Пример #1
0
static void test_doubles(void) {

  printf("\n--- enu_of_ecef double ---\n");
  //  struct LlaCoor_f ref_coor;
  //  ref_coor.lat = RAD_OF_DEG(43.605278);
  //  ref_coor.lon = RAD_OF_DEG(1.442778);
  //  ref_coor.alt = 180.0;

  struct EcefCoor_d ref_coor = { 4624497.0 , 116475.0, 4376563.0};
  printf("ecef0 : (%.02f,%.02f,%.02f)\n", ref_coor.x, ref_coor.y, ref_coor.z);

  struct LtpDef_d ltp_def;
  ltp_def_from_ecef_d(&ltp_def, &ref_coor);

  printf("lla0 : (%f,%f,%f)\n", DegOfRad(ltp_def.lla.lat), DegOfRad(ltp_def.lla.lon), ltp_def.lla.alt);

  struct EcefCoor_d my_ecef_point = ref_coor;
  struct EnuCoor_d  my_enu_point;
  enu_of_ecef_point_d(&my_enu_point, &ltp_def, &my_ecef_point);

  printf("ecef to enu : (%f,%f,%f) -> (%f,%f,%f)\n",
	 my_ecef_point.x, my_ecef_point.y, my_ecef_point.z,
	 my_enu_point.x, my_enu_point.y, my_enu_point.z );
  printf("\n");
}
Пример #2
0
void dc_send_shot_position(void)
{
  int16_t phi = DegOfRad(estimator_phi*10.0f);
  int16_t theta = DegOfRad(estimator_theta*10.0f);
  float gps_z = ((float)gps.hmsl) / 1000.0f;
  int16_t course = (DegOfRad(gps.course)/((int32_t)1e6));
  int16_t photo_nr = -1;

  if (dc_buffer < DC_IMAGE_BUFFER) {
    dc_buffer++;
    dc_photo_nr++;
    photo_nr = dc_photo_nr;
  }

  DOWNLINK_SEND_DC_SHOT(DefaultChannel,
                        &photo_nr,
                        &gps.utm_pos.east,
                        &gps.utm_pos.north,
                        &gps_z,
                        &gps.utm_pos.zone,
                        &phi,
                        &theta,
                        &course,
                        &gps.gspeed,
                        &gps.tow);
}
Пример #3
0
void dc_send_shot_position(void)
{
  // angles in decideg
  int16_t phi = DegOfRad(stateGetNedToBodyEulers_f()->phi*10.0f);
  int16_t theta = DegOfRad(stateGetNedToBodyEulers_f()->theta*10.0f);
  int16_t psi = DegOfRad(stateGetNedToBodyEulers_f()->psi*10.0f);
  // course in decideg
  int16_t course = DegOfRad(*stateGetHorizontalSpeedDir_f()) * 10;
  // ground speed in cm/s
  uint16_t speed = (*stateGetHorizontalSpeedNorm_f()) * 10;
  int16_t photo_nr = -1;

  if (dc_photo_nr < DC_IMAGE_BUFFER) {
    dc_photo_nr++;
    photo_nr = dc_photo_nr;
  }

  DOWNLINK_SEND_DC_SHOT(DefaultChannel, DefaultDevice,
                        &photo_nr,
                        &stateGetPositionLla_i()->lat,
                        &stateGetPositionLla_i()->lon,
                        &stateGetPositionLla_i()->alt,
                        &gps.hmsl,
                        &phi,
                        &theta,
                        &psi,
                        &course,
                        &speed,
                        &gps.tow);
}
Пример #4
0
static void send_cam(struct transport_tx *trans, struct link_device *dev)
{
  int16_t x = cam_target_x;
  int16_t y = cam_target_y;
  int16_t phi = DegOfRad(cam_phi_c);
  int16_t theta = DegOfRad(cam_theta_c);
  pprz_msg_send_CAM(trans, dev, AC_ID, &phi, &theta, &x, &y);
}
void sky_seg_avoid_run(void) {
  static int counter = 0;

  counter++;
  // Read Latest GST Module Results
  if (counter >= (512/15))
  {
    // Vertical
    float dx = sqrt ( (stateGetPositionEnu_f()->x * stateGetPositionEnu_f()->x) + (stateGetPositionEnu_f()->y * stateGetPositionEnu_f()->y) );

    float dh = (17.0f - stateGetPositionEnu_f()->z);
    float vang = atan2(dh,dx) * 80.9F * 2.0f; // 255 / PI

    if (vang < 0.0f)
      vang = 0.0f;
    if (vang > 255.0f)
      vang = 255.0f;

