //     word parameter represents channel 0. For the 2.4GHz frequency
            //     band, all possible channels are channel 11 to channel 26.
            //     As the result, the bit map is 0x07FFF800. Stack will filter
            //     out all invalid channels, so the application only needs to pay
            //     attention to the channels that are not preferred.
            /*********************************************************************/
            j = MiApp_SearchConnection(10, 0xFFFFFFFF);
            OperatingChannel = DemoOutput_ActiveScanResults(j);
        
            if( OperatingChannel != 0xFF )
            {
                /*******************************************************************/
                // Function MiApp_SetChannel assign the operation channel(frequency)
                // for the transceiver. Channels 0 - 31 has been defined for the 
                // wireless protocols, but not all channels are valid for all 
                // transceivers, depending on their hardware design, operating
                // frequency band, data rate and other RF parameters. Check the
                // definition of FULL_CHANNEL_MAP for details.
                /*******************************************************************/
                MiApp_SetChannel(OperatingChannel);
                break;
            }
            DemoOutput_Rescan();
        }

        
        /*********************************************************************/
        // Function MiApp_ConnectionMode sets the connection mode for the 
        // protocol stack. Possible connection modes are:
        //  - ENABLE_ALL_CONN       accept all connection request
        //  - ENABLE_PREV_CONN      accept only known device to connect
        //  - ENABL_ACTIVE_SCAN_RSP do not accept connection request, but allow
        //                          response to active scan
        //  - DISABLE_ALL_CONN      disable all connection request, including
        //                          active scan request
        /*********************************************************************/
        MiApp_ConnectionMode(ENABLE_ALL_CONN);
        
        /*******************************************************************/
        // Function MiApp_EstablishConnection establish connections between
        // two devices. It has two input parameters:
        // The first parameter is the index of the target device in the 
        //     active scan table. It requires a MiApp_SearchConnection call
        //     before hand. If seraching connection is not performed in 
        //     advance, user can apply 0xFF to the first parameter to 
        //     indicate that it is OK to establish connection with any 
        //     device.
        // The second parameter is the connection mode, either directly or
        //     indirectly. Direct connection is a connection in the radio
        //     range. All protocol stack support this connection mode. 
        //     Indirect connection is the connection out of radio range. 
        //     An indirect connection has to rely on other device to route 
        //     the messages between two connected devices. Indirect 
        //     connection is also called "Socket" connection in MiWi 
        //     Protocol. Since MiWi P2P protocol only handles connection 
        //     of one hop, indirect connection is not supported in MiWi 
        //     P2P protocol, but supported in other networking protocols.
        // Function MiApp_EstablishConnection returns the index of the 
        //     connected device in the connection table. If no connection 
        //     is established after predefined retry times 
        //     CONNECTION_RETRY_TIMES, it will return 0xFF. If multiple 
        //     connections have been established, it will return the one 
        //     of the indexes of the connected device.
        /*******************************************************************/
        i = MiApp_EstablishConnection(0, CONN_MODE_DIRECT);
        DemoOutput_Connected();
    }
    
    // Turn on LED 1 to indicate connection established
    LED_1 = 1;
    
    /*******************************************************************/
    // Function DumpConnection is used to print out the content of the
    // P2P Connection Entry on the hyperterminal. It may be useful in 
    // the debugging phase.
    // The only parameter of this function is the index of the 
    // Connection Entry. The value of 0xFF means to print out all
    // valid Connection Entries; otherwise, the Connection Entry
    // of the input index will be printed out.
    /*******************************************************************/
    DumpConnection(0xFF);
    
    DemoOutput_Instruction();

    while(1)
    {   
        /*******************************************************************/
        // Function MiApp_MessageAvailable will return a boolean to indicate 
        // if a message for application layer has been received by the 
        // transceiver. If a message has been received, all information will 
        // be stored in rxMessage, structure of RECEIVED_MESSAGE.
        /*******************************************************************/
        if( MiApp_MessageAvailable() )
        {
            DemoOutput_HandleMessage();
            
            /*******************************************************************/
            // Function MiApp_DiscardMessage is used to release the current 
            // received message. After calling this function, the stack can 
            // start to process the next received message.
            /*******************************************************************/ 
            MiApp_DiscardMessage();
            
            // Toggle LED2 to indicate receiving a packet.
            LED_2 ^= 1;
            
            DemoOutput_UpdateTxRx(TxNum, ++RxNum);
        }
        else 
        {
            /***********************************************************************/
            // TxPersistFailures is the local variable to track the transmission 
            // failure because no acknowledgement frame is received. Typically,
            // this is the indication of either very strong noise, or the PAN
            // has hopped to another channel. 
            /***********************************************************************/
            if( TxPersistFailures > 3 )
            {
                DemoOutput_StartResync();

                /*******************************************************************/
                // Function MiApp_TransceiverPowerState is used to set the power state
                // of RF transceiver. There are three possible states:
                //   - POWER_STATE_SLEEP        Put transceiver into sleep
                //   - POWER_STATE_WAKEUP       Wake up the transceiver only
                //   - POWER_STATE_WAKEUP_DR    Wake up and send Data Request command
                /*******************************************************************/
                MiApp_TransceiverPowerState(POWER_STATE_WAKEUP);
                
                /***********************************************************************/
                // Function MiApp_ResyncConnection is used to synchronized connection
                // if one side of communication jumped to another channel, when 
                // frequency agility is performed. Usually, this is done by the 
                // sleeping device, since the sleeping device cannot hear the broadcast 
                // of channel hopping command.
                //
                // The first parameter is the index of connection table for the peer 
                // node, which we would like to resynchronize to.
                // The second parameter is the bit map of channels to be scanned
                /***********************************************************************/
                MiApp_ResyncConnection(0, 0xFFFFFFFF);    
                TxPersistFailures = 0;
                ReadyToSleep = FALSE;
                
                DemoOutput_EndResync();
            }
            else
            {
                ReadyToSleep = TRUE;
            }    
            
            /*******************************************************************/
            // If Data Request command and data transmision has been handled,
            // as the RFD device, it is time to consider put both the radio and 
            // MCU into sleep mode to conserve power.
            /*******************************************************************/
            if( ReadyToSleep )
            {   
                ReadyToSleep = FALSE;
                
                /*******************************************************************/
                // Function MiApp_TransceiverPowerState is used to set the power 
                // state of RF transceiver. There are three possible states:
                //   - POWER_STATE_SLEEP        Put transceiver into sleep
                //   - POWER_STATE_WAKEUP       Wake up the transceiver only
                //   - POWER_STATE_WAKEUP_DR    Wake up and send Data Request 
                //                              command
                /*******************************************************************/
                MiApp_TransceiverPowerState(POWER_STATE_SLEEP);
                                    
                /*******************************************************************/
                // Prepare the condition to wake up the MCU. The MCU can either be
                // waken up by the timeout of watch dog timer (Time Synchronization 
                // off), timeout of counter with external 32KHz crystal (Time 
                // Synchronization on), or by the pin change notification interrupt 
                // by pushing the button. MCU handling of sleep preparing for 
                // different demo boards can be found in HardwareProfile.c
                /*******************************************************************/
                PrepareWakeup();
                
                // Put MCU into sleep mode
                Sleep();
                
                /*******************************************************************/
                // Handling the wakeup procedure. The steps differ for different
                // demo boards and families of MCUs. Details can be found in 
                // HardwareProfile.c
                /*******************************************************************/
                AfterWakeup();
                
                PressedButton = ButtonPressed();   
                
                /*******************************************************************/
                // Function MiApp_TransceiverPowerState is used to set the power 
                // state of RF transceiver. There are three possible states:
                //   - POWER_STATE_SLEEP        Put transceiver into sleep
                //   - POWER_STATE_WAKEUP       Wake up the transceiver only
                //   - POWER_STATE_WAKEUP_DR    Wake up and send Data Request 
                //                              command
                /*******************************************************************/
                if( MiApp_TransceiverPowerState(POWER_STATE_WAKEUP_DR) > SUCCESS )
                {
                    TxPersistFailures++;
                    DemoOutput_ConnectionLost(TxPersistFailures);
                }
                else
                {
                    if( TxPersistFailures > 0 )
                    {
                        DemoOutput_UpdateTxRx(TxNum, RxNum);
                    }
                    TxPersistFailures = 0;
                }
                
                switch( PressedButton )
                {
                    case 1: 
                        /*******************************************************************/                
                        // Button 1 pressed.
                        // First use MiApp_FlushTx to reset the Transmit buffer. Then fill 
                        // the TX buffer by calling function MiApp_WriteData
                        /*******************************************************************/
                        MiApp_FlushTx();
                        for(i = 0; i < 21; i++)
                        {
                            MiApp_WriteData(MiWi[(TxSynCount%6)][i]);
                        }
                        TxSynCount++;
                        
                        /*******************************************************************/
                        // Function MiApp_BroadcastPacket is used to broadcast a message
                        //    The only parameter is the boolean to indicate if we need to
                        //    secure the message
                        /*******************************************************************/
                        MiApp_BroadcastPacket(FALSE);
                        DemoOutput_UpdateTxRx(++TxNum, RxNum);   
                        break;
      
                    case 2:
                        /*******************************************************************/                
                        // Button 2 pressed.
                        // First use MiApp_FlushTx to reset the Transmit buffer. Then fill 
                        // the TX buffer by calling function MiApp_WriteData
                        /*******************************************************************/
                        MiApp_FlushTx();                   
                        for(i = 0; i < 11; i++)
                        {
                            MiApp_WriteData(DE[(TxSynCount2%6)][i]);
                        }
                        TxSynCount2++;
                        
                        /*******************************************************************/
                        // Function MiApp_UnicastConnection is one of the functions to 
                        // unicast a message.
                        //    The first parameter is the index of connection table for 
                        //       the peer device. In this demo, since there are only two
                        //       devices involved, the peer device must be stored in the 
                        //       first Connection Entry in the connection table.
                        //    The second parameter is the boolean to indicate if we need 
                        //       to secure the frame. If encryption is applied, the 
                        //       security level and security key are defined in the 
                        //       configuration file for the transceiver
                        //
                        // Another way to unicast a message is by calling function
                        // MiApp_UnicastAddress. Instead of supplying the index of the 
                        // connection table of the peer device, this function requires the 
                        // input parameter of destination address directly.
                        /*******************************************************************/
                        if( MiApp_UnicastConnection(0, TRUE) == FALSE )
                        {
                            DemoOutput_UnicastFail();
                        }
                        else
                        {
                            TxNum++;
                        }

                        DemoOutput_UpdateTxRx(TxNum, RxNum);
                        break;
                        
                    default:
                        break;
                }
            }
        }
    }
}
/*************************************************************************
	main
	====
**************************************************************************/
int main(void)
{
	int c, i;
	
	IODIR0 |= (1<<10);
	
	
	// PLL and MAM
	HalSysInit();

#ifdef LPC214x
	// init DBG
	ConsoleInit(60000000 / (16 * BAUD_RATE));
#else
	// init DBG
	ConsoleInit(72000000 / (16 * BAUD_RATE));
#endif

	DBG("Initialising USB stack\n");

	// initialise stack
	USBInit();

	configureADCPort(AD0_3);
	
	// register descriptors
	USBRegisterDescriptors(abDescriptors);

	// register class request handler
	USBRegisterRequestHandler(REQTYPE_TYPE_CLASS, HandleClassRequest, abClassReqData);

	// register endpoint handlers
	USBHwRegisterEPIntHandler(INT_IN_EP, NULL);
		
	// register frame handler
	USBHwRegisterFrameHandler(USBFrameHandler);
	
	// register device event handler
	USBHwRegisterDevIntHandler(USBDevIntHandler);
	
	
	char ch = 'a';
	for (i = 0; i < BYTES_PER_ISOC_FRAME; i++) {
		inputIsocDataBuffer[i] = ch;
		ch = (ch == 'z' ? 'a' : (ch + 1));
	}
	
	DBG("Starting USB communication\n");

#ifdef LPC214x
	(*(&VICVectCntl0+INT_VECT_NUM)) = 0x20 | 22; // choose highest priority ISR slot 	
	(*(&VICVectAddr0+INT_VECT_NUM)) = (int)USBIntHandler;
#else
  VICVectCntl22 = 0x01;
  VICVectAddr22 = (int)USBIntHandler;
#endif
  
