Пример #1
0
static PetscErrorCode TestLocation(DM dm, AppCtx *user)
{
  PetscInt       dim = user->dim;
  PetscInt       cStart, cEnd, c;
  PetscErrorCode ierr;

  PetscFunctionBeginUser;
  ierr = DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);CHKERRQ(ierr);
  /* Locate all centroids */
  for (c = cStart; c < cEnd; ++c) {
    Vec          v;
    IS           is;
    PetscScalar *a;
    PetscReal    centroid[3];
    PetscInt    *cells, n, d;

    ierr = DMPlexComputeCellGeometryFVM(dm, c, NULL, centroid, NULL);CHKERRQ(ierr);
    ierr = VecCreateSeq(PETSC_COMM_SELF, dim, &v);CHKERRQ(ierr);
    ierr = VecSetBlockSize(v, dim);CHKERRQ(ierr);
    ierr = VecGetArray(v, &a);CHKERRQ(ierr);
    for (d = 0; d < dim; ++d) a[d] = centroid[d];
    ierr = VecRestoreArray(v, &a);CHKERRQ(ierr);
    ierr = DMLocatePoints(dm, v, &is);CHKERRQ(ierr);
    ierr = VecDestroy(&v);CHKERRQ(ierr);
    ierr = ISGetLocalSize(is, &n);CHKERRQ(ierr);
    ierr = ISGetIndices(is, &cells);CHKERRQ(ierr);
    if (n        != 1) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Found %d cells instead %d", n, 1);
    if (cells[0] != c) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not locate centroid of cell %d, instead found %d", c, cells[0]);
    ierr = ISRestoreIndices(is, &cells);CHKERRQ(ierr);
    ierr = ISDestroy(&is);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
Пример #2
0
PetscErrorCode CheckMesh(DM dm, AppCtx *user)
{
  PetscReal      detJ, J[9], refVol = 1.0;
  PetscReal      vol;
  PetscInt       dim, depth, d, cStart, cEnd, c;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = DMGetDimension(dm, &dim);CHKERRQ(ierr);
  ierr = DMPlexGetDepth(dm, &depth);CHKERRQ(ierr);
  for (d = 0; d < dim; ++d) {
    refVol *= 2.0;
  }
  ierr = DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);CHKERRQ(ierr);
  for (c = cStart; c < cEnd; ++c) {
    ierr = DMPlexComputeCellGeometryFEM(dm, c, NULL, NULL, J, NULL, &detJ);CHKERRQ(ierr);
    if (detJ <= 0.0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Mesh cell %d is inverted, |J| = %g", c, detJ);
    if (user->debug) {PetscPrintf(PETSC_COMM_SELF, "FEM Volume: %g\n", detJ*refVol);CHKERRQ(ierr);}
    if (depth > 1) {
      ierr = DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL);CHKERRQ(ierr);
      if (vol <= 0.0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Mesh cell %d is inverted, vol = %g", c, vol);
      if (user->debug) {PetscPrintf(PETSC_COMM_SELF, "FVM Volume: %g\n", vol);CHKERRQ(ierr);}
    }
  }
  PetscFunctionReturn(0);
}
Пример #3
0
PetscErrorCode CheckFVMGeometry(DM dm, PetscInt cell, PetscInt spaceDim, PetscReal centroidEx[], PetscReal normalEx[], PetscReal volEx)
{
  PetscReal      centroid[3], normal[3], vol;
  PetscInt       d;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = DMPlexComputeCellGeometryFVM(dm, cell, &vol, centroid, normal);CHKERRQ(ierr);
  for (d = 0; d < spaceDim; ++d) {
    if (fabs(centroid[d] - centroidEx[d]) > 1.0e-9) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid centroid[%d]: %g != %g", d, centroid[d], centroidEx[d]);
    if (fabs(normal[d] - normalEx[d]) > 1.0e-9) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid normal[%d]: %g != %g", d, normal[d], normalEx[d]);
  }
  if (fabs(volEx - vol) > 1.0e-9) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid volume = %g != %g", vol, volEx);
  PetscFunctionReturn(0);
}
Пример #4
0
PetscErrorCode ComputeJacobian_LS(DM dm, Vec locX, PetscInt cell, PetscScalar CellValues[], void *ctx)
{
  User              user = (User) ctx;
  Physics           phys = user->model->physics;
  PetscInt          dof = phys->dof;
  const PetscScalar *facegeom, *cellgeom,*x;
  PetscErrorCode    ierr;
  DM                dmFace, dmCell;

  DM                dmGrad = user->dmGrad;
  PetscInt          fStart, fEnd, face, cStart;
  Vec               locGrad, locGradLimiter, Grad;
  /*here the localGradLimiter refers to the gradient that has been multiplied by the limiter function.
   The locGradLimiter is used to construct the uL and uR, and the locGrad is used to caculate the diffusion term*/
  Vec               TempVec; /*a temperal vec for the vector restore*/

  PetscFunctionBeginUser;

  ierr = VecGetDM(user->facegeom,&dmFace);CHKERRQ(ierr);
  ierr = VecGetDM(user->cellgeom,&dmCell);CHKERRQ(ierr);

  ierr = DMGetGlobalVector(dmGrad,&Grad);CHKERRQ(ierr);
  ierr = VecDuplicate(Grad, &TempVec);CHKERRQ(ierr);
  ierr = VecCopy(Grad, TempVec);CHKERRQ(ierr);
  /*Backup the original vector and use it to restore the value of dmGrad,
    because I do not want to change the values of the cell gradient*/

  ierr = VecGetArrayRead(user->facegeom,&facegeom);CHKERRQ(ierr);
  ierr = VecGetArrayRead(user->cellgeom,&cellgeom);CHKERRQ(ierr);
  ierr = VecGetArrayRead(locX,&x);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 0, &cStart, NULL);CHKERRQ(ierr);
  {
    PetscScalar *grad;
    ierr = VecGetArray(Grad,&grad);CHKERRQ(ierr);

    /* Limit interior gradients. Using cell-based loop because it generalizes better to vector limiters. */

      const PetscInt    *faces;
      PetscInt          numFaces,f;
      PetscReal         *cellPhi; /* Scalar limiter applied to each component separately */
      const PetscScalar *cx;
      const CellGeom    *cg;
      PetscScalar       *cgrad;
      PetscInt          i;

      ierr = PetscMalloc(phys->dof*sizeof(PetscScalar),&cellPhi);CHKERRQ(ierr);

      ierr = DMPlexGetConeSize(dm,cell,&numFaces);CHKERRQ(ierr);
      ierr = DMPlexGetCone(dm,cell,&faces);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dm,cell,x,&cx);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmCell,cell,cellgeom,&cg);CHKERRQ(ierr);
      ierr = DMPlexPointGlobalRef(dmGrad,cell,grad,&cgrad);CHKERRQ(ierr);