    // Horizontal
    float bearing = atan2(- stateGetPositionEnu_f()->x, - stateGetPositionEnu_f()->y );
    float heading = stateGetNedToBodyEulers_f()->psi;
    float diff = bearing - heading;
    NormAngleRad(diff);
    diff = DegOfRad(diff);

    float hang = DegOfRad(atan2(10,dx)); // 255 / PI


    float viewangle = 50; // degrees
    float range = viewangle/2.0f;
    float deg_per_bin = viewangle/ ((float) N_BINS);

    float bin_nr_mid = range/deg_per_bin;
    float bin_nr_start = bin_nr_mid + diff/deg_per_bin - hang/deg_per_bin;
    float bin_nr_stop  = bin_nr_mid + diff/deg_per_bin + hang/deg_per_bin;


    for (int i=0; i<N_BINS; i++)
    {
      if ((i > bin_nr_start) && (i <= (bin_nr_stop)))
      {
        gst2ppz.obstacle_bins[i] = vang;
      }
      else
      {
        gst2ppz.obstacle_bins[i] = 0.0f;
      }
    }

    counter = 0;
    run_avoid_navigation_onvision();
  }
}
Пример #6
0
gboolean timeout_callback(gpointer data) {

  for (int i=0; i<20; i++) {
    aos_compute_state();
    aos_compute_sensors();
#ifndef DISABLE_PROPAGATE
    ahrs_propagate();
#endif
#ifndef DISABLE_ACCEL_UPDATE
    ahrs_update_accel();
#endif
#ifndef DISABLE_MAG_UPDATE
    if (!(i%5)) ahrs_update_mag();
#endif
  }

#if AHRS_TYPE == AHRS_TYPE_ICE || AHRS_TYPE == AHRS_TYPE_ICQ
    EULERS_FLOAT_OF_BFP(ahrs_float.ltp_to_imu_euler, ahrs.ltp_to_imu_euler);
#endif

#if AHRS_TYPE == AHRS_TYPE_ICQ
    IvySendMsg("183 BOOZ_AHRS_BIAS %d %d %d", 
	       ahrs_impl.gyro_bias.p,
	       ahrs_impl.gyro_bias.q,
	       ahrs_impl.gyro_bias.r);
#endif
#if AHRS_TYPE == AHRS_TYPE_FLQ || AHRS_TYPE == AHRS_TYPE_FCR2
    struct Int32Rates bias_i;
    RATES_BFP_OF_REAL(bias_i, ahrs_impl.gyro_bias);
    IvySendMsg("183 BOOZ_AHRS_BIAS %d %d %d", 
	       bias_i.p,
	       bias_i.q,
	       bias_i.r);
#endif

  IvySendMsg("183 AHRS_EULER %f %f %f", 
	     ahrs_float.ltp_to_imu_euler.phi,
	     ahrs_float.ltp_to_imu_euler.theta,
	     ahrs_float.ltp_to_imu_euler.psi);

  IvySendMsg("183 BOOZ_SIM_RATE_ATTITUDE %f %f %f %f %f %f",
	     DegOfRad(aos.imu_rates.p), 
	     DegOfRad(aos.imu_rates.q), 
	     DegOfRad(aos.imu_rates.r),
	     DegOfRad(aos.ltp_to_imu_euler.phi), 
	     DegOfRad(aos.ltp_to_imu_euler.theta),
	     DegOfRad(aos.ltp_to_imu_euler.psi));

  IvySendMsg("183 BOOZ_SIM_GYRO_BIAS %f %f %f",
	     DegOfRad(aos.gyro_bias.p), 
	     DegOfRad(aos.gyro_bias.q), 
	     DegOfRad(aos.gyro_bias.r));

  return TRUE;
}
Пример #7
0
value sim_use_gps_pos(value x, value y, value z, value c, value a, value s, value cl, value t, value m, value lat, value lon) {
  gps_mode = (Bool_val(m) ? 3 : 0);
  gps_course = DegOfRad(Double_val(c)) * 10.;
  gps_alt = Double_val(a) * 100.;
  gps_gspeed = Double_val(s) * 100.;
  gps_climb = Double_val(cl) * 100.;
  gps_week = 0; // FIXME
  gps_itow = Double_val(t) * 1000.;