	// set up USB interrupt
	VICIntSelect &= ~(1<<22);               // select IRQ for USB
	VICIntEnable |= (1<<22);
	
	enableIRQ();

	// connect to bus
	USBHwConnect(TRUE);
	
	int x = 0;
		
	const int interval = 100000;
	// echo any character received (do USB stuff in interrupt)
	
	for(;;) {
		x++;
		U32 temp = cADC_Result(AD0_3);
		if( temp >= 0 && temp <= 1024 )
			inputIsocDataBuffer[ADC_INPUT_INDEX] = temp;
		
		
		inputIsocDataBuffer[BUTTON1_INPUT_INDEX] = ((IOPIN0 & (1<<15)) ? 1 : 0);
		inputIsocDataBuffer[BUTTON2_INPUT_INDEX] = ((IOPIN0 & (1<<16)) ? 1 : 0);
		
		if (x == interval) {
			
			IOSET0 = (1<<11);
			//turn on led	
		    
		} else if (x >= (interval*2)) {
			IOCLR0 = (1<<11);
			//turn off led
			x = 0;
		}
	}

	return 0;
}
Пример #12
0
/*********************************************************************
 * Function:        void BoardInit( void )
 *
 * PreCondition:    None
 *
 * Input:           None
 *
 * Output:          None
 *
 * Side Effects:    Board is initialized for P2P usage
 *
 * Overview:        This function configures the board 
 *
 * Note:            This routine needs to be called before the function 
 *                  to initialize P2P stack or any other function that
 *                  operates on the stack
 ********************************************************************/
void BoardInit(void)
{

    // primary internal oscillator
    OSCCON = 0x7B;
    WDTCONbits.SWDTEN = 0;
        #if defined(MRF89XA)
    PHY_RESETn_TRIS = 1;
        #endif
    EECON2 = 0x55;
    EECON2 = 0xAA;
    PPSCONbits.IOLOCK = 0;

        #if defined(MRF49XA)
    RPINR3 = 6;
        #endif
        #if defined(MRF24J40)
    RPINR1 = 4;
        #endif
        #if defined(MRF89XA)
    RPINR3 = 6;
        #endif
        #if !defined(SENSOR_PORT_UART)

    // use LCD
    RPINR21 = 19;           //Mapping SDI2 to RD2
    RPOR23 = 9;             //Mapping SDO2 to RD6
    RPOR21 = 10;            //Mapping SCK2 to RD4
        #endif
        #if defined(SENSOR_PORT_UART)

    // use UART
    RPINR16 = 19;
    RPOR17 = 5;
        #endif
    EECON2 = 0x55;
    EECON2 = 0xAA;
    PPSCONbits.IOLOCK = 1;

    ANCON0 = 0xFF;
    ANCON1 = 0x3F;
    INTCON2bits.RBPU = 0;

    TRISA = 0xFF;
    TRISB = 0xFF;
    TRISC = 0xFF;

    TRISD = 0x00;
    TRISE = 0xFF;

    LATA = 0;
    LATB = 0;

    //LATC = 0;
    LATD = 0;
    LATE = 0;

    TRISDbits.TRISD2 = 0;
    LATDbits.LATD2 = 1;
    TRISCbits.TRISC6 = 0;
    LATCbits.LATC6 = 0;

    // set I/O ports
    BUTTON_RB0_TRIS = 1;
    BUTTON_RB2_TRIS = 1;
    LED_1_TRIS = 0;
    LED_2_TRIS = 0;

            #if defined(MRF24J40) || defined(MRF49XA)
    PHY_CS_TRIS = 0;
    PHY_CS = 1;
    PHY_RESETn_TRIS = 0;
    PHY_RESETn = 1;
    RF_INT_TRIS = 1;
    #endif
    #if defined(MRF89XA)
        PHY_RESETn_TRIS = 1;
        IRQ1_INT_TRIS = 1;
        IRQ0_INT_TRIS = 1;
    
        #if defined(USE_IRQ0_AS_INTERRUPT)
            //Enable the effective INT edge
            PHY_IRQ0_En = 1;
            PHY_IRQ0 = 0;
         #endif
         
    #endif
    SDI_TRIS = 1;
    SDO_TRIS = 0;
    SCK_TRIS = 0;

    #if defined(HARDWARE_SPI)
        SSP1STAT = 0xC0;
        SSP1CON1 = 0x21;
    #else
        SPI_SDO = 0;
        SPI_SCK = 0;
    #endif
    #if defined(MRF49XA)
        nFSEL_TRIS = 0;
        FINT_TRIS = 1;
        nFSEL = 1;              // nFSEL inactive
        INTCON2bits.INTEDG3 = 0;
    #endif
    #if defined(MRF24J40)
        PHY_WAKE_TRIS = 0;
        PHY_WAKE = 1;
        INTCON2bits.INTEDG1 = 0;
    #endif
    
    #if defined(MRF89XA)
        Config_nCS_TRIS = 0;    //nCS_Config as output
        Data_nCS_TRIS = 0;      //nCS_DATA as output
        Config_nCS_TRIS = 0;
        Data_nCS = 1;
        Config_nCS = 1;
        INTCON2bits.INTEDG3 = 1;
    #endif
    //#if defined(ENABLE_NVM)
        EE_nCS_TRIS = 0;
        EE_nCS = 1;
    //#endif
    INTCONbits.GIEH = 1;

    #if defined(MRF24J40) || defined(MRF49XA)
        RFIF = 0;
        RFIE = 1;
    #endif
    
    #if defined(SENSOR_PORT_LCD)
        LCDInit();
    #endif
    ConsoleInit();                  //Initializes the Console
}
Пример #13
0
int rxMode(int emu)
{
	if (!checkEmuNAND() && emu)
	{
		ConsoleInit();
		ConsoleSetTitle(L"EMUNAND NOT FOUND!");
		print(L"The emunand was not found on\n");
		print(L"your SDCard. \n");
		print(L"\n");
		print(L"Press A to boot SYSNAND\n");
		ConsoleShow();
		WaitForButton(BUTTON_A);
		emu = 0;
		char s[32];
		sprintf(s, "/rxTools/Theme/%u/boot.bin", cfgs[CFG_THEME].val.i);
		DrawBottomSplash(s);
	}

	static const char patchNandPrefix[] = ".patch.p9.nand";
	unsigned int cur, off, shstrSize;
	char path[64], shstrtab[512], *sh_name;
	const char *platformDir;
	FirmInfo info;
	const wchar_t *msg;
	int r, sector;
	void *p;
	Elf32_Ehdr ehdr;
	Elf32_Shdr shdr;
	FIL fd, keyxFd;
	UINT br, fsz;

	setAgbBios();

	getFirmPath(path, getMpInfo() == MPINFO_KTR ?
		TID_KTR_NATIVE_FIRM : TID_CTR_NATIVE_FIRM);
	strcpy(path + strlen(path) - 4, "orig.bin");
	r = loadFirm(path, &fsz);
	if (r) {
		msg = L"Failed to load NATIVE_FIRM: %d\n"
			L"Reboot rxTools and try again.\n";
		goto fail;
	}
	makeFirmInfo((const uint8_t*)FIRM_ADDR, &info);

	r = getMpInfo();
	switch (r) {
		case MPINFO_KTR:
			platformDir = "ktr";
			break;

		case MPINFO_CTR:
			platformDir = "ctr";
			break;

		default:
			msg = L"Unknown Platform: %d";
			goto fail;
	}

	sprintf(path, SYSTEM_PATH "/patches/%s/native_firm.elf", platformDir);
	r = f_open(&fd, path, FA_READ);
	if (r != FR_OK)
		goto patchFail;

	r = f_read(&fd, &ehdr, sizeof(ehdr), &br);
	if (r != FR_OK)
		goto patchFail;

	r = f_lseek(&fd, ehdr.e_shoff + ehdr.e_shstrndx * sizeof(Elf32_Shdr));
	if (r != FR_OK)
		goto patchFail;

	r = f_read(&fd, &shdr, sizeof(shdr), &br);
	if (r != FR_OK)
		goto patchFail;

	r = f_lseek(&fd, shdr.sh_offset);
	if (r != FR_OK)
		goto patchFail;

	r = f_read(&fd, shstrtab, shdr.sh_size > sizeof(shstrtab) ?
		sizeof(shstrtab) : shdr.sh_size, &shstrSize);
	if (r != FR_OK)
		goto patchFail;

	if (emu) {
		sector = checkEmuNAND();
		if (sector == 0) {
			msg = L"Failed to find EmuNAND.\n"
				L"Check your EmuNAND.\n";
			goto fail;
		}
	} else
		sector = 0;

	cur = ehdr.e_shoff;
	for (; ehdr.e_shnum; ehdr.e_shnum--, cur += sizeof(shdr)) {
		if (f_lseek(&fd, cur) != FR_OK)
			continue;

		if (f_read(&fd, &shdr, sizeof(shdr), &br) != FR_OK)
			continue;

		if (!(shdr.sh_flags & SHF_ALLOC) || shdr.sh_name >= shstrSize)
			continue;

		off = addrToOff(shdr.sh_addr, &info);
		if (off == 0)
			continue;

		p = (void *)(FIRM_ADDR + off);
		sh_name = shstrtab + shdr.sh_name;

		if (!strcmp(sh_name, ".rodata.keyx")) {
			if (sysver >= 7)
				continue;

			if (f_open(&keyxFd, "slot0x25KeyX.bin", FA_READ) != FR_OK)
				continue;

			f_read(&keyxFd, p, shdr.sh_size, &br);
			f_close(&keyxFd);
		} else if (!strcmp(sh_name, ".rodata.nand.sector")) {
			if (sector)
				*(uint32_t *)p = (sector / 0x200) - 1;
		} else if (!strcmp(sh_name, ".rodata.label")) {
			*(uint32_t *)p = sector ? 'E-XR' : 'S-XR';
		} else if (shdr.sh_type == SHT_PROGBITS
			&& (sector || memcmp(sh_name, patchNandPrefix, sizeof(patchNandPrefix) - 1))
			&& (sysver < 7 || strcmp(sh_name, ".patch.p9.keyx")))
		{
			if (f_lseek(&fd, shdr.sh_offset) != FR_OK)
				continue;

			f_read(&fd, p, shdr.sh_size, &br);
		}
	}

	getFirmPath(path, getMpInfo() == MPINFO_KTR ?
		TID_KTR_NATIVE_FIRM : TID_CTR_NATIVE_FIRM);
	f_open(&fd, path, FA_WRITE | FA_CREATE_ALWAYS);
	f_write(&fd, (void *)FIRM_ADDR, fsz, &br);
	f_close(&fd);

	r = loadExecReboot(); // This won't return if it succeeds.
	msg = L"Failed to load reboot.bin: %d\n"
		L"Check your installation.\n";

fail:
	ConsoleInit();
	ConsoleSetTitle(L"rxMode");
	print(msg, r);
	print(L"\n");
	print(strings[STR_PRESS_BUTTON_ACTION],
		strings[STR_BUTTON_A], strings[STR_CONTINUE]);
	ConsoleShow();
	WaitForButton(BUTTON_A);

	return r;

patchFail:
	msg = L"Failed to load native_firm.elf: %d\n"
		L"Check your installation.\n";
	goto fail;
}
Пример #14
0
/*********************************************************************
* Function:         void main(void)
*
* PreCondition:     none
*
* Input:		    none
*
* Output:		    none
*
* Side Effects:	    none
*
* Overview:		    This is the main function that runs the simple 
*                   example demo. The purpose of this example is to
*                   demonstrate the simple application programming
*                   interface for the MiWi(TM) Development 
*                   Environment. By virtually total of less than 30 
*                   lines of code, we can develop a complete 
*                   application using MiApp interface. The 
*                   application will first try to establish a P2P 
*                   link with another device and then process the 
*                   received information as well as transmit its own 
*                   information.
*                   MiWi(TM) DE also support a set of rich 
*                   features. Example code FeatureExample will
*                   demonstrate how to implement the rich features 
*                   through MiApp programming interfaces.
*
* Note:			    
**********************************************************************/
void main (void)
{
    BYTE    i;
    BYTE    TxSynCount = 0;
    BYTE    TxSynCount2 = 0;
    BoardInit();            //Has LCDInit() also covered in this, need to make this separate to ensure that if there was a problem with I2C the board hangs up
    ConsoleInit();