      /* Limiter will be minimum value over all neighbors */
      for (i=0; i<dof; i++) {
        cellPhi[i] = PETSC_MAX_REAL;
      }
      for (f=0; f<numFaces; f++) {
        const PetscScalar *ncx;
        const CellGeom    *ncg;
        const PetscInt    *fcells;
        PetscInt          face = faces[f],ncell;
        PetscScalar       v[DIM];
        PetscBool         ghost;
        ierr = IsExteriorGhostFace(dm,face,&ghost);CHKERRQ(ierr);
        if (ghost) continue;
        ierr  = DMPlexGetSupport(dm,face,&fcells);CHKERRQ(ierr);
        ncell = cell == fcells[0] ? fcells[1] : fcells[0];  /*The expression (x ? y : z) has the value of y if x is nonzero, z otherwise */
        ierr  = DMPlexPointLocalRead(dm,ncell,x,&ncx);CHKERRQ(ierr);
        ierr  = DMPlexPointLocalRead(dmCell,ncell,cellgeom,&ncg);CHKERRQ(ierr);
        Waxpy2(-1, cg->centroid, ncg->centroid, v);
        for (i=0; i<dof; i++) {
          /* We use the symmetric slope limited form of Berger, Aftosmis, and Murman 2005 */
          PetscScalar phi,flim = 0.5 * (ncx[i] - cx[i]) / Dot2(&cgrad[i*DIM],v);
          phi        = (*user->LimitGrad)(flim);
          cellPhi[i] = PetscMin(cellPhi[i],phi);
        }
      }
      /* Apply limiter to gradient */
      for (i=0; i<dof; i++) Scale2(cellPhi[i],&cgrad[i*DIM],&cgrad[i*DIM]);

      ierr = PetscFree(cellPhi);CHKERRQ(ierr);

    ierr = VecRestoreArray(Grad,&grad);CHKERRQ(ierr);
  }
  ierr = DMGetLocalVector(dmGrad,&locGradLimiter);CHKERRQ(ierr);
  ierr = DMGlobalToLocalBegin(dmGrad,Grad,INSERT_VALUES,locGradLimiter);CHKERRQ(ierr);
  ierr = DMGlobalToLocalEnd(dmGrad,Grad,INSERT_VALUES,locGradLimiter);CHKERRQ(ierr);

  ierr = VecCopy(TempVec, Grad);CHKERRQ(ierr);/*Restore the vector*/

  ierr = DMGetLocalVector(dmGrad,&locGrad);CHKERRQ(ierr);
  ierr = DMGlobalToLocalBegin(dmGrad,Grad,INSERT_VALUES,locGrad);CHKERRQ(ierr);
  ierr = DMGlobalToLocalEnd(dmGrad,Grad,INSERT_VALUES,locGrad);CHKERRQ(ierr);

  ierr = DMRestoreGlobalVector(dmGrad,&Grad);CHKERRQ(ierr);
  ierr = VecDestroy(&TempVec);CHKERRQ(ierr);

  {
    const PetscScalar *grad, *gradlimiter;
    ierr = VecGetArrayRead(locGrad,&grad);CHKERRQ(ierr);
    ierr = VecGetArrayRead(locGradLimiter,&gradlimiter);CHKERRQ(ierr);
    for (face=fStart; face<fEnd; face++) {
      const PetscInt    *cells;
      PetscInt          ghost,i,j;
      PetscScalar       *fluxcon, *fluxdiff, *fx[2];
      const FaceGeom    *fg;
      const CellGeom    *cg[2];
      const PetscScalar *cx[2],*cgrad[2], *cgradlimiter[2];
      PetscScalar       *uL, *uR;
      PetscReal         FaceArea;

      ierr = PetscMalloc(phys->dof * phys->dof * sizeof(PetscScalar), &fluxcon);CHKERRQ(ierr); /*For the convection terms*/
      ierr = PetscMalloc(phys->dof * phys->dof * sizeof(PetscScalar), &fluxdiff);CHKERRQ(ierr); /*For the diffusion terms*/
      ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &uL);CHKERRQ(ierr);
      ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &uR);CHKERRQ(ierr);

      fx[0] = uL; fx[1] = uR;

      ierr = DMPlexGetLabelValue(dm, "ghost", face, &ghost);CHKERRQ(ierr);
      if (ghost >= 0) continue;
      ierr = DMPlexGetSupport(dm, face, &cells);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmFace,face,facegeom,&fg);CHKERRQ(ierr);
      for (i=0; i<2; i++) {
        PetscScalar dx[DIM];
        ierr = DMPlexPointLocalRead(dmCell,cells[i],cellgeom,&cg[i]);CHKERRQ(ierr);
        ierr = DMPlexPointLocalRead(dm,cells[i],x,&cx[i]);CHKERRQ(ierr);
        ierr = DMPlexPointLocalRead(dmGrad,cells[i],gradlimiter,&cgradlimiter[i]);CHKERRQ(ierr);
        ierr = DMPlexPointLocalRead(dmGrad,cells[i],grad,&cgrad[i]);CHKERRQ(ierr);
        Waxpy2(-1,cg[i]->centroid,fg->centroid,dx);
        for (j=0; j<dof; j++) {
          fx[i][j] = cx[i][j] + Dot2(cgradlimiter[i],dx);
        }
        /*fx[0] and fx[1] are the value of the variables on the left and right
          side of the face, respectively, that is u_L and u_R.*/
      }

      ierr = RiemannSolver_Rusanov_Jacobian(user, cgrad[0], cgrad[1], fg->centroid, cg[0]->centroid, cg[1]->centroid, fg->normal,
                  fx[0], fx[1], fluxcon, fluxdiff);CHKERRQ(ierr);

      ierr = DMPlexComputeCellGeometryFVM(dm, face, &FaceArea, NULL, NULL);CHKERRQ(ierr);
        /*Compute the face area*/

      for (i=0; i<phys->dof; i++) {
        for (j=0; j<phys->dof; j++) {
          if(cells[0]<user->cEndInterior) CellValues[cells[0]*dof*dof + i*dof + j] -= cells[0]*1.0;
          if(cells[1]<user->cEndInterior) CellValues[cells[1]*dof*dof + i*dof + j] += cells[1]*1.2;
        }
      }
//      ierr = PetscPrintf(PETSC_COMM_WORLD,"\n");CHKERRQ(ierr);
      ierr = PetscFree(fluxcon);CHKERRQ(ierr);
      ierr = PetscFree(fluxdiff);CHKERRQ(ierr);
      ierr = PetscFree(uL);CHKERRQ(ierr);
      ierr = PetscFree(uR);CHKERRQ(ierr);
    }
    ierr = VecRestoreArrayRead(locGrad,&grad);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(locGradLimiter,&gradlimiter);CHKERRQ(ierr);
  }
  ierr = VecRestoreArrayRead(user->facegeom,&facegeom);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(user->cellgeom,&cellgeom);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(locX,&x);CHKERRQ(ierr);
  ierr = DMRestoreLocalVector(dmGrad,&locGradLimiter);CHKERRQ(ierr);
  ierr = DMRestoreLocalVector(dmGrad,&locGrad);CHKERRQ(ierr);

  PetscFunctionReturn(0);
}
Пример #5
0
/**
  Caculate the flux using the Monotonic Upstream-Centered Scheme for Conservation Laws (van Leer, 1979)
*/
PetscErrorCode CaculateLocalFunction_LS(DM dm,DM dmFace,DM dmCell,PetscReal time,Vec locX,Vec F,User user)
{
  DM                dmGrad = user->dmGrad;
  Model             mod    = user->model;
  Physics           phys   = mod->physics;
  const PetscInt    dof    = phys->dof;
  PetscErrorCode    ierr;
  const PetscScalar *facegeom, *cellgeom, *x;
  PetscScalar       *f;
  PetscInt          fStart, fEnd, face, cStart, cell;
  Vec               locGrad, locGradLimiter, Grad;
/*
    Here the localGradLimiter refers to the gradient that
    has been multiplied by the limiter function.
    The locGradLimiter is used to construct the uL and uR,
    and the locGrad is used to caculate the diffusion term
*/
  Vec               TempVec; /*a temperal vec for the vector restore*/

  PetscFunctionBeginUser;
  ierr = DMGetGlobalVector(dmGrad,&Grad);CHKERRQ(ierr);
  ierr = VecDuplicate(Grad, &TempVec);CHKERRQ(ierr);
  ierr = VecCopy(Grad, TempVec);CHKERRQ(ierr);
/*
  Backup the original vector and use it to restore the value of dmGrad,
  because I do not want to change the values of the cell gradient.
*/
  ierr = VecGetArrayRead(user->facegeom,&facegeom);CHKERRQ(ierr);
  ierr = VecGetArrayRead(user->cellgeom,&cellgeom);CHKERRQ(ierr);
  ierr = VecGetArrayRead(locX,&x);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 0, &cStart, NULL);CHKERRQ(ierr);

  {
    PetscScalar *grad;
    ierr = VecGetArray(Grad,&grad);CHKERRQ(ierr);
    const PetscInt    *faces;
    PetscInt          numFaces,f;
    PetscReal         *cellPhi; // Scalar limiter applied to each component separately
    const PetscScalar *cx;
    const CellGeom    *cg;
    PetscScalar       *cgrad;
    PetscInt          i;

    ierr = PetscMalloc(phys->dof*sizeof(PetscScalar),&cellPhi);CHKERRQ(ierr);
    // Limit interior gradients. Using cell-based loop because it generalizes better to vector limiters.
    for (cell=cStart; cell<user->cEndInterior; cell++) {
      ierr = DMPlexGetConeSize(dm,cell,&numFaces);CHKERRQ(ierr);
      ierr = DMPlexGetCone(dm,cell,&faces);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dm,cell,x,&cx);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmCell,cell,cellgeom,&cg);CHKERRQ(ierr);
      ierr = DMPlexPointGlobalRef(dmGrad,cell,grad,&cgrad);CHKERRQ(ierr);
      if (!cgrad) continue;     // ghost cell, we don't compute
      // Limiter will be minimum value over all neighbors
      for (i=0; i<dof; i++) cellPhi[i] = PETSC_MAX_REAL;

      for (f=0; f<numFaces; f++) {
        const PetscScalar *ncx;
        const CellGeom    *ncg;
        const PetscInt    *fcells;
        PetscInt          face = faces[f],ncell;
        PetscScalar       v[DIM];
        PetscBool         ghost;
        ierr = IsExteriorGhostFace(dm,face,&ghost);CHKERRQ(ierr);
        if (ghost) continue;
        ierr  = DMPlexGetSupport(dm,face,&fcells);CHKERRQ(ierr);
        ncell = cell == fcells[0] ? fcells[1] : fcells[0];
        // The expression (x ? y : z) has the value of y if x is nonzero, z otherwise
        ierr  = DMPlexPointLocalRead(dm,ncell,x,&ncx);CHKERRQ(ierr);
        ierr  = DMPlexPointLocalRead(dmCell,ncell,cellgeom,&ncg);CHKERRQ(ierr);
        Waxpy2(-1, cg->centroid, ncg->centroid, v);
        for (i=0; i<dof; i++) {
          // We use the symmetric slope limited form of Berger, Aftosmis, and Murman 2005
          PetscScalar phi,flim = 0.5 * (ncx[i] - cx[i]) / Dot2(&cgrad[i*DIM],v);
          phi        = (*user->Limit)(flim);
          cellPhi[i] = PetscMin(cellPhi[i],phi);
        }
      }
      // Apply limiter to gradient
      for (i=0; i<dof; i++) Scale2(cellPhi[i],&cgrad[i*DIM],&cgrad[i*DIM]);
    }
    ierr = PetscFree(cellPhi);CHKERRQ(ierr);
    ierr = VecRestoreArray(Grad,&grad);CHKERRQ(ierr);
  }
  ierr = DMGetLocalVector(dmGrad,&locGradLimiter);CHKERRQ(ierr);
  ierr = DMGlobalToLocalBegin(dmGrad,Grad,INSERT_VALUES,locGradLimiter);CHKERRQ(ierr);
  ierr = DMGlobalToLocalEnd(dmGrad,Grad,INSERT_VALUES,locGradLimiter);CHKERRQ(ierr);

  ierr = VecCopy(TempVec, Grad);CHKERRQ(ierr);//Restore the vector

  ierr = DMGetLocalVector(dmGrad,&locGrad);CHKERRQ(ierr);
  ierr = DMGlobalToLocalBegin(dmGrad,Grad,INSERT_VALUES,locGrad);CHKERRQ(ierr);
  ierr = DMGlobalToLocalEnd(dmGrad,Grad,INSERT_VALUES,locGrad);CHKERRQ(ierr);

  ierr = DMRestoreGlobalVector(dmGrad,&Grad);CHKERRQ(ierr);
  ierr = VecDestroy(&TempVec);CHKERRQ(ierr);