    // Initialize the system

    /*******************************************************************/
    
    LCDBacklightON();
    LCDDisplay((char *)"8-Bit Wireless  Development Kit ", 0, TRUE);
    DelayMs(5000);
    LCDBacklightOFF();


    Printf("\r\nInput Configuration:");
    Printf("\r\n           Button 1: RB0");
    Printf("\r\n           Button 2: RB2");
    Printf("\r\nOutput Configuration:");
    Printf("\r\n              LED 1: RA2");
    Printf("\r\n              LED 2: RA3");
    Printf("\r\n              LED 3: RB1");
            #if defined(MRF24J40)
    Printf("\r\n     RF Transceiver: MRF24J40");
            #elif defined(MRF49XA)
    Printf("\r\n     RF Transceiver: MRF49XA");
            #elif defined(MRF89XA)
    Printf("\r\n     RF Transceiver: MRF89XA");
            #endif
    Printf("\r\n   Demo Instruction:");
    Printf("\r\n                     Power on the board until LED 1 lights up  ");
    Printf("\r\n                     to indicate connecting with peer.         ");
    Printf("\r\n                     Ping Pong Results will be displayed on LCD");
    Printf("\r\n                     Use MCLR + RB2 to switch to Self Test Mode. ");
    Printf("\r\n\r\n");
    

    LED_1 = 0;
    LED_2 = 0;

    MiApp_ProtocolInit(FALSE);

    // Set default channel
    if(MiApp_SetChannel(myChannel) == FALSE)
    {
        #if defined(__18CXX)
        return;
        #else
        return (0);
        #endif
    }

    /*******************************************************************/

    // Function MiApp_ConnectionMode defines the connection mode. The
    // possible connection modes are:
    //  ENABLE_ALL_CONN:    Enable all kinds of connection
    //  ENABLE_PREV_CONN:   Only allow connection already exists in
    //                      connection table
    //  ENABL_ACTIVE_SCAN_RSP:  Allow response to Active scan
    //  DISABLE_ALL_CONN:   Disable all connections.

    /*******************************************************************/
    MiApp_ConnectionMode(ENABLE_ALL_CONN);

    /*******************************************************************/

    // Display current opertion on LCD of demo board, if applicable

    /*******************************************************************/
    LCDDisplay((char *)"Connecting Peer  on Channel %d ", myChannel, TRUE);

    /*******************************************************************/

    // Function MiApp_EstablishConnection try to establish a new
    // connection with peer device.
    // The first parameter is the index to the active scan result,
    //      which is acquired by discovery process (active scan). If
    //      the value of the index is 0xFF, try to establish a
    //      connection with any peer.
    // The second parameter is the mode to establish connection,
    //      either direct or indirect. Direct mode means connection
    //      within the radio range; indirect mode means connection
    //      may or may not in the radio range.

    /*******************************************************************/
    #ifdef ENABLE_HAND_SHAKE
    i = MiApp_EstablishConnection(0xFF, CONN_MODE_DIRECT);
    #endif

    /*******************************************************************/

    // Display current opertion on LCD of demo board, if applicable

    /*******************************************************************/
    if(i != 0xFF)
    {
        LCDDisplay((char *)"Joined  Network Successfully..", 0, TRUE);
    }
    else
    {
        MiApp_StartConnection(START_CONN_DIRECT, 10, 0);
    }

    /*******************************************************************/

    // Function DumpConnection is used to print out the content of the
    //  Connection Entry on the hyperterminal. It may be useful in
    //  the debugging phase.
    // The only parameter of this function is the index of the
    //  Connection Entry. The value of 0xFF means to print out all
    //  valid Connection Entry; otherwise, the Connection Entry
    //  of the input index will be printed out.

    /*******************************************************************/
    #ifdef ENABLE_DUMP
    DumpConnection(0xFF);
    #endif
    #ifndef ENABLE_POWERSAVE

    // Turn on LED 1 to indicate P2P connection established
    LED_1 = 1;
    #endif
    DelayMs(20);
    LCDDisplay((char *)"Ping Pong Demo  RB0(TX) RB2(RX)", 0, TRUE);

    /*******************************************************************/

    // Following block display demo instructions on LCD based on the
    // demo board used.

    /*******************************************************************/
    /*Configure the device in transmit or Receive Mode*/
   
        
        ReadButtonPress();   

        while(1)
        {
            
            PingPongStateMachine();
            
        }                   //end of while(1)
    
}                           //end of main
Пример #15
0
void main(void)
{
     #define BAUDRG 77

    BYTE SecNum = 0;

   BOOL Tx_Success = FALSE;
   BYTE Tx_Trials = 0, scanresult = 0;
    /*******************************************************************/
    // Initialize the system
    /*******************************************************************/

    ANCON0 = 0XFF;     /*desactiva entradas analogicas*/
    ANCON1 = 0XFF;     /*desactiva entradas analogicas*/



    PPSUnLock();

    PPSOutput(PPS_RP10, PPS_TX2CK2);    // TX2 RP17/RC6     icsp
    PPSInput(PPS_RX2DT2, PPS_RP9);     // RX2 RP18/RC7

    PPSOutput(PPS_RP23, PPS_SDO2);    // SDO2 RP23/RD6
    PPSInput(PPS_SDI2, PPS_RP24);     // SDI2 RP24/RD7
    PPSOutput(PPS_RP22, PPS_SCK2);    // SCK2 RP22/RD5

    PPSLock();

     System_PeripheralPinSelect( ExternalInterrupt3, 19);  /*external interrupt 3 B3*/

     BoardInit();
     ConsoleInit();

     Gpios_PinDirection(GPIOS_PORTC, 7, GPIOS_INPUT);  /*pin C0 como salida para SDI*/
     Gpios_PinDirection(GPIOS_PORTC, 6, GPIOS_OUTPUT); /*pin C1 como salida para SDO*/
     
     //Gpios_PinDirection(GPIOS_PORTD, 4, GPIOS_OUTPUT);  /*pin D4 como salida */

     Open1USART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_EIGHT_BIT & USART_ASYNCH_MODE & USART_ADDEN_OFF, BAUDRG);
     baud1USART(BAUD_IDLE_TX_PIN_STATE_HIGH & BAUD_IDLE_RX_PIN_STATE_HIGH & BAUD_AUTO_OFF & BAUD_WAKEUP_OFF & BAUD_16_BIT_RATE & USART_RX_INT_OFF);


     Open2USART(USART_TX_INT_OFF & USART_RX_INT_OFF & USART_EIGHT_BIT & USART_ASYNCH_MODE & USART_ADDEN_OFF, BAUDRG);
     baud2USART(BAUD_IDLE_TX_PIN_STATE_HIGH & BAUD_IDLE_RX_PIN_STATE_HIGH & BAUD_AUTO_OFF & BAUD_WAKEUP_OFF & BAUD_16_BIT_RATE & USART_RX_INT_OFF);


     OpenTimer1( TIMER_INT_OFF &T1_16BIT_RW &T1_SOURCE_FOSC_4 & T1_PS_1_8 &T1_OSC1EN_OFF &T1_SYNC_EXT_OFF, TIMER_GATE_OFF  & TIMER_GATE_INT_OFF);



     Gpios_PinDirection(GPIOS_PORTD, 7, GPIOS_INPUT);  /*pin C0 como salida para SDI*/
     Gpios_PinDirection(GPIOS_PORTD, 6, GPIOS_OUTPUT); /*pin C1 como salida para SDO*/
     Gpios_PinDirection(GPIOS_PORTD, 5, GPIOS_OUTPUT); /*pin C2 como salida para SCK*/

     Spi_Init(SPI_PORT1, SPI_64DIV); /*Inicializamos SPI2*/
     Spi_Init(SPI_PORT2, SPI_64DIV); /*Inicializamos SPI2*/

     //Adc_Init(ADC_10BITS);

     LED_1 = 1;
     LED_2 = 0;
     //RLY_1 = 0;
     RLY_2 = 0;

     ON_RADIO = 1;
     ON_MAC = 1;
     ON_TEMP = 1;
     
     StartWirelessConnection();
     
     
     
     //myDevicesRequiredStatus[0] = 0x55;
     
     
     EEPROMRead(&myDevicesRequiredStatus, 0, 1);
     
     if(myDevicesRequiredStatus[0] == 0x55)
     {
         RLY_1 = 1;
         EEPROMCHG = 1;
         ConsolePutROMString((ROM char *)"RELAY ON ");
     }
     
     if(myDevicesRequiredStatus[0] == 0xAA)
     {
         RLY_1 = 0;
         EEPROMCHG = 0;
         ConsolePutROMString((ROM char *)"RELAY OFF ");
     }
     
     
     
     
     

     for(j=0;j<10;j++)
     {
         DelayMs(50);

         LED_1 ^= 1;
         LED_2 ^= 1;
     }
     
     

     LED_1 = 0;
     LED_2 = 0;
     //RLY_1 = 0;
     RLY_2 = 0;
     
    
     
     TickScaler = 4;
     EndDevStateMachine =0;



/*
                                

                                while(!Tx_Success)
                                {
                                    if(myChannel < 8)
                                        scanresult = MiApp_SearchConnection(10, (0x00000001 << myChannel));
                                    else if(myChannel < 16)
                    				    scanresult = MiApp_SearchConnection(10, (0x00000100 << (myChannel-8)));
                                    else if(myChannel < 24)
                    				    scanresult = MiApp_SearchConnection(10, (0x00010000 << (myChannel-16)));
                                    else
                    				    scanresult = MiApp_SearchConnection(10, (0x01000000 << (myChannel-24)));
                                    if(scanresult == 0)
                                    {
                                        Tx_Trials++;
                                        if(Tx_Trials > 2) break;

                                    }
                                    else Tx_Success = TRUE;

                                }
                                if(Tx_Success)
                                {
                                    ConsolePutROMString((ROM char *)"RADIO OK ");
                                }
                                else
                                {
                                    ConsolePutROMString((ROM char *)"RADIO FAIL ");
                                }

*/


     //.VBGOE = 0;
     //ANCON1bits.VBGEN = 1;		// Enable Band gap reference voltage
     //DelayMs(10);
     //VBGResult = Adc_u16Read(15);
     //ANCON1bits.VBGEN = 0;	    // Disable Bandgap

      //Adc_Init(ADC_10BITS);
     
     
     ANCON0 = 0xFF;
     ANCON1 = 0x9F;
     ANCON1bits.VBGEN = 1;		// Enable Band gap reference voltage
     
     
     ADCON0bits.VCFG = 0;    // vreff VDD-VSS
     ADCON0bits.CHS = 0x0F;  // VBG channel select
     
     ADCON1 = 0xBE;
     ADCON0bits.ADON = 1;
     
     //for(j=0;j<16;j++)
     //{
        //myDevicesOutputStatus[j] = j;
     //}
    
     
     //EEPROMWRITE(myDevicesOutputStatus,0,16);
     
     
     //for(j=0;j<16;j++)
     //{
        //myDevicesOutputStatus[j] = 0;
     //}
     
     //DelayMs(500);
     
     EEPROMRead(&myDevicesOutputStatus, 0, 16);
     ConsolePutROMString((ROM char *)"EEPROM READ: ");
     //PrintChar(TemperatureCalibrationValue);
     
     
     for(j=0;j<1;j++)
     {
         PrintChar(myDevicesOutputStatus[j]);
     }
	

     SwTimer3 = 0;
     SwTimer4 = 0;
     
     TRISB&=0xEF;   //JL: Configuro el pin B4 como salida si modificar el estado de los demas pines
     
     while(1)
     {
     /*
         WirelessTxRx();
         WirelesStatus();
         Bypass();
         */
         
         
         //No se utilizaron
         //Menu();
         //Timer1Tick();
         //WirelessTxRxPANCOORD();
         //TaskScheduler();
         