  {
    const PetscScalar *grad, *gradlimiter;
    const PetscInt    *cells;
    PetscInt          ghost,i,j;
    PetscScalar       *fluxcon, *fluxdiff, *fx[2],*cf[2];
    const FaceGeom    *fg;
    const CellGeom    *cg[2];
    const PetscScalar *cx[2],*cgrad[2], *cgradlimiter[2];
    PetscScalar       *uL, *uR;
    PetscReal         FaceArea;

    ierr = VecGetArrayRead(locGrad,&grad);CHKERRQ(ierr);
    ierr = VecGetArrayRead(locGradLimiter,&gradlimiter);CHKERRQ(ierr);
    ierr = VecGetArray(F,&f);CHKERRQ(ierr);

    ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &fluxcon);CHKERRQ(ierr); // For the convection terms
    ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &fluxdiff);CHKERRQ(ierr); // For the diffusion terms
    ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &uL);CHKERRQ(ierr);
    ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &uR);CHKERRQ(ierr);// Please do not put the Malloc function into a for loop!!!!

    for (face=fStart; face<fEnd; face++) {
      fx[0] = uL; fx[1] = uR;

      ierr = DMPlexGetLabelValue(dm, "ghost", face, &ghost);CHKERRQ(ierr);
      if (ghost >= 0) continue;
      ierr = DMPlexGetSupport(dm, face, &cells);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmFace,face,facegeom,&fg);CHKERRQ(ierr);
      for (i=0; i<2; i++) {
        PetscScalar dx[DIM];
        ierr = DMPlexPointLocalRead(dmCell,cells[i],cellgeom,&cg[i]);CHKERRQ(ierr);
        ierr = DMPlexPointLocalRead(dm,cells[i],x,&cx[i]);CHKERRQ(ierr);
        ierr = DMPlexPointLocalRead(dmGrad,cells[i],gradlimiter,&cgradlimiter[i]);CHKERRQ(ierr);
        ierr = DMPlexPointLocalRead(dmGrad,cells[i],grad,&cgrad[i]);CHKERRQ(ierr);
        ierr = DMPlexPointGlobalRef(dm,cells[i],f,&cf[i]);CHKERRQ(ierr);
        Waxpy2(-1,cg[i]->centroid,fg->centroid,dx);
        for (j=0; j<dof; j++) {
          fx[i][j] = cx[i][j] + Dot2(cgradlimiter[i],dx);
        }
        // fx[0] and fx[1] are the value of the variables on the left and right
        //  side of the face, respectively, that is u_L and u_R.
      }

      ierr = RiemannSolver_Rusanov(user, cgrad[0], cgrad[1], fg->centroid, cg[0]->centroid, cg[1]->centroid, fg->normal, fx[0], fx[1], fluxcon, fluxdiff);CHKERRQ(ierr);

      ierr = DMPlexComputeCellGeometryFVM(dm, face, &FaceArea, NULL, NULL);CHKERRQ(ierr);
        // Compute the face area

      for (i=0; i<phys->dof; i++) {
        if (cf[0]) cf[0][i] -= FaceArea*(fluxcon[i] + fluxdiff[i])/cg[0]->volume;
        if (cf[1]) cf[1][i] += FaceArea*(fluxcon[i] + fluxdiff[i])/cg[1]->volume;
       // The flux on the interface, for the cell[0], it is an outcome flux and for the cell[1], it is
       //   an income flux.
      }
//      ierr = PetscPrintf(PETSC_COMM_WORLD,"\n");CHKERRQ(ierr);
    }
    ierr = VecRestoreArrayRead(locGrad,&grad);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(locGradLimiter,&gradlimiter);CHKERRQ(ierr);
    ierr = VecRestoreArray(F,&f);CHKERRQ(ierr);
    ierr = PetscFree(fluxcon);CHKERRQ(ierr);
    ierr = PetscFree(fluxdiff);CHKERRQ(ierr);
    ierr = PetscFree(uL);CHKERRQ(ierr);
    ierr = PetscFree(uR);CHKERRQ(ierr);
//    VecView(F,PETSC_VIEWER_STDOUT_WORLD);
  }
  ierr = VecRestoreArrayRead(user->facegeom,&facegeom);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(user->cellgeom,&cellgeom);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(locX,&x);CHKERRQ(ierr);
  ierr = DMRestoreLocalVector(dmGrad,&locGradLimiter);CHKERRQ(ierr);
  ierr = DMRestoreLocalVector(dmGrad,&locGrad);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Пример #6
0
/*
 Use the first order upwind scheme to compute the flux
*/
PetscErrorCode CaculateLocalFunction_Upwind(DM dm,DM dmFace,DM dmCell,PetscReal time,Vec locX,Vec F,User user)
{
  Physics           phys = user->model->physics;
  DM                dmGrad = user->dmGrad;
  PetscErrorCode    ierr;
  const PetscScalar *facegeom, *cellgeom, *x;
  PetscScalar       *f;
  PetscInt          fStart, fEnd, face;

  Vec               locGrad, Grad;

  PetscFunctionBeginUser;
  ierr = VecGetArrayRead(user->facegeom, &facegeom);CHKERRQ(ierr);
  ierr = VecGetArrayRead(user->cellgeom, &cellgeom);CHKERRQ(ierr);
  ierr = VecGetArrayRead(locX, &x);CHKERRQ(ierr);
  ierr = VecGetArray(F, &f);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);CHKERRQ(ierr);

  ierr = DMGetGlobalVector(dmGrad, &Grad);CHKERRQ(ierr);

  ierr = DMGetLocalVector(dmGrad, &locGrad);CHKERRQ(ierr);
  ierr = DMGlobalToLocalBegin(dmGrad, Grad, INSERT_VALUES, locGrad);CHKERRQ(ierr);
  ierr = DMGlobalToLocalEnd(dmGrad, Grad, INSERT_VALUES, locGrad);CHKERRQ(ierr);

  ierr = DMRestoreGlobalVector(dmGrad, &Grad);CHKERRQ(ierr);

  const PetscScalar *grad;
  ierr = VecGetArrayRead(locGrad, &grad);CHKERRQ(ierr);

  {
    const PetscInt    *cells;
    PetscInt          i,ghost;
    PetscScalar       *fluxcon, *fluxdiff, *fL,*fR;
    const FaceGeom    *fg;
    const CellGeom    *cgL,*cgR;
    const PetscScalar *xL,*xR;
    const PetscScalar *cgrad[2];
    PetscReal         FaceArea;

    ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &fluxcon);CHKERRQ(ierr); /*For the convection terms*/
    ierr = PetscMalloc(phys->dof * sizeof(PetscScalar), &fluxdiff);CHKERRQ(ierr); /*For the diffusion terms*/

    for (face = fStart; face < fEnd; ++face) {
      ierr = DMPlexGetLabelValue(dm, "ghost", face, &ghost);CHKERRQ(ierr);
      if (ghost >= 0) continue;
      ierr = DMPlexGetSupport(dm, face, &cells);CHKERRQ(ierr);/*The support of a face is the cells (two cells)*/
      ierr = DMPlexPointLocalRead(dmFace, face, facegeom, &fg);CHKERRQ(ierr);/*Read the data from "facegeom" for the point "face"*/
      ierr = DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR);CHKERRQ(ierr);
/*
    PetscPrintf(PETSC_COMM_SELF, "face[%d]:(%f, %f, %f), cgL:(%f, %f, %f), cgR:(%f, %f, %f), fnorm:(%f, %f, %f)\n",
                 face, fg->centroid[0], fg->centroid[1], fg->centroid[2],
                 cgL->centroid[0], cgL->centroid[1], cgL->centroid[2], cgR->centroid[0], cgR->centroid[1], cgR->centroid[2],
                 fg->normal[0], fg->normal[1], fg->normal[2]);
*/
      ierr = DMPlexPointLocalRead(dm, cells[0], x, &xL);CHKERRQ(ierr); /*For the unkown variables*/
      ierr = DMPlexPointLocalRead(dm, cells[1], x, &xR);CHKERRQ(ierr);
      ierr = DMPlexPointGlobalRef(dm, cells[0], f, &fL);CHKERRQ(ierr); /*For the functions*/
      ierr = DMPlexPointGlobalRef(dm, cells[1], f, &fR);CHKERRQ(ierr);

      ierr = DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad[0]);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmGrad, cells[1], grad, &cgrad[1]);CHKERRQ(ierr);

      ierr = RiemannSolver_Rusanov(user, cgrad[0], cgrad[1], fg->centroid, cgL->centroid, cgR->centroid, fg->normal, xL, xR, fluxcon, fluxdiff);CHKERRQ(ierr);
    /*Caculate the flux*/
      ierr = DMPlexComputeCellGeometryFVM(dm, face, &FaceArea, NULL, NULL);CHKERRQ(ierr);
      //PetscPrintf(PETSC_COMM_SELF, "FaceArea=%f, Volume=%f\n",FaceArea,cgL->volume);
    /*Compute the face area*/
   // FaceArea = 0.0;
      for (i=0; i<phys->dof; i++) {
/*
      PetscPrintf(PETSC_COMM_SELF, "face[%d]:(%f, %f, %f), GradL[%d] = (%f, %f, %f), GradR[%d] = (%f, %f, %f), fluxcon[%d] = %f\n",
                                    face, fg->centroid[0], fg->centroid[1], fg->centroid[2],
                                    i, cgrad[0][DIM*i], cgrad[0][DIM*i + 1], cgrad[0][DIM*i + 2],
                                    i, cgrad[1][DIM*i], cgrad[1][DIM*i + 1], cgrad[1][DIM*i + 2], i, fluxcon[i]);
*/
        if (fL) {
           fL[i] -= FaceArea*(fluxcon[i] + fluxdiff[i])/cgL->volume;
      //    if (fL) PetscPrintf(PETSC_COMM_SELF, "x=%g, y=%g, z=%g,fluxcon[i]=%g, FaceArea=%g, volume=%g, fLc=%g, fL=%g\n",fg->centroid[0], fg->centroid[1], fg->centroid[2],fluxcon[i],FaceArea,cgL->volume,FaceArea*(fluxcon[i] + fluxdiff[i])/cgL->volume,fL[i]);
        }
        if (fR) fR[i] += FaceArea*(fluxcon[i] + fluxdiff[i])/cgR->volume;
      }

    }
    ierr = PetscFree(fluxcon);CHKERRQ(ierr);
    ierr = PetscFree(fluxdiff);CHKERRQ(ierr);
  }
//  VecView(F,PETSC_VIEWER_STDOUT_WORLD);
  ierr = VecRestoreArrayRead(locGrad,&grad);CHKERRQ(ierr);
  ierr = DMRestoreLocalVector(dmGrad,&locGrad);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(user->facegeom,&facegeom);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(user->cellgeom,&cellgeom);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(locX,&x);CHKERRQ(ierr);
  ierr = VecRestoreArray(F,&f);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Пример #7
0
static PetscErrorCode DMPlexTSSetupGeometry(DM dm, PetscFV fvm, DMTS_Plex *dmplexts)
{
  DM             dmFace, dmCell;
  DMLabel        ghostLabel;
  PetscSection   sectionFace, sectionCell;
  PetscSection   coordSection;
  Vec            coordinates;
  PetscReal      minradius;
  PetscScalar   *fgeom, *cgeom;
  PetscInt       dim, cStart, cEnd, cEndInterior, c, fStart, fEnd, f;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  if (dmplexts->setupGeom) PetscFunctionReturn(0);
  ierr = DMPlexGetDimension(dm, &dim);CHKERRQ(ierr);
  ierr = DMGetCoordinateSection(dm, &coordSection);CHKERRQ(ierr);
  ierr = DMGetCoordinatesLocal(dm, &coordinates);CHKERRQ(ierr);
  /* Make cell centroids and volumes */
  ierr = DMClone(dm, &dmCell);CHKERRQ(ierr);
  ierr = DMSetCoordinateSection(dmCell, coordSection);CHKERRQ(ierr);
  ierr = DMSetCoordinatesLocal(dmCell, coordinates);CHKERRQ(ierr);
  ierr = PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionCell);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);CHKERRQ(ierr);
  ierr = DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);CHKERRQ(ierr);
  ierr = PetscSectionSetChart(sectionCell, cStart, cEnd);CHKERRQ(ierr);
  for (c = cStart; c < cEnd; ++c) {ierr = PetscSectionSetDof(sectionCell, c, sizeof(CellGeom)/sizeof(PetscScalar));CHKERRQ(ierr);}
  ierr = PetscSectionSetUp(sectionCell);CHKERRQ(ierr);
  ierr = DMSetDefaultSection(dmCell, sectionCell);CHKERRQ(ierr);
  ierr = PetscSectionDestroy(&sectionCell);CHKERRQ(ierr);
  ierr = DMCreateLocalVector(dmCell, &dmplexts->cellgeom);CHKERRQ(ierr);
  ierr = VecGetArray(dmplexts->cellgeom, &cgeom);CHKERRQ(ierr);
  for (c = cStart; c < cEndInterior; ++c) {
    CellGeom *cg;