         //JLEstas funciones deben habilitarse para trabajar como repetidora
         
         Timer1Tick();
         Repeater();
        
     }

}
void main(void)
{
    CLRWDT();
    ENABLE_WDT();

    currentPrimitive = NO_PRIMITIVE;
    NetworkDescriptor = NULL;

    // If you are going to send data to a terminal, initialize the UART.
    ConsoleInit();

    // Initialize the hardware - must be done before initializing ZigBee.
    HardwareInit();

    // Initialize the ZigBee Stack.
    ZigBeeInit();


    // *************************************************************************
    // Perform any other initialization here
    // *************************************************************************


    // Enable interrupts to get everything going.
    IPEN = 1;
    GIEH = 1;

    while (1)
    {
        CLRWDT();
        ZigBeeTasks( &currentPrimitive );

        switch (currentPrimitive)
        {
            case NLME_NETWORK_DISCOVERY_confirm:
                currentPrimitive = NO_PRIMITIVE;
                if (!params.NLME_NETWORK_DISCOVERY_confirm.Status)
                {
                    if (!params.NLME_NETWORK_DISCOVERY_confirm.NetworkCount)
                    {
                        ConsolePutROMString( (ROM char *)"No networks found.  Trying again...\r\n" );
                    }
                    else
                    {
                        // Save the descriptor list pointer so we can destroy it later.
                        NetworkDescriptor = params.NLME_NETWORK_DISCOVERY_confirm.NetworkDescriptor;

                        // Select a network to try to join.  We're not going to be picky right now...
                        currentNetworkDescriptor = NetworkDescriptor;

                        // not needed for new join params.NLME_JOIN_request.ScanDuration = ;
                        // not needed for new join params.NLME_JOIN_request.ScanChannels = ;
                        params.NLME_JOIN_request.PANId          = currentNetworkDescriptor->PanID;
                        params.NLME_JOIN_request.JoinAsRouter   = FALSE;
                        params.NLME_JOIN_request.RejoinNetwork  = FALSE;
                        params.NLME_JOIN_request.PowerSource    = NOT_MAINS_POWERED;
                        params.NLME_JOIN_request.RxOnWhenIdle   = FALSE;
                        params.NLME_JOIN_request.MACSecurity    = FALSE;
                        currentPrimitive = NLME_JOIN_request;

                        ConsolePutROMString( (ROM char *)"Network(s) found. Trying to join " );
                        PrintChar( params.NLME_JOIN_request.PANId.byte.MSB );
                        PrintChar( params.NLME_JOIN_request.PANId.byte.LSB );
                        ConsolePutROMString( (ROM char *)".\r\n" );
                    }
                }
                else
                {
                    PrintChar( params.NLME_NETWORK_DISCOVERY_confirm.Status );
                    ConsolePutROMString( (ROM char *)" Error finding network.  Trying again...\r\n" );
                }
                break;

            case NLME_JOIN_confirm:
                currentPrimitive = NO_PRIMITIVE;
                if (!params.NLME_JOIN_confirm.Status)
                {
                    ConsolePutROMString( (ROM char *)"Join successful!\r\n" );
                    if (NetworkDescriptor)
                    {
                        // If we joined as an orphan, this will be NULL.
                        free( NetworkDescriptor );
                    }

                    // We are now on the network.  Enable routing.
                    params.NLME_START_ROUTER_request.BeaconOrder = MAC_PIB_macBeaconOrder;
                    params.NLME_START_ROUTER_request.SuperframeOrder = MAC_PIB_macSuperframeOrder;
                    params.NLME_START_ROUTER_request.BatteryLifeExtension = FALSE;
                    currentPrimitive = NLME_START_ROUTER_request;
                }
                else
                {
                    PrintChar( params.NLME_JOIN_confirm.Status );
                    ConsolePutROMString( (ROM char *)" Could not join. Trying again as new device..." );
                }
                break;

            case NLME_LEAVE_indication:
                if (!memcmppgm2ram( &params.NLME_LEAVE_indication.DeviceAddress, (ROM void *)&macLongAddr, 8 ))
                {
                    ConsolePutROMString( (ROM char *)"We have left the network.\r\n" );
                }
                else
                {
                    ConsolePutROMString( (ROM char *)"Another node has left the network.\r\n" );
                }
                currentPrimitive = NO_PRIMITIVE;
                break;

            case NLME_RESET_confirm:
                ConsolePutROMString( (ROM char *)"ZigBee Stack has been reset.\r\n" );
                currentPrimitive = NO_PRIMITIVE;
                break;

            case NLME_START_ROUTER_confirm:
                if (!params.NLME_START_ROUTER_confirm.Status)
                {
                    ConsolePutROMString( (ROM char *)"Router Started!\r\n" );
                }
                else
                {
                    PrintChar( params.NLME_JOIN_confirm.Status );
                    ConsolePutROMString( (ROM char *)" Router start unsuccessful. We cannot route frames.\r\n" );
                }

                // We are now ready to do ZigBee related tasks.
                currentPrimitive = NO_PRIMITIVE;
                break;

            case APSDE_DATA_indication:
                {
                    WORD_VAL    attributeId;
                    BYTE        command;
                    BYTE        data;
                    BYTE        dataLength;
                    //BYTE        dataType;
                    BYTE        frameHeader;
                    BYTE        sequenceNumber;
                    BYTE        transaction;
                    BYTE        transByte;

                    currentPrimitive = NO_PRIMITIVE;
                    frameHeader = APLGet();

                    switch (params.APSDE_DATA_indication.DstEndpoint)
                    {
                        case EP_ZDO:
                            if ((frameHeader & APL_FRAME_TYPE_MASK) == APL_FRAME_TYPE_MSG)
                            {
                                frameHeader &= APL_FRAME_COUNT_MASK;
                                for (transaction=0; transaction<frameHeader; transaction++)
                                {
                                    sequenceNumber          = APLGet();
                                    dataLength              = APLGet();
                                    transByte               = 0;

                                    switch( params.APSDE_DATA_indication.ClusterId )
                                    {

                                        // ********************************************************
                                        // Put a case here to handle each ZDO response that we requested.
                                        // Be sure to increment transByte for each APLGet().
                                        // ********************************************************

                                        default:
                                            break;
                                    }

                                    // Read out the rest of the MSG in case there is another transaction.
                                    for (; transByte<dataLength; transByte++)
                                    {
                                        APLGet();
                                    }
                                }
                            }
                            break;

                        // ************************************************************************
                        // Place a case for each user defined endpoint.
                        // ************************************************************************

                        default:
                            // If the command type was something that requested an acknowledge, we could send back
                            // KVP_INVALID_ENDPOINT here.
                            break;
                    }
                    APLDiscardRx();
                }
                break;

            case APSDE_DATA_confirm:
                if (params.APSDE_DATA_confirm.Status)
                {
                    ConsolePutROMString( (ROM char *)"Error " );
                    PrintChar( params.APSDE_DATA_confirm.Status );
                    ConsolePutROMString( (ROM char *)" sending message.\r\n" );
                }
                else
                {
                    ConsolePutROMString( (ROM char *)" Message sent successfully.\r\n" );
                }
                currentPrimitive = NO_PRIMITIVE;
                break;

            case NO_PRIMITIVE:
                if (!ZigBeeStatus.flags.bits.bNetworkJoined)
                {
                    if (!ZigBeeStatus.flags.bits.bTryingToJoinNetwork)
                    {
                        if (ZigBeeStatus.flags.bits.bTryOrphanJoin)
                        {
                            ConsolePutROMString( (ROM char *)"Trying to join network as an orphan...\r\n" );
                            params.NLME_JOIN_request.ScanDuration       = 8;
                            params.NLME_JOIN_request.ScanChannels.Val   = ALLOWED_CHANNELS;
                            // not needed for orphan join - params.NLME_JOIN_request.PANId
                            params.NLME_JOIN_request.JoinAsRouter       = FALSE;
                            params.NLME_JOIN_request.RejoinNetwork      = TRUE;
                            params.NLME_JOIN_request.PowerSource        = NOT_MAINS_POWERED;
                            params.NLME_JOIN_request.RxOnWhenIdle       = FALSE;
                            params.NLME_JOIN_request.MACSecurity        = FALSE;
                            currentPrimitive = NLME_JOIN_request;
                        }
                        else
                        {
                            ConsolePutROMString( (ROM char *)"Trying to join network as a new device...\r\n" );
                            params.NLME_NETWORK_DISCOVERY_request.ScanDuration          = 8;
                            params.NLME_NETWORK_DISCOVERY_request.ScanChannels.Val      = ALLOWED_CHANNELS;
                            currentPrimitive = NLME_NETWORK_DISCOVERY_request;
                        }
                    }
                }
                else
                {
                    // See if we can do our own internal tasks.
                    if (ZigBeeReady())
                    {

                        // ************************************************************************
                        // Place all processes that can send messages here.  Be sure to call
                        // ZigBeeBlockTx() when currentPrimitive is set to APSDE_DATA_request.
                        // ************************************************************************

                    }
                }
                break;

            default:
                PrintChar( currentPrimitive );
                ConsolePutROMString( (ROM char *)" Unhandled primitive.\r\n" );
                currentPrimitive = NO_PRIMITIVE;
                break;
        }

        // *********************************************************************
        // Place any non-ZigBee related processing here.  Be sure that the code
        // will loop back and execute ZigBeeTasks() in a timely manner.
        // *********************************************************************

    }
}
Пример #17
0
/*************************************************************************
        main
        ====
**************************************************************************/
int main(void)
{

    ///////////////////////////////////////////////////
    // PRELUDE
    ///////////////////////////////////////////////////
        
    // PLL and MAM
    HalSysInit();

#ifdef LPC214x
    // init DBG
    ConsoleInit(60000000 / (16 * BAUD_RATE));
#else
    // init DBG
    ConsoleInit(72000000 / (16 * BAUD_RATE));
#endif

    DBG("Initialising USB stack\n");

    // initialise stack
    USBInit();

    // enable bulk-in interrupts on NAKs
    USBHwNakIntEnable(INACK_BI);
    
    // register descriptors
    USBRegisterDescriptors(isoDescriptors);
    
	//USBRegisterRequestHandler(REQTYPE_TYPE_CLASS, HandleClassRequest, abClassReqData);


    // register endpoint handlers
    USBHwRegisterEPIntHandler(INT_IN_EP, NULL);
    USBHwRegisterEPIntHandler(BULK_IN_EP, BulkIn);
    USBHwRegisterEPIntHandler(BULK_OUT_EP, BulkOut);

    // USBHwRegisterEPIntHandler(ISOC_OUT_EP, IsocOut);
                
    // register frame handler
    //USBHwRegisterFrameHandler(USBFrameHandler);
        
    // register device event handler
    USBHwRegisterDevIntHandler(USBDevIntHandler);
    bulk_init();
    
    DBG("Starting USB communication\n");

#ifdef LPC214x
    (*(&VICVectCntl0+INT_VECT_NUM)) = 0x20 | 22; // choose highest priority ISR slot        
    (*(&VICVectAddr0+INT_VECT_NUM)) = (int)USBIntHandler;
#else
    VICVectCntl22 = 0x01;
    VICVectAddr22 = (int)USBIntHandler;
#endif
  
    // set up USB interrupt
    VICIntSelect &= ~(1<<22);               // select IRQ for USB
    VICIntEnable |= (1<<22);
        
    enableIRQ();
        
    // connect to bus
    USBHwConnect(TRUE);


    /////////////////////////////////////////////
    // FUNCTION
    /////////////////////////////////////////////

    // int

    // bulk   - echo




    // isoc A - regular - Broadcast numbers

    // isoc B - dma -echo

    // isoc C - dma
    


    //////////////////////////////////////////
    // DEBUG LIGHTS
    //////////////////////////////////////////

    int c;
    int x = 0;
    int ch  ='a';
    c = EOF;
        
    // echo any character received (do USB stuff in interrupt)
    while (1) {

            
        // Turn light on and off.
                
        x++;
        if (x == 400000) {
                        
            IOSET0 = (1<<11);
            //turn on led
                        
            if( ch > 'z' ) {
                ch = 'a';
            }

            ch++;
                    