    ierr = DMPlexPointLocalRef(dmCell, c, cgeom, &cg);CHKERRQ(ierr);
    ierr = PetscMemzero(cg, sizeof(*cg));CHKERRQ(ierr);
    ierr = DMPlexComputeCellGeometryFVM(dmCell, c, &cg->volume, cg->centroid, NULL);CHKERRQ(ierr);
  }
  /* Compute face normals and minimum cell radius */
  ierr = DMClone(dm, &dmFace);CHKERRQ(ierr);
  ierr = PetscSectionCreate(PetscObjectComm((PetscObject) dm), &sectionFace);CHKERRQ(ierr);
  ierr = DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);CHKERRQ(ierr);
  ierr = PetscSectionSetChart(sectionFace, fStart, fEnd);CHKERRQ(ierr);
  for (f = fStart; f < fEnd; ++f) {ierr = PetscSectionSetDof(sectionFace, f, sizeof(FaceGeom)/sizeof(PetscScalar));CHKERRQ(ierr);}
  ierr = PetscSectionSetUp(sectionFace);CHKERRQ(ierr);
  ierr = DMSetDefaultSection(dmFace, sectionFace);CHKERRQ(ierr);
  ierr = PetscSectionDestroy(&sectionFace);CHKERRQ(ierr);
  ierr = DMCreateLocalVector(dmFace, &dmplexts->facegeom);CHKERRQ(ierr);
  ierr = VecGetArray(dmplexts->facegeom, &fgeom);CHKERRQ(ierr);
  ierr = DMPlexGetLabel(dm, "ghost", &ghostLabel);CHKERRQ(ierr);
  minradius = PETSC_MAX_REAL;
  for (f = fStart; f < fEnd; ++f) {
    FaceGeom *fg;
    PetscReal area;
    PetscInt  ghost, d;

    ierr = DMLabelGetValue(ghostLabel, f, &ghost);CHKERRQ(ierr);
    if (ghost >= 0) continue;
    ierr = DMPlexPointLocalRef(dmFace, f, fgeom, &fg);CHKERRQ(ierr);
    ierr = DMPlexComputeCellGeometryFVM(dm, f, &area, fg->centroid, fg->normal);CHKERRQ(ierr);
    for (d = 0; d < dim; ++d) fg->normal[d] *= area;
    /* Flip face orientation if necessary to match ordering in support, and Update minimum radius */
    {
      CellGeom       *cL, *cR;
      const PetscInt *cells;
      PetscReal      *lcentroid, *rcentroid;
      PetscReal       v[3];

      ierr = DMPlexGetSupport(dm, f, &cells);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmCell, cells[0], cgeom, &cL);CHKERRQ(ierr);
      ierr = DMPlexPointLocalRead(dmCell, cells[1], cgeom, &cR);CHKERRQ(ierr);
      lcentroid = cells[0] >= cEndInterior ? fg->centroid : cL->centroid;
      rcentroid = cells[1] >= cEndInterior ? fg->centroid : cR->centroid;
      WaxpyD(dim, -1, lcentroid, rcentroid, v);
      if (DotRealD(dim, fg->normal, v) < 0) {
        for (d = 0; d < dim; ++d) fg->normal[d] = -fg->normal[d];
      }
      if (DotRealD(dim, fg->normal, v) <= 0) {
        if (dim == 2) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed, normal (%g,%g) v (%g,%g)", f, (double) fg->normal[0], (double) fg->normal[1], (double) v[0], (double) v[1]);
        if (dim == 3) SETERRQ7(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed, normal (%g,%g,%g) v (%g,%g,%g)", f, (double) fg->normal[0], (double) fg->normal[1], (double) fg->normal[2], (double) v[0], (double) v[1], (double) v[2]);
        SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Direction for face %d could not be fixed", f);
      }
      if (cells[0] < cEndInterior) {
        WaxpyD(dim, -1, fg->centroid, cL->centroid, v);
        minradius = PetscMin(minradius, NormD(dim, v));
      }
      if (cells[1] < cEndInterior) {
        WaxpyD(dim, -1, fg->centroid, cR->centroid, v);
        minradius = PetscMin(minradius, NormD(dim, v));
      }
    }
  }
  ierr = MPI_Allreduce(&minradius, &dmplexts->minradius, 1, MPIU_REAL, MPI_MIN, PetscObjectComm((PetscObject)dm));CHKERRQ(ierr);
  /* Compute centroids of ghost cells */
  for (c = cEndInterior; c < cEnd; ++c) {
    FaceGeom       *fg;
    const PetscInt *cone,    *support;
    PetscInt        coneSize, supportSize, s;

    ierr = DMPlexGetConeSize(dmCell, c, &coneSize);CHKERRQ(ierr);
    if (coneSize != 1) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Ghost cell %d has cone size %d != 1", c, coneSize);
    ierr = DMPlexGetCone(dmCell, c, &cone);CHKERRQ(ierr);
    ierr = DMPlexGetSupportSize(dmCell, cone[0], &supportSize);CHKERRQ(ierr);
    if (supportSize != 2) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d has support size %d != 1", cone[0], supportSize);
    ierr = DMPlexGetSupport(dmCell, cone[0], &support);CHKERRQ(ierr);
    ierr = DMPlexPointLocalRef(dmFace, cone[0], fgeom, &fg);CHKERRQ(ierr);
    for (s = 0; s < 2; ++s) {
      /* Reflect ghost centroid across plane of face */
      if (support[s] == c) {
        const CellGeom *ci;
        CellGeom       *cg;
        PetscReal       c2f[3], a;

        ierr = DMPlexPointLocalRead(dmCell, support[(s+1)%2], cgeom, &ci);CHKERRQ(ierr);
        WaxpyD(dim, -1, ci->centroid, fg->centroid, c2f); /* cell to face centroid */
        a    = DotRealD(dim, c2f, fg->normal)/DotRealD(dim, fg->normal, fg->normal);
        ierr = DMPlexPointLocalRef(dmCell, support[s], cgeom, &cg);CHKERRQ(ierr);
        WaxpyD(dim, 2*a, fg->normal, ci->centroid, cg->centroid);
        cg->volume = ci->volume;
      }
    }
  }
  ierr = VecRestoreArray(dmplexts->facegeom, &fgeom);CHKERRQ(ierr);
  ierr = VecRestoreArray(dmplexts->cellgeom, &cgeom);CHKERRQ(ierr);
  ierr = DMDestroy(&dmCell);CHKERRQ(ierr);
  ierr = DMDestroy(&dmFace);CHKERRQ(ierr);
  dmplexts->setupGeom = PETSC_TRUE;
  PetscFunctionReturn(0);
}
Пример #8
0
PetscErrorCode DMCoarsen_Plex(DM dm, MPI_Comm comm, DM *dmCoarsened)
{
  DM_Plex       *mesh = (DM_Plex*) dm->data;
#ifdef PETSC_HAVE_PRAGMATIC
  DM             udm, coordDM;
  DMLabel        bd;
  Mat            A;
  Vec            coordinates, mb, mx;
  PetscSection   coordSection;
  const PetscScalar *coords;
  double        *coarseCoords;
  IS             bdIS;
  PetscReal     *x, *y, *z, *eqns, *metric;
  PetscReal      coarseRatio = PetscSqr(0.5);
  const PetscInt *faces;
  PetscInt      *cells, *bdFaces, *bdFaceIds;
  PetscInt       dim, numCorners, cStart, cEnd, numCells, numCoarseCells, c, vStart, vEnd, numVertices, numCoarseVertices, v, numBdFaces, f, maxConeSize, size, bdSize, coff;
#endif
  PetscErrorCode ierr;

  PetscFunctionBegin;
#ifdef PETSC_HAVE_PRAGMATIC
  if (!mesh->coarseMesh) {
    ierr = DMGetDimension(dm, &dim);CHKERRQ(ierr);
    ierr = DMGetCoordinateDM(dm, &coordDM);CHKERRQ(ierr);
    ierr = DMGetDefaultSection(coordDM, &coordSection);CHKERRQ(ierr);
    ierr = DMGetCoordinatesLocal(dm, &coordinates);CHKERRQ(ierr);
    ierr = DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);CHKERRQ(ierr);
    ierr = DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);CHKERRQ(ierr);
    ierr = DMPlexUninterpolate(dm, &udm);CHKERRQ(ierr);
    ierr = DMPlexGetMaxSizes(udm, &maxConeSize, NULL);CHKERRQ(ierr);
    numCells    = cEnd - cStart;
    numVertices = vEnd - vStart;
    ierr = PetscCalloc5(numVertices, &x, numVertices, &y, numVertices, &z, numVertices*PetscSqr(dim), &metric, numCells*maxConeSize, &cells);CHKERRQ(ierr);
    ierr = VecGetArrayRead(coordinates, &coords);CHKERRQ(ierr);
    for (v = vStart; v < vEnd; ++v) {
      PetscInt off;

      ierr = PetscSectionGetOffset(coordSection, v, &off);CHKERRQ(ierr);
      x[v-vStart] = coords[off+0];
      y[v-vStart] = coords[off+1];
      if (dim > 2) z[v-vStart] = coords[off+2];
    }
    ierr = VecRestoreArrayRead(coordinates, &coords);CHKERRQ(ierr);
    for (c = 0, coff = 0; c < numCells; ++c) {
      const PetscInt *cone;
      PetscInt        coneSize, cl;

      ierr = DMPlexGetConeSize(udm, c, &coneSize);CHKERRQ(ierr);
      ierr = DMPlexGetCone(udm, c, &cone);CHKERRQ(ierr);
      for (cl = 0; cl < coneSize; ++cl) cells[coff++] = cone[cl] - vStart;
    }
    switch (dim) {
    case 2:
      pragmatic_2d_init(&numVertices, &numCells, cells, x, y);
      break;
    case 3:
      pragmatic_3d_init(&numVertices, &numCells, cells, x, y, z);
      break;
    default:
      SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "No Pragmatic coarsening defined for dimension %d", dim);
    }
    /* Create boundary mesh */
    ierr = DMLabelCreate("boundary", &bd);CHKERRQ(ierr);
    ierr = DMPlexMarkBoundaryFaces(dm, bd);CHKERRQ(ierr);
    ierr = DMLabelGetStratumIS(bd, 1, &bdIS);CHKERRQ(ierr);
    ierr = DMLabelGetStratumSize(bd, 1, &numBdFaces);CHKERRQ(ierr);
    ierr = ISGetIndices(bdIS, &faces);CHKERRQ(ierr);
    for (f = 0, bdSize = 0; f < numBdFaces; ++f) {
      PetscInt *closure = NULL;
      PetscInt  closureSize, cl;

      ierr = DMPlexGetTransitiveClosure(dm, faces[f], PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
      for (cl = 0; cl < closureSize*2; cl += 2) {
        if ((closure[cl] >= vStart) && (closure[cl] < vEnd)) ++bdSize;
      }
      ierr = DMPlexRestoreTransitiveClosure(dm, f, PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
    }
    ierr = PetscMalloc2(bdSize, &bdFaces, numBdFaces, &bdFaceIds);CHKERRQ(ierr);
    for (f = 0, bdSize = 0; f < numBdFaces; ++f) {
      PetscInt *closure = NULL;
      PetscInt  closureSize, cl;

      ierr = DMPlexGetTransitiveClosure(dm, faces[f], PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
      for (cl = 0; cl < closureSize*2; cl += 2) {
        if ((closure[cl] >= vStart) && (closure[cl] < vEnd)) bdFaces[bdSize++] = closure[cl] - vStart;
      }
      /* TODO Fix */
      bdFaceIds[f] = 1;
      ierr = DMPlexRestoreTransitiveClosure(dm, f, PETSC_TRUE, &closureSize, &closure);CHKERRQ(ierr);
    }
    ierr = ISDestroy(&bdIS);CHKERRQ(ierr);
    ierr = DMLabelDestroy(&bd);CHKERRQ(ierr);
    pragmatic_set_boundary(&numBdFaces, bdFaces, bdFaceIds);
    /* Create metric */
    size = (dim*(dim+1))/2;
    ierr = PetscMalloc1(PetscSqr(size), &eqns);CHKERRQ(ierr);
    ierr = MatCreateSeqDense(PETSC_COMM_SELF, size, size, eqns, &A);CHKERRQ(ierr);
    ierr = MatCreateVecs(A, &mx, &mb);CHKERRQ(ierr);
    ierr = VecSet(mb, 1.0);CHKERRQ(ierr);
    for (c = 0; c < numCells; ++c) {
      const PetscScalar *sol;
      PetscScalar       *cellCoords = NULL;
      PetscReal          e[3], vol;
      const PetscInt    *cone;
      PetscInt           coneSize, cl, i, j, d, r;