        } else if (x >= 800000) {
            IOCLR0 = (1<<11);
            //turn off led
            x = 0;
        }

    }

    return 0;
}
Пример #18
0
void main(void)
{
    CLRWDT();
    ENABLE_WDT();

    currentPrimitive = NO_PRIMITIVE;
    NetworkDescriptor = NULL;
    orphanTries = 3;

    // If you are going to send data to a terminal, initialize the UART.
    ConsoleInit();

	ConsolePutROMString( (ROM char *)"Universidade Paulista - UNIP\r\n" );
	ConsolePutROMString( (ROM char *)"Daniel Gonçalves\r\n" );
	ConsolePutROMString( (ROM char *)"Projeto: Baba Eletronica\r\n\r\n" );
    ConsolePutROMString( (ROM char *)"\r\n\r\n\r\n*************************************\r\n" );
    ConsolePutROMString( (ROM char *)"Microchip ZigBee(TM) Stack - v1.0-3.8\r\n\r\n" );
    ConsolePutROMString( (ROM char *)"ZigBee RFD\r\n\r\n" );
    ConsolePutROMString( (ROM char *)"Transceiver-MRF24J40\r\n\r\n" );

    // Inicializa o Hardware
    HardwareInit();

    // Inicializa a pilha ZigBee
    ZigBeeInit();

    // *************************************************************************
    // Outras Inicializações
    // *************************************************************************

    myStatusFlags.Val = STATUS_FLAGS_INIT;

    // Endereço padrão do Coordenador
    destinationAddress.Val = 0x0000;

    // Inicializa os LEDS
    MOVE_SENSOR_LED = ON;
    LEVEL_SENSOR_LED = ON;

    // Habilita as interrupções 
    RCONbits.IPEN = 1;
    INTCONbits.GIEH = 1;

    while (1)
    {
        CLRWDT();
        ZigBeeTasks( &currentPrimitive );

        switch (currentPrimitive)
        {
            case NLME_NETWORK_DISCOVERY_confirm:
                currentPrimitive = NO_PRIMITIVE;
                if (!params.NLME_NETWORK_DISCOVERY_confirm.Status)
                {
                    if (!params.NLME_NETWORK_DISCOVERY_confirm.NetworkCount)
                    {
                        ConsolePutROMString( (ROM char *)"No networks found.  Trying again...\r\n" );
                    }
                    else
                    {
                        // Save the descriptor list pointer so we can destroy it later.
                        NetworkDescriptor = params.NLME_NETWORK_DISCOVERY_confirm.NetworkDescriptor;

                        // Select a network to try to join.  We're not going to be picky right now...
                        currentNetworkDescriptor = NetworkDescriptor;

SubmitJoinRequest:
                        // not needed for new join params.NLME_JOIN_request.ScanDuration = ;
                        // not needed for new join params.NLME_JOIN_request.ScanChannels = ;
                        params.NLME_JOIN_request.PANId          = currentNetworkDescriptor->PanID;
                        ConsolePutROMString( (ROM char *)"Network(s) found. Trying to join " );
                        PrintChar( params.NLME_JOIN_request.PANId.byte.MSB );
                        PrintChar( params.NLME_JOIN_request.PANId.byte.LSB );
                        ConsolePutROMString( (ROM char *)".\r\n" );
                        params.NLME_JOIN_request.JoinAsRouter   = FALSE;
                        params.NLME_JOIN_request.RejoinNetwork  = FALSE;
                        params.NLME_JOIN_request.PowerSource    = NOT_MAINS_POWERED;
                        params.NLME_JOIN_request.RxOnWhenIdle   = FALSE;
                        params.NLME_JOIN_request.MACSecurity    = FALSE;
                        currentPrimitive = NLME_JOIN_request;
                    }
                }
                else
                {
                    PrintChar( params.NLME_NETWORK_DISCOVERY_confirm.Status );
                    ConsolePutROMString( (ROM char *)" Error finding network.  Trying again...\r\n" );
                }
                break;

            case NLME_JOIN_confirm:
                currentPrimitive = NO_PRIMITIVE;
                if (!params.NLME_JOIN_confirm.Status)
                {
                    ConsolePutROMString( (ROM char *)"Join successful!\r\n" );

                    // Free the network descriptor list, if it exists. If we joined as an orphan, it will be NULL.
                    while (NetworkDescriptor)
                    {
                        currentNetworkDescriptor = NetworkDescriptor->next;
                        free( NetworkDescriptor );
                        NetworkDescriptor = currentNetworkDescriptor;
                    }
                }
                else
                {
                    PrintChar( params.NLME_JOIN_confirm.Status );

                    // If we were trying as an orphan, see if we have some more orphan attempts.
                    if (ZigBeeStatus.flags.bits.bTryOrphanJoin)
                    {
                        // If we tried to join as an orphan, we do not have NetworkDescriptor, so we do
                        // not have to free it.

                        ConsolePutROMString( (ROM char *)" Could not join as orphan. " );
                        orphanTries--;
                        if (orphanTries == 0)
                        {
                            ConsolePutROMString( (ROM char *)"Must try as new node...\r\n" );
                            ZigBeeStatus.flags.bits.bTryOrphanJoin = 0;
                        }
                        else
                        {
                            ConsolePutROMString( (ROM char *)"Trying again...\r\n" );
                        }
                    }
                    else
                    {
                        ConsolePutROMString( (ROM char *)" Could not join selected network. " );
                        currentNetworkDescriptor = currentNetworkDescriptor->next;
                        if (currentNetworkDescriptor)
                        {
                            ConsolePutROMString( (ROM char *)"Trying next discovered network...\r\n" );
                            goto SubmitJoinRequest;
                        }
                        else
                        {
                            // We ran out of descriptors.  Free the network descriptor list, and fall
                            // through to try discovery again.
                            ConsolePutROMString( (ROM char *)"Cleaning up and retrying discovery...\r\n" );
                            while (NetworkDescriptor)
                            {
                                currentNetworkDescriptor = NetworkDescriptor->next;
                                free( NetworkDescriptor );
                                NetworkDescriptor = currentNetworkDescriptor;
                            }
                        }
                    }
                }
                break;

            case NLME_LEAVE_indication:
                if (!memcmppgm2ram( &params.NLME_LEAVE_indication.DeviceAddress, (ROM void *)&macLongAddr, 8 ))
                {
                    ConsolePutROMString( (ROM char *)"We have left the network.\r\n" );
                }
                else
                {
                    ConsolePutROMString( (ROM char *)"Another node has left the network.\r\n" );
                }
                currentPrimitive = NO_PRIMITIVE;
                break;

            case NLME_RESET_confirm:
                ConsolePutROMString( (ROM char *)"ZigBee Stack has been reset.\r\n" );
                currentPrimitive = NO_PRIMITIVE;
                break;

            case NLME_SYNC_confirm:
                switch (params.NLME_SYNC_confirm.Status)
                {
                    case SUCCESS:
                        // I have heard from my parent, but it has no data for me.  Note that
                        // if my parent has data for me, I will get an APSDE_DATA_indication.
                        ConsolePutROMString( (ROM char *)"No data available.\r\n" );
                        break;

                    case NWK_SYNC_FAILURE:
                        // I cannot communicate with my parent.
                        ConsolePutROMString( (ROM char *)"I cannot communicate with my parent.\r\n" );
                        break;

                    case NWK_INVALID_PARAMETER:
                        // If we call NLME_SYNC_request correctly, this doesn't occur.
                        ConsolePutROMString( (ROM char *)"Invalid sync parameter.\r\n" );
                        break;
                }
                currentPrimitive = NO_PRIMITIVE;
                break;

            case APSDE_DATA_indication:
                {
                    WORD_VAL    attributeId;
                    BYTE        command;
                    BYTE        data;
                    BYTE        dataLength;
                    //BYTE        dataType;
                    BYTE        frameHeader;
                    BYTE        sequenceNumber;
                    BYTE        transaction;
                    BYTE        transByte;

                    currentPrimitive = NO_PRIMITIVE;
                    frameHeader = APLGet();

                    switch (params.APSDE_DATA_indication.DstEndpoint)
                    {
                        case EP_ZDO:
                            ConsolePutROMString( (ROM char *)"  Receiving ZDO cluster " );
                            PrintChar( params.APSDE_DATA_indication.ClusterId );
                            ConsolePutROMString( (ROM char *)"\r\n" );

                            // Put code here to handle any ZDO responses that we requested
                            if ((frameHeader & APL_FRAME_TYPE_MASK) == APL_FRAME_TYPE_MSG)
                            {
                                frameHeader &= APL_FRAME_COUNT_MASK;
                                for (transaction=0; transaction<frameHeader; transaction++)
                                {
                                    sequenceNumber          = APLGet();
                                    dataLength              = APLGet();
                                    transByte               = 1;    // Account for status byte

                                    switch( params.APSDE_DATA_indication.ClusterId )
                                    {

                                        // ********************************************************
                                        // Put a case here to handle each ZDO response that we requested.
                                        // ********************************************************

                                        case NWK_ADDR_rsp:
                                            if (APLGet() == SUCCESS)
                                            {
                                                ConsolePutROMString( (ROM char *)"  Receiving NWK_ADDR_rsp.\r\n" );

                                                // Skip over the IEEE address of the responder.
                                                for (data=0; data<8; data++)
                                                {
                                                    APLGet();
                                                    transByte++;
                                                }
                                                destinationAddress.byte.LSB = APLGet();
                                                destinationAddress.byte.MSB = APLGet();
                                                transByte += 2;
                                                myStatusFlags.bits.bDestinationAddressKnown = 1;
                                            }
                                            break;
                                        default:
                                            break;
                                    }

                                    // Read out the rest of the MSG in case there is another transaction.
                                    for (; transByte<dataLength; transByte++)
                                    {
                                        APLGet();
                                    }
                                }
                            }
                            break;

                        // ************************************************************************
                        // Place a case for each user defined endpoint.
                        // ************************************************************************
                        case EP_LIGHT:
                            if ((frameHeader & APL_FRAME_TYPE_MASK) == APL_FRAME_TYPE_KVP)
                            {
                                frameHeader &= APL_FRAME_COUNT_MASK;
                                for (transaction=0; transaction<frameHeader; transaction++)
                                {
                                    sequenceNumber          = APLGet();
                                    command                 = APLGet();
                                    attributeId.byte.LSB    = APLGet();
                                    attributeId.byte.MSB    = APLGet();

                                    //dataType = command & APL_FRAME_DATA_TYPE_MASK;
                                    command &= APL_FRAME_COMMAND_MASK;

                                    if ((params.APSDE_DATA_indication.ClusterId == OnOffSRC_CLUSTER) &&
                                        (attributeId.Val == OnOffSRC_OnOff))
                                    {
                                        if ((command == APL_FRAME_COMMAND_SET) ||
                                            (command == APL_FRAME_COMMAND_SETACK))
                                        {
                                            // Prepare a response in case it is needed.
                                            TxBuffer[TxData++] = APL_FRAME_TYPE_KVP | 1;    // KVP, 1 transaction
                                            TxBuffer[TxData++] = sequenceNumber;
                                            TxBuffer[TxData++] = APL_FRAME_COMMAND_SET_RES | (APL_FRAME_DATA_TYPE_UINT8 << 4);
                                            TxBuffer[TxData++] = attributeId.byte.LSB;
                                            TxBuffer[TxData++] = attributeId.byte.MSB;

                                            // Data type for this attibute must be APL_FRAME_DATA_TYPE_UINT8
                                            data = APLGet();
                                            switch (data)
                                            {
                                                case LIGHT_OFF:
                                                    ConsolePutROMString( (ROM char *)" Turning light off.\r\n" );
                                                    LEVEL_SENSOR_LED = 0;
                                                    TxBuffer[TxData++] = SUCCESS;
                                                    break;
                                                case LIGHT_ON:
                                                    ConsolePutROMString( (ROM char *)" Turning light on.\r\n" );
                                                    LEVEL_SENSOR_LED = 1;
                                                    TxBuffer[TxData++] = SUCCESS;
                                                    break;
                                                case LIGHT_TOGGLE:
                                                    ConsolePutROMString( (ROM char *)" Toggling light.\r\n" );
                                                    LEVEL_SENSOR_LED ^= 1;
                                                    TxBuffer[TxData++] = SUCCESS;
                                                    break;
                                                default:
                                                    PrintChar( data );
                                                    ConsolePutROMString( (ROM char *)" Invalid light message.\r\n" );
                                                    TxBuffer[TxData++] = KVP_INVALID_ATTRIBUTE_DATA;
                                                    break;
                                            }
                                        }
                                        if (command == APL_FRAME_COMMAND_SETACK)
                                        {
                                            // Send back an application level acknowledge.
                                            ZigBeeBlockTx();

                                            // Take care here that parameters are not overwritten before they are used.
                                            // We can use the data byte as a temporary variable.
                                            params.APSDE_DATA_request.DstAddrMode = params.APSDE_DATA_indication.SrcAddrMode;
                                            params.APSDE_DATA_request.DstEndpoint = params.APSDE_DATA_indication.SrcEndpoint;
                                            params.APSDE_DATA_request.DstAddress.ShortAddr = params.APSDE_DATA_indication.SrcAddress.ShortAddr;

                                            //params.APSDE_DATA_request.asduLength; TxData
                                            //params.APSDE_DATA_request.ProfileId; unchanged
                                            params.APSDE_DATA_request.RadiusCounter = DEFAULT_RADIUS;
                                            params.APSDE_DATA_request.DiscoverRoute = ROUTE_DISCOVERY_ENABLE;
											#ifdef I_SUPPORT_SECURITY
												params.APSDE_DATA_request.TxOptions.Val = 1;
											#else											                                            
                                            	params.APSDE_DATA_request.TxOptions.Val = 0;
											#endif                                            
                                            params.APSDE_DATA_request.SrcEndpoint = EP_LIGHT;
                                            //params.APSDE_DATA_request.ClusterId; unchanged

                                            currentPrimitive = APSDE_DATA_request;
                                        }
                                        else
                                        {
                                            // We are not sending an acknowledge, so reset the transmit message pointer.
                                            TxData = TX_DATA_START;
                                        }
                                    }
                                    // TODO read to the end of the transaction.
                                } // each transaction
                            } // frame type
                            break;
                          
                        default:               
                			break;
                	}

                    APLDiscardRx();
                }
                break;

            case APSDE_DATA_confirm:
                if (params.APSDE_DATA_confirm.Status)
                {
                    ConsolePutROMString( (ROM char *)"Error " );
                    PrintChar( params.APSDE_DATA_confirm.Status );
                    ConsolePutROMString( (ROM char *)" sending message.\r\n" );
                }
                else
                {
                    ConsolePutROMString( (ROM char *)" Message sent successfully.\r\n" );
                }
                currentPrimitive = NO_PRIMITIVE;
                break;

            case NO_PRIMITIVE:
                if (!ZigBeeStatus.flags.bits.bNetworkJoined)
                {
                    if (!ZigBeeStatus.flags.bits.bTryingToJoinNetwork)
                    {
                        if (ZigBeeStatus.flags.bits.bTryOrphanJoin)
                        {
                            ConsolePutROMString( (ROM char *)"Trying to join network as an orphan...\r\n" );
                            params.NLME_JOIN_request.JoinAsRouter           = FALSE;
                            params.NLME_JOIN_request.RejoinNetwork          = TRUE;
                            params.NLME_JOIN_request.PowerSource            = NOT_MAINS_POWERED;
                            params.NLME_JOIN_request.RxOnWhenIdle           = FALSE;
                            params.NLME_JOIN_request.MACSecurity            = FALSE;
                            params.NLME_JOIN_request.ScanDuration           = 8;
                            params.NLME_JOIN_request.ScanChannels.Val       = ALLOWED_CHANNELS;
                            currentPrimitive = NLME_JOIN_request;
                        }
                        else
                        {
                            ConsolePutROMString( (ROM char *)"Trying to join network as a new device...\r\n" );
                            params.NLME_NETWORK_DISCOVERY_request.ScanDuration          = 6;
                            params.NLME_NETWORK_DISCOVERY_request.ScanChannels.Val      = ALLOWED_CHANNELS;
                            currentPrimitive = NLME_NETWORK_DISCOVERY_request;
                        }
                    }
                }
                else
                {
                    // See if I can do my own internal tasks.  We don't want to try to send a message
                    // if we just asked for one.
                    if (ZigBeeStatus.flags.bits.bDataRequestComplete && ZigBeeReady())
                    {

                        // ************************************************************************
                        // Place all processes that can send messages here.  Be sure to call
                        // ZigBeeBlockTx() when currentPrimitive is set to APSDE_DATA_request.
                        // ************************************************************************
                        if ( myStatusFlags.bits.bMoveSensorButtonPressed)
                        {
                            // Send a light toggle message to the other node.
                            myStatusFlags.bits.bMoveSensorButtonPressed = FALSE;

							BLINK_LED(MOVE_SENSOR_LED);							

							// envia a mensagem para ligar/desligar o led
							RFDSendMessage(MoveSensor_Activated, 0x00);                
                        }
                        else if (myStatusFlags.bits.bLevelSensorButtonPressed)
                        {
                        	// Envia mensagem indicando que o sensor de nível foi acionado

                            myStatusFlags.bits.bLevelSensorButtonPressed = FALSE;

							BLINK_LED(LEVEL_SENSOR_LED);

							RFDSendMessage(LevelSensor_Activated, 0x00);                                
                        }

                        // We've processed any key press, so re-enable interrupts.
                        INTCONbits.RBIE = 1;
                    }

                    // If we don't have to execute a primitive, see if we need to request data from
                    // our parent, or if we can go to sleep.
                    if (currentPrimitive == NO_PRIMITIVE)
                    {
                        if (!ZigBeeStatus.flags.bits.bDataRequestComplete)
                        {
                            // We have not received all data from our parent.  If we are not waiting
                            // for an answer from a data request, send a data request.
                            if (!ZigBeeStatus.flags.bits.bRequestingData)
                            {
                                if (ZigBeeReady())
                                {
                                    // Our parent still may have data for us.
                                    params.NLME_SYNC_request.Track = FALSE;
                                    currentPrimitive = NLME_SYNC_request;
                                    ConsolePutROMString( (ROM char *)"Requesting data...\r\n" );
                                }
                            }
                        }
                        else
                        {
                            if (!ZigBeeStatus.flags.bits.bHasBackgroundTasks && myProcessesAreDone())
                            {
                                // We do not have a primitive to execute, we've extracted all messages
                                // that our parent has for us, the stack has no background tasks,
                                // and all application-specific processes are complete.  Now we can
                                // go to sleep.  Make sure that the UART is finished, turn off the transceiver,
                                // and make sure that we wakeup from key press.
                                if(APLDisable() == TRUE)
                                {
	                                ConsolePutROMString( (ROM char *)"Going to sleep...\r\n" );
    	                            while (!ConsoleIsPutReady());
                                	APLDisable();
    	                            INTCONbits.RBIE = 1;
	                                SLEEP();
        	                        NOP();

	                                // We just woke up from sleep. Turn on the transceiver and
	                                // request data from our parent.
	                                APLEnable();
	                                params.NLME_SYNC_request.Track = FALSE;
	                                currentPrimitive = NLME_SYNC_request;
	                                ConsolePutROMString( (ROM char *)"Requesting data...\r\n" );
								}
                            }
                        }
                    }
                }
                break;

            default:
                PrintChar( currentPrimitive );
                ConsolePutROMString( (ROM char *)" Unhandled primitive.\r\n" );
                currentPrimitive = NO_PRIMITIVE;
        }

        // *********************************************************************
        // Place any non-ZigBee related processing here.  Be sure that the code
        // will loop back and execute ZigBeeTasks() in a timely manner.
        // *********************************************************************

    }
}
Пример #19
0
int rxMode(int emu)
{
    const Elf32_Addr line = 32;
    wchar_t path[64];
    const char *shstrtab;
    const wchar_t *msg;
    uint8_t keyx[16];
    uint32_t tid;
    int r, sector;
    Elf32_Ehdr *ehdr;
    Elf32_Shdr *shdr, *btmShdr;
    Elf32_Addr cur, btm;
    void *keyxArg;
    FIL fd;
    UINT br, fsz;

    if (emu) {
        sector = checkEmuNAND();
        if (sector == 0) {
            ConsoleInit();
            ConsoleSetTitle(L"EMUNAND NOT FOUND!");
            print(L"The emunand was not found on\n");
            print(L"your SDCard. \n");
            print(L"\n");
            print(L"Press A to boot SYSNAND\n");
            ConsoleShow();

            WaitForButton(BUTTON_A);

            swprintf(path, _MAX_LFN, L"/rxTools/Theme/%u/boot.bin",
                     cfgs[CFG_THEME].val.i);
            DrawBottomSplash(path);
        }
    } else
        sector = 0;

    r = getMpInfo();
    switch (r) {
    case MPINFO_KTR:
        tid = TID_KTR_NATIVE_FIRM;
        break;

    case MPINFO_CTR:
        tid = TID_CTR_NATIVE_FIRM;
        break;

    default:
        msg = L"Unknown Platform: %d";
        goto fail;
    }

    setAgbBios();

    if (sysver < 7 && f_open(&fd, _T("slot0x25KeyX.bin"), FA_READ) == FR_OK) {
        f_read(&fd, keyx, sizeof(keyx), &br);
        f_close(&fd);
        keyxArg = keyx;
    } else
        keyxArg = NULL;

    getFirmPath(path, tid);
    r = loadFirm(path, &fsz);
    if (r) {
        msg = L"Failed to load NATIVE_FIRM: %d\n"
              L"Reboot rxTools and try again.\n";
        goto fail;
    }

    ((FirmHdr *)FIRM_ADDR)->arm9Entry = 0x0801B01C;

    getFirmPatchPath(path, tid);
    r = f_open(&fd, path, FA_READ);
    if (r != FR_OK)
        goto patchFail;

    r = f_read(&fd, (void *)PATCH_ADDR, PATCH_SIZE, &br);
    if (r != FR_OK)
        goto patchFail;

    f_close(&fd);

    ehdr = (void *)PATCH_ADDR;
    shdr = (void *)(PATCH_ADDR + ehdr->e_shoff);
    shstrtab = (char *)PATCH_ADDR + shdr[ehdr->e_shstrndx].sh_offset;
    for (btmShdr = shdr + ehdr->e_shnum; shdr != btmShdr; shdr++) {
        if (!strcmp(shstrtab + shdr->sh_name, ".patch.p9.reboot.body")) {
            memcpy((void *)ehdr->e_entry,
                   (void *)(PATCH_ADDR + shdr->sh_offset),
                   shdr->sh_size);

            // Drain write buffer
            __asm__ volatile ("mcr p15, 0, %0, c7, c10, 4" :: "r"(0));

            cur = ehdr->e_entry & ~(line - 1);
            btm = ehdr->e_entry + shdr->sh_size;
            while (cur < btm) {
                __asm__ volatile (
                    // Clean Dcache
                    "mcr p15, 0, %0, c7, c10, 1\n\t"

                    // Flush Icache
                    "mcr p15, 0, %0, c7, c5, 1"
                    :: "r"(cur));

                cur += line;
            }

            ((void (*)(uint32_t, void *, uintptr_t))ehdr->e_entry)(
                sector, keyxArg, 0x1FFFFFF8);

            __builtin_unreachable();
        }
    }
Пример #20
0
int Initialize()
{
	char str[100];
	char strl[100];
	char strr[100];
	char tmp[256];
	wchar_t wtmp[256];
	int r;

	preloadStringsA();

	DrawString(BOT_SCREEN, strings[STR_INITIALIZING], FONT_WIDTH, SCREEN_HEIGHT-FONT_HEIGHT, WHITE, BLACK);

	if(FSInit()){
		DrawString(BOT_SCREEN, strings[STR_LOADING], BOT_SCREEN_WIDTH/2, SCREEN_HEIGHT-FONT_HEIGHT, WHITE, BLACK);
	}else{
		DrawString(BOT_SCREEN, strings[STR_FAILED], BOT_SCREEN_WIDTH/2, SCREEN_HEIGHT-FONT_HEIGHT, RED, BLACK);
		return 1;
	}