      ierr = DMPlexVecGetClosure(dm, coordSection, coordinates, c, NULL, &cellCoords);CHKERRQ(ierr);
      /* Only works for simplices */
      for (i = 0, r = 0; i < dim+1; ++i) {
        for (j = 0; j < i; ++j, ++r) {
          for (d = 0; d < dim; ++d) e[d] = cellCoords[i*dim+d] - cellCoords[j*dim+d];
          /* FORTRAN ORDERING */
          if (dim == 2) {
            eqns[0*size+r] = PetscSqr(e[0]);
            eqns[1*size+r] = 2.0*e[0]*e[1];
            eqns[2*size+r] = PetscSqr(e[1]);
          } else {
            eqns[0*size+r] = PetscSqr(e[0]);
            eqns[1*size+r] = 2.0*e[0]*e[1];
            eqns[2*size+r] = 2.0*e[0]*e[2];
            eqns[3*size+r] = PetscSqr(e[1]);
            eqns[4*size+r] = 2.0*e[1]*e[2];
            eqns[5*size+r] = PetscSqr(e[2]);
          }
        }
      }
      ierr = MatSetUnfactored(A);CHKERRQ(ierr);
      ierr = DMPlexVecRestoreClosure(dm, coordSection, coordinates, c, NULL, &cellCoords);CHKERRQ(ierr);
      ierr = MatLUFactor(A, NULL, NULL, NULL);CHKERRQ(ierr);
      ierr = MatSolve(A, mb, mx);CHKERRQ(ierr);
      ierr = VecGetArrayRead(mx, &sol);CHKERRQ(ierr);
      ierr = DMPlexComputeCellGeometryFVM(dm, c, &vol, NULL, NULL);CHKERRQ(ierr);
      ierr = DMPlexGetCone(udm, c, &cone);CHKERRQ(ierr);
      ierr = DMPlexGetConeSize(udm, c, &coneSize);CHKERRQ(ierr);
      for (cl = 0; cl < coneSize; ++cl) {
        const PetscInt v = cone[cl] - vStart;

        if (dim == 2) {
          metric[v*4+0] += vol*coarseRatio*sol[0];
          metric[v*4+1] += vol*coarseRatio*sol[1];
          metric[v*4+2] += vol*coarseRatio*sol[1];
          metric[v*4+3] += vol*coarseRatio*sol[2];
        } else {
          metric[v*9+0] += vol*coarseRatio*sol[0];
          metric[v*9+1] += vol*coarseRatio*sol[1];
          metric[v*9+3] += vol*coarseRatio*sol[1];
          metric[v*9+2] += vol*coarseRatio*sol[2];
          metric[v*9+6] += vol*coarseRatio*sol[2];
          metric[v*9+4] += vol*coarseRatio*sol[3];
          metric[v*9+5] += vol*coarseRatio*sol[4];
          metric[v*9+7] += vol*coarseRatio*sol[4];
          metric[v*9+8] += vol*coarseRatio*sol[5];
        }
      }
      ierr = VecRestoreArrayRead(mx, &sol);CHKERRQ(ierr);
    }
    for (v = 0; v < numVertices; ++v) {
      const PetscInt *support;
      PetscInt        supportSize, s;
      PetscReal       vol, totVol = 0.0;

      ierr = DMPlexGetSupport(udm, v+vStart, &support);CHKERRQ(ierr);
      ierr = DMPlexGetSupportSize(udm, v+vStart, &supportSize);CHKERRQ(ierr);
      for (s = 0; s < supportSize; ++s) {ierr = DMPlexComputeCellGeometryFVM(dm, support[s], &vol, NULL, NULL);CHKERRQ(ierr); totVol += vol;}
      for (s = 0; s < PetscSqr(dim); ++s) metric[v*PetscSqr(dim)+s] /= totVol;
    }
    ierr = VecDestroy(&mx);CHKERRQ(ierr);
    ierr = VecDestroy(&mb);CHKERRQ(ierr);
    ierr = MatDestroy(&A);CHKERRQ(ierr);
    ierr = DMDestroy(&udm);CHKERRQ(ierr);
    ierr = PetscFree(eqns);CHKERRQ(ierr);
    pragmatic_set_metric(metric);
    pragmatic_adapt();
    /* Read out mesh */
    pragmatic_get_info(&numCoarseVertices, &numCoarseCells);
    ierr = PetscMalloc1(numCoarseVertices*dim, &coarseCoords);CHKERRQ(ierr);
    switch (dim) {
    case 2:
      pragmatic_get_coords_2d(x, y);
      numCorners = 3;
      for (v = 0; v < numCoarseVertices; ++v) {coarseCoords[v*2+0] = x[v]; coarseCoords[v*2+1] = y[v];}
      break;
    case 3:
      pragmatic_get_coords_3d(x, y, z);
      numCorners = 4;
      for (v = 0; v < numCoarseVertices; ++v) {coarseCoords[v*3+0] = x[v]; coarseCoords[v*3+1] = y[v]; coarseCoords[v*3+2] = z[v];}
      break;
    default:
      SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "No Pragmatic coarsening defined for dimension %d", dim);
    }
    pragmatic_get_elements(cells);
    /* TODO Read out markers for boundary */
    ierr = DMPlexCreateFromCellList(PetscObjectComm((PetscObject) dm), dim, numCoarseCells, numCoarseVertices, numCorners, PETSC_TRUE, cells, dim, coarseCoords, &mesh->coarseMesh);CHKERRQ(ierr);
    pragmatic_finalize();
    ierr = PetscFree5(x, y, z, metric, cells);CHKERRQ(ierr);
    ierr = PetscFree2(bdFaces, bdFaceIds);CHKERRQ(ierr);
    ierr = PetscFree(coarseCoords);CHKERRQ(ierr);
  }
#endif
  ierr = PetscObjectReference((PetscObject) mesh->coarseMesh);CHKERRQ(ierr);
  *dmCoarsened = mesh->coarseMesh;
  PetscFunctionReturn(0);
}