	LoadFont();
	if (fontLoaded){
		swprintf(wtmp, sizeof(wtmp)/sizeof(wtmp[0]), strings[STR_ERROR_OPENING], fontpath);
		DrawString(BOT_SCREEN, wtmp, FONT_WIDTH, SCREEN_HEIGHT-FONT_HEIGHT*2, RED, BLACK);
	}else{
		preloadStringsU();
	}

	//Console Stuff
	ConsoleSetXY(15, 20);
	ConsoleSetWH(BOT_SCREEN_WIDTH-30, SCREEN_HEIGHT-80);
	ConsoleSetBorderColor(BLUE);
	ConsoleSetTextColor(RGB(0, 141, 197));
	ConsoleSetBackgroundColor(TRANSPARENT);
	ConsoleSetSpecialColor(BLUE);
	ConsoleSetSpacing(2);
	ConsoleSetBorderWidth(3);
	//Check that the data is installed
	f_mkdir("rxTools");
	f_mkdir("rxTools/nand");
	InstallConfigData();
	readCfg();

	if (fontLoaded)
		cfgs[CFG_LANG].val.s = cfgLang;
	r = loadStrings();
	if (r) {
		sprintf(tmp, "%s/%s", langPath, cfgs[CFG_LANG].val.s);
		swprintf(wtmp, sizeof(wtmp)/sizeof(wtmp[0]), strings[STR_ERROR_OPENING], tmp);
		DrawString(BOT_SCREEN, wtmp, FONT_WIDTH, SCREEN_HEIGHT-FONT_HEIGHT*3, RED, BLACK);
	}
	sprintf(str, "/rxTools/Theme/%u/TOP.bin", cfgs[CFG_THEME].val.i);
	sprintf(strl, "/rxTools/Theme/%u/TOPL.bin", cfgs[CFG_THEME].val.i);
	sprintf(strr, "/rxTools/Theme/%u/TOPR.bin", cfgs[CFG_THEME].val.i);
	if (cfgs[CFG_3D].val.i)
		DrawTopSplash(str, strl, strr);
	else
		DrawTopSplash(str, str, str);

	if (!cfgs[CFG_GUI].val.i)
	{
		if(cfgs[CFG_SILENT].val.i)
		{
			sprintf(str, "/rxTools/Theme/%u/boot.bin", cfgs[CFG_THEME].val.i);
			DrawBottomSplash(str);

			for (int i = 0; i < 0x333333 * 2; i++){
				uint32_t pad = GetInput();
				if (pad & BUTTON_R1 && i > 0x333333) goto rxTools_boot;
			}
		}
		else
		{
			ConsoleInit();
			ConsoleSetTitle(strings[STR_AUTOBOOT]);
			print(strings[STR_HOLD_BUTTON_ACTION], strings[STR_BUTTON_R], strings[STR_OPEN_MENU]);
			ConsoleShow();

			for (int i = 0; i < 0x333333 * 6; i++){
				uint32_t pad = GetInput();
				if (pad & BUTTON_R1 && i > 0x333333) goto rxTools_boot;
			}
		}
		rxMode(1);
	}
rxTools_boot:
	sprintf(str, "/rxTools/Theme/%u/TOP.bin", cfgs[CFG_THEME].val.i);
	sprintf(strl, "/rxTools/Theme/%u/TOPL.bin", cfgs[CFG_THEME].val.i);
	sprintf(strr, "/rxTools/Theme/%u/TOPR.bin", cfgs[CFG_THEME].val.i);
	if (cfgs[CFG_3D].val.i)
		DrawTopSplash(str, strl, strr);
	else
		DrawTopSplash(str, str, str);

	return 0;
}
Пример #21
0
void Initialize(){
	char str[100];
	char strl[100];
	char strr[100];
	DrawString(BOT_SCREEN,  " INITIALIZE... ", 0, SCREEN_HEIGHT-FONT_SIZE, WHITE, BLACK);
	if(FSInit()){
		DrawString(BOT_SCREEN,  " LOADING...    ", 0, SCREEN_HEIGHT-FONT_SIZE, WHITE, BLACK);
	}else{
		DrawString(BOT_SCREEN,  " ERROR!        ", 0, SCREEN_HEIGHT-FONT_SIZE, RED, BLACK);
	}
	LoadPack();

	//Console Stuff
	ConsoleSetXY(15, 20);
	ConsoleSetWH(SCREEN_WIDTH-30, SCREEN_HEIGHT-80);
	ConsoleSetBorderColor(BLUE);
	ConsoleSetTextColor(RGB(0, 141, 197));
	ConsoleSetBackgroundColor(TRANSPARENT);
	ConsoleSetSpecialColor(BLUE);
	ConsoleSetSpacing(2);
	ConsoleSetBorderWidth(3);
	//Check that the data is installed
	f_mkdir("rxTools");
	f_mkdir("rxTools/nand");
	InstallConfigData();
	LoadSettings();

	sprintf(str, "/rxTools/Theme/%c/TOP.bin", Theme);
	sprintf(strl, "/rxTools/Theme/%c/TOPL.bin", Theme);
	sprintf(strr, "/rxTools/Theme/%c/TOPR.bin", Theme);
	if(theme_3d)
		DrawTopSplash(str, strl, strr);
	else
		DrawTopSplash(str, str, str);

	if (!bootGUI)
	{
		if(silent_boot)
		{
			sprintf(str, "/rxTools/Theme/%c/boot.bin", Theme);
			DrawBottomSplash(str);

			for (int i = 0; i < 0x333333 * 2; i++){
				u32 pad = GetInput();
				if (pad & BUTTON_R1 && i > 0x333333) goto rxTools_boot;
			}
		}
		else
		{
			ConsoleInit();
			ConsoleSetTitle(STR_AUTOBOOT[language]);
			print(STR_HOLD_R[language]);
			ConsoleShow();

			for (int i = 0; i < 0x333333 * 6; i++){
				u32 pad = GetInput();
				if (pad & BUTTON_R1 && i > 0x333333) goto rxTools_boot;
			}
		}
				

		rxModeQuickBoot();
	}
rxTools_boot:

	sprintf(str, "/rxTools/Theme/%c/TOP.bin", Theme);
	sprintf(strl, "/rxTools/Theme/%c/TOPL.bin", Theme);
	sprintf(strr, "/rxTools/Theme/%c/TOPR.bin", Theme);
	if(theme_3d)
		DrawTopSplash(str, strl, strr);
	else
		DrawTopSplash(str, str, str);
}
Пример #22
0
/*************************************************************************
	main
	====
**************************************************************************/
int main(void)
{
	int c, i;
	
	// PLL and MAM
	HalSysInit();

#ifdef LPC214x
	// init DBG
	ConsoleInit(60000000 / (16 * BAUD_RATE));
#else
	// init DBG
	ConsoleInit(72000000 / (16 * BAUD_RATE));
#endif

	configureADCPort(AD0_3);

	
	DBG("Initialising USB stack\n");

	// initialise stack
	USBInit();

	// register descriptors
	USBRegisterDescriptors(abDescriptors);

	// register class request handler
	USBRegisterRequestHandler(REQTYPE_TYPE_CLASS, HandleClassRequest, abClassReqData);

	// register endpoint handlers
	USBHwRegisterEPIntHandler(INT_IN_EP, NULL);
		
	// register frame handler
	USBHwRegisterFrameHandler(USBFrameHandler);
	
	// register device event handler
	USBHwRegisterDevIntHandler(USBDevIntHandler);
	
	USBInitializeUSBDMA(udcaHeadArray);
	USBEnableDMAForEndpoint(ISOC_IN_EP);
	
	DBG("Starting USB communication\n");

#ifdef LPC214x
	(*(&VICVectCntl0+INT_VECT_NUM)) = 0x20 | 22; // choose highest priority ISR slot 	
	(*(&VICVectAddr0+INT_VECT_NUM)) = (int)USBIntHandler;
#else
  VICVectCntl22 = 0x01;
  VICVectAddr22 = (int)USBIntHandler;
#endif
  
	// set up USB interrupt
	VICIntSelect &= ~(1<<22);               // select IRQ for USB
	VICIntEnable |= (1<<22);
	
	enableIRQ();

	// connect to bus
	USBHwConnect(TRUE);
	
	int x = 0;
	c = EOF;
	
	
	//populate source data with all 'B's
	for(i = 0; i < ISOC_INPUT_DATA_BUFFER_SIZE; i++ ) {
		inputIsocDataBuffer[i] = 'B';
	}

	
	int cnt = 0;
	const int interval = 100000;
	// echo any character received (do USB stuff in interrupt)
	
	for(;;) {
		x++;
		U32 temp = cADC_Result(AD0_3);
		if( temp >= 0 && temp <= 1024 )
			currentADCReadValue = temp;
		
		if (x == interval) {
			qq++;
			
			IOSET0 = (1<<11);
			//turn on led	
		    
		} else if (x >= (interval*2)) {
			IOCLR0 = (1<<11);
			//turn off led
			x = 0;
		}
	}

	return 0;
}
Пример #23
0
int ProcessCTR(char* path){
	PartitionInfo myInfo;
	File myFile;
	char myString[256];  //In case it is needed...
	if(FileOpen(&myFile, path, 0)){
		ConsoleInit();
		ConsoleAddText(TITLE);
		unsigned int ncch_base = 0x100;
		unsigned char magic[] = { 0, 0, 0, 0, 0};
		FileRead(&myFile, magic, 4, ncch_base);
		if(magic[0] == 'N' && magic[1] == 'C' && magic[2] == 'S' && magic[3] == 'D'){
			ncch_base = 0x4000;
			FileRead(&myFile, magic, 4, ncch_base+0x100);
			if(!(magic[0] == 'N' && magic[1] == 'C' && magic[2] == 'C' && magic[3] == 'H')){
				FileClose(&myFile);
				return 2;
			}
		}else if(magic[0] == 'N' && magic[1] == 'C' && magic[2] == 'C' && magic[3] == 'H'){
			ncch_base = 0x0;
		}else{
			FileClose(&myFile);
			return 2;
		}
		ctr_ncchheader NCCH; unsigned int mediaunitsize = 0x200;
		FileRead(&myFile, &NCCH, 0x200, ncch_base);

		//ConsoleAddText(path);
		ConsoleAddText(NCCH.productcode);
		unsigned int NEWCRYPTO = 0, CRYPTO = 1;
		if(NCCH.flags[3] != 0) NEWCRYPTO = 1;
		if(NCCH.flags[7] & 4) CRYPTO = 0;
		if(NEWCRYPTO){
			ConsoleAddText("\nCryptoType : 7.X Key security");
		}else if(CRYPTO){
			ConsoleAddText("\nCryptoType : Secure");
		}else{
			ConsoleAddText("\nCryptoType : None");
			ConsoleAddText("Decryption completed!");
			FileClose(&myFile);
			ConsoleShow();
			return 3;
		}

		ConsoleShow();
		u8 CTR[16];
		if(getle32(NCCH.extendedheadersize) > 0){
			ConsoleAddText("Decrypting ExHeader..."); ConsoleShow();
			ncch_get_counter(NCCH, CTR, 1);
			FileRead(&myFile, BUFFER_ADDR, 0x800, ncch_base + 0x200);
			myInfo.buffer = BUFFER_ADDR;
			myInfo.size = 0x800;
			myInfo.keyslot = 0x2C;
			myInfo.ctr = CTR;
			myInfo.keyY = NCCH.signature;
			DecryptPartition(&myInfo);
			FileWrite(&myFile, BUFFER_ADDR, 0x800, ncch_base + 0x200);
		}
		if(getle32(NCCH.exefssize) > 0){
			ConsoleAddText("Decrypting ExeFS..."); ConsoleShow();
			ncch_get_counter(NCCH, CTR, 2);
			myInfo.buffer = BUFFER_ADDR;
			myInfo.keyslot = NEWCRYPTO ? 0x25 : 0x2C;
			myInfo.ctr = CTR;
			myInfo.keyY = NCCH.signature;

			size_t bytesRead = FileRead(&myFile, BUFFER_ADDR, getle32(NCCH.exefssize) * mediaunitsize, ncch_base + getle32(NCCH.exefsoffset) * mediaunitsize);
			myInfo.size = bytesRead;
			ProcessExeFS(&myInfo); //Explanation at function definition
			FileWrite(&myFile, BUFFER_ADDR, getle32(NCCH.exefssize) * mediaunitsize, ncch_base + getle32(NCCH.exefsoffset) * mediaunitsize);
		}
		if(getle32(NCCH.romfssize) > 0){
			ConsoleAddText("Decrypting RomFS..."); ConsoleShow();
			ncch_get_counter(NCCH, CTR, 3);
			myInfo.buffer = BUFFER_ADDR;
			myInfo.keyslot = NEWCRYPTO ? 0x25 : 0x2C;
			myInfo.ctr = CTR;
			myInfo.keyY = NCCH.signature;
			for(int i = 0; i < getle32(NCCH.romfssize) * mediaunitsize / BLOCK_SIZE; i++){
				sprintf(myString, "%i%%", (int)((i*BLOCK_SIZE)/(getle32(NCCH.romfssize) * mediaunitsize/ 100)));
				int x, y; ConsoleGetXY(&x, &y); y += CHAR_WIDTH * 4; x += CHAR_WIDTH*22;
				DrawString(TOP_SCREEN, myString, x, y, ConsoleGetTextColor(),  ConsoleGetBackgroundColor());
				size_t bytesRead = FileRead(&myFile, BUFFER_ADDR, BLOCK_SIZE, ncch_base + getle32(NCCH.romfsoffset) * mediaunitsize + i*BLOCK_SIZE);
				myInfo.size = bytesRead;
				DecryptPartition(&myInfo);
				add_ctr(myInfo.ctr, bytesRead/16);
				FileWrite(&myFile, BUFFER_ADDR, BLOCK_SIZE, ncch_base + getle32(NCCH.romfsoffset) * mediaunitsize + i*BLOCK_SIZE);
			}
		}
		NCCH.flags[7] |= 4; //Disable encryption
		NCCH.flags[3] = 0;  //Disable 7.XKey usage
		FileWrite(&myFile, &NCCH, 0x200, ncch_base);
		if(ncch_base == 0x4000) FileWrite(&myFile, ((u8*)&NCCH) + 0x100, 0x100, 0x1100);   //Only for NCSD
		FileClose(&myFile);
		ConsoleAddText("Decryption completed!"); ConsoleShow();
		return 0;
	}else return 1;
}
Пример #24
0
int rxMode(int emu)
{
	wchar_t path[64];
	const char *shstrtab;
	const wchar_t *msg;
	uint8_t keyx[16];
	uint32_t tid;
	int r, sector;
	Elf32_Ehdr *ehdr;
	Elf32_Shdr *shdr, *btm;
	void *keyxArg;
	FIL fd;
	UINT br, fsz;

	if (emu) {
		sector = checkEmuNAND();
		if (sector == 0) {
			ConsoleInit();
			ConsoleSetTitle(L"EMUNAND NOT FOUND!");
			print(L"The emunand was not found on\n");
			print(L"your SDCard. \n");
			print(L"\n");
			print(L"Press A to boot SYSNAND\n");
			ConsoleShow();

			WaitForButton(BUTTON_A);

			swprintf(path, _MAX_LFN, L"/rxTools/Theme/%u/boot.bin",
				cfgs[CFG_THEME].val.i);
			DrawBottomSplash(path);
		}
	} else
		sector = 0;

	r = getMpInfo();
	switch (r) {
		case MPINFO_KTR:
			tid = TID_KTR_NATIVE_FIRM;
			break;

		case MPINFO_CTR:
			tid = TID_CTR_NATIVE_FIRM;
			break;

		default:
			msg = L"Unknown Platform: %d";
			goto fail;
	}

	setAgbBios();

	if (sysver < 7 && f_open(&fd, _T("slot0x25KeyX.bin"), FA_READ) == FR_OK) {
		f_read(&fd, keyx, sizeof(keyx), &br);
		f_close(&fd);
		keyxArg = keyx;
	} else
		keyxArg = NULL;

	getFirmPath(path, tid);
	r = loadFirm(path, &fsz);
	if (r) {
		msg = L"Failed to load NATIVE_FIRM: %d\n"
			L"Reboot rxTools and try again.\n";
		goto fail;
	}

	((FirmHdr *)FIRM_ADDR)->arm9Entry = 0x0801B01C;

	getFirmPatchPath(path, tid);
	r = f_open(&fd, path, FA_READ);
	if (r != FR_OK)
		goto patchFail;

	r = f_read(&fd, (void *)PATCH_ADDR, PATCH_SIZE, &br);
	if (r != FR_OK)
		goto patchFail;

	f_close(&fd);

	ehdr = (void *)PATCH_ADDR;
	shdr = (void *)(PATCH_ADDR + ehdr->e_shoff);
	shstrtab = (char *)PATCH_ADDR + shdr[ehdr->e_shstrndx].sh_offset;
	for (btm = shdr + ehdr->e_shnum; shdr != btm; shdr++) {
		if (!strcmp(shstrtab + shdr->sh_name, ".patch.p9.reboot.body")) {
			execReboot(sector, keyxArg, ehdr->e_entry, shdr);
			__builtin_unreachable();
		}
	}

	msg = L".patch.p9.reboot.body not found\n"
		L"Please check your installation.\n";
fail:
	ConsoleInit();
	ConsoleSetTitle(L"rxMode");
	print(msg, r);
	print(L"\n");
	print(strings[STR_PRESS_BUTTON_ACTION],
		strings[STR_BUTTON_A], strings[STR_CONTINUE]);
	ConsoleShow();
	WaitForButton(BUTTON_A);

	return r;

patchFail:
	msg = L"Failed to load the patch: %d\n"
		L"Check your installation.\n";
	goto fail;
}
Пример #25
0
/*************************************************************************
    main
    ====
**************************************************************************/
int main(void)
{
    GO go_entry;

    // PLL and MAM
    Initialize();

    // init DBG
    ConsoleInit(CCLK / (16 * BAUD_RATE));

    DBG("Initialising USB stack\n");

    write_ram_len=0;
    read_mem_len=0;
    unlocked=0;
    bEcho=1;

    // initialise stack
    USBInit();

    // register descriptors
    USBRegisterDescriptors(abDescriptors);

    // register vendor request handler
    USBRegisterRequestHandler(REQTYPE_TYPE_VENDOR, HandleVendorRequest);

    // register pre request handler
    USBRegisterPreRequestHandler(PreHandleRequest);

    DBG("Starting USB communication\n");

    // connect to bus
    USBHwConnect(TRUE);

    start_app = 0;

    // call USB interrupt handler continuously
    while (1)
    {
        USBHwISR();

        if (start_app == 1)
        {
            volatile unsigned int count;

            // wait some time until response is sent
            for (count=0;count<10000;count++) USBHwISR();

            // disconnect from bus
            USBHwConnect(FALSE);

            // wait some ms so that called app might safely re-connect usb
            for (count=0;count<300000;count++) count=count;

            go_entry = (GO) (start_adr);
            go_entry();
        }
    }

    return 0;
}
Пример #26
0
void dumpCoolFiles()
{
	int nandtype = NandSwitch();
	if (nandtype == UNK_NAND) return;

	selectedFile = -1;
	MenuInit(&CoolFilesMenu);
	MenuShow();

	while (true)
	{
		uint32_t pad_state = InputWait();
		if (pad_state & BUTTON_DOWN) MenuNextSelection();
		if (pad_state & BUTTON_UP) MenuPrevSelection();
		if (pad_state & BUTTON_A) { MenuSelect(); break; }
		if (pad_state & BUTTON_B) break;
		TryScreenShot();
		MenuShow();
	}

	if (selectedFile == -1) return;
	ConsoleInit();
	ConsoleSetTitle(strings[STR_DUMP], strings[STR_FILES]);

	char dest[256], tmpstr[sizeof(dest)];
	wchar_t wsrc[sizeof(tmpstr)];
	sprintf(dest, "rxTools/%s", CoolFiles[selectedFile].name);
	sprintf(tmpstr, "%d:%s/%s", nandtype, CoolFiles[selectedFile].path, CoolFiles[selectedFile].name);
	mbstowcs(wsrc, tmpstr, sizeof(tmpstr));
	print(strings[STR_DUMPING], wsrc, dest);
	ConsoleShow();

	unsigned int res = FSFileCopy(dest, tmpstr);
	if (res != 0 && (selectedFile == 1 || selectedFile == 2)){
		if (selectedFile == 1)
		{
			/* Fix for SecureInfo_B */
			sprintf(dest, "rxTools/%.11s%c", CoolFiles[selectedFile].name, 'B');
			sprintf(tmpstr, "%d:%s/%.11s%c", nandtype, CoolFiles[selectedFile].path, CoolFiles[selectedFile].name, 'B');
		}
		else if (selectedFile == 2)
		{
			/* Fix for LocalFriendCodeSeed_A */
			sprintf(dest, "rxTools/%.20s%c", CoolFiles[selectedFile].name, 'A');
			sprintf(tmpstr, "%d:%s/%.20s%c", nandtype, CoolFiles[selectedFile].path, CoolFiles[selectedFile].name, 'A');
		}
		mbstowcs(wsrc, tmpstr, sizeof(tmpstr));
		print(strings[STR_FAILED]);
		print(strings[STR_DUMPING], wsrc, dest);
		ConsoleShow();
		res = FSFileCopy(dest, tmpstr);
	}

	switch ((res >> 8) & 0xFF)
	{
		case 0:
			print(strings[STR_COMPLETED]);
			break;
		case 1:
			print(strings[STR_ERROR_OPENING], tmpstr);
			break;
		case 2:
			print(strings[STR_ERROR_CREATING], dest);
			break;
		case 3:
		case 4:
			print(strings[STR_ERROR_READING], tmpstr);
			break;
		case 5:
		case 6:
			print(strings[STR_ERROR_WRITING], dest);
			break;
		default:
			print(strings[STR_FAILED]);
			break;
	}

	print(strings[STR_PRESS_BUTTON_ACTION], strings[STR_BUTTON_A], strings[STR_CONTINUE]);
	ConsoleShow();
	WaitForButton(BUTTON_A);
}
Пример #27
0
INT
wmain(INT argc, WCHAR *argv[])
{
#ifdef STANDALONE

    if (argc < 2)
    {
        wprintf(L"\nReactOS Virtual DOS Machine\n\n"
                L"Usage: NTVDM <executable> [<parameters>]\n");
        return 0;
    }

#else

    INT i;
    WCHAR *endptr;

    /* Parse the command line arguments */
    for (i = 1; i < argc; i++)
    {
        if (wcsncmp(argv[i], L"-i", 2) == 0)
        {
            /* This is the session ID */
            SessionId = wcstoul(argv[i] + 2, &endptr, 10);

            /* The VDM hasn't been started from a console, so quit when the task is done */
            AcceptCommands = FALSE;
        }
    }

#endif

    NtVdmArgc = argc;
    NtVdmArgv = argv;

    DPRINT1("\n\n\nNTVDM - Starting...\n\n\n");

    /* Create the task event */
    VdmTaskEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
    ASSERT(VdmTaskEvent != NULL);

    /* Initialize the console */
    if (!ConsoleInit())
    {
        wprintf(L"FATAL: A problem occurred when trying to initialize the console\n");
        goto Cleanup;
    }

    /* Initialize the emulator */
    if (!EmulatorInitialize(ConsoleInput, ConsoleOutput))
    {
        wprintf(L"FATAL: Failed to initialize the emulator\n");
        goto Cleanup;
    }

    /* Initialize the system BIOS */
    if (!BiosInitialize(NULL))
    {
        wprintf(L"FATAL: Failed to initialize the VDM BIOS.\n");
        goto Cleanup;
    }

    /* Let's go! Start simulation */
    CpuSimulate();

Cleanup:
    BiosCleanup();
    EmulatorCleanup();
    ConsoleCleanup();

#ifndef STANDALONE
    ExitVDM(FALSE, 0);
#endif

    /* Quit the VDM */
    DPRINT1("\n\n\nNTVDM - Exiting...\n\n\n");

    return 0;
}