#ifdef GPS_USE_LATLONG
  gps_lat = DegOfRad(Double_val(lat))*1e7;
  gps_lon = DegOfRad(Double_val(lon))*1e7;
  latlong_utm_of(RadOfDeg(gps_lat/1e7), RadOfDeg(gps_lon/1e7), nav_utm_zone0);
  gps_utm_east = latlong_utm_x * 100;
  gps_utm_north = latlong_utm_y * 100;
  gps_utm_zone = nav_utm_zone0;
  x = y = z; /* Just to get rid of the "unused arg" warning */
#else // GPS_USE_LATLONG
  gps_utm_east = Int_val(x);
  gps_utm_north = Int_val(y);
  gps_utm_zone = Int_val(z);
  lat = lon; /* Just to get rid of the "unused arg" warning */
#endif // GPS_USE_LATLONG


  /** Space vehicle info simulation */
  gps_nb_channels=7;
  int i;
  static int time;
  time++;
  for(i = 0; i < gps_nb_channels; i++) {
    gps_svinfos[i].svid = 7 + i;
    gps_svinfos[i].elev = (cos(((100*i)+time)/100.) + 1) * 45;
    gps_svinfos[i].azim = (time/gps_nb_channels + 50 * i) % 360;
    gps_svinfos[i].cno = 40 + sin((time+i*10)/100.) * 10.;
    gps_svinfos[i].flags = ((time/10) % (i+1) == 0 ? 0x00 : 0x01);
    gps_svinfos[i].qi = (int)((time / 1000.) + i) % 8;
  }
  gps_PDOP = gps_Sacc = gps_Pacc = 500+200*sin(time/100.);
  gps_numSV = 7;

  gps_verbose_downlink = !launch;
  UseGpsPosNoSend(estimator_update_state_gps);
  gps_downlink();


  return Val_unit;
}
Пример #8
0
/** Reset the UTM zone to current GPS fix */
unit_t nav_reset_utm_zone(void) {

  struct UtmCoor_f utm0_old;
  utm0_old.zone = nav_utm_zone0;
  utm0_old.north = nav_utm_north0;
  utm0_old.east = nav_utm_east0;
  utm0_old.alt = ground_alt;
  struct LlaCoor_f lla0;
  lla_of_utm_f(&lla0, &utm0_old);

#ifdef GPS_USE_LATLONG
  /* Set the real UTM zone */
  nav_utm_zone0 = (DegOfRad(gps.lla_pos.lon/1e7)+180) / 6 + 1;
#else
  nav_utm_zone0 = gps.utm_pos.zone;
#endif

  struct UtmCoor_f utm0;
  utm0.zone = nav_utm_zone0;
  utm_of_lla_f(&utm0, &lla0);

  nav_utm_east0 = utm0.east;
  nav_utm_north0 = utm0.north;

  stateSetLocalUtmOrigin_f(&utm0);

  return 0;
}
Пример #9
0
uint8_t dc_info(void)
{
#ifdef DOWNLINK_SEND_DC_INFO
  float course = DegOfRad(stateGetNedToBodyEulers_f()->psi);
  int16_t mode = dc_autoshoot;
  uint8_t shutter = dc_autoshoot_period * 10;
  DOWNLINK_SEND_DC_INFO(DefaultChannel, DefaultDevice,
                        &mode,
                        &stateGetPositionLla_i()->lat,
                        &stateGetPositionLla_i()->lon,
                        &stateGetPositionLla_i()->alt,
                        &course,
                        &dc_photo_nr,
                        &dc_survey_interval,
                        &dc_gps_next_dist,
                        &dc_gps_x,
                        &dc_gps_y,
                        &dc_circle_start_angle,
                        &dc_circle_interval,
                        &dc_circle_last_block,
                        &dc_gps_count,
                        &shutter);
#endif
  return 0;
}
Пример #10
0
void mf_daq_send_report(void)
{
  // Send report over normal telemetry
  if (mf_daq.nb > 0) {
    DOWNLINK_SEND_PAYLOAD_FLOAT(DefaultChannel, DefaultDevice, 9, mf_daq.values);
  }
  // Test if log is started
  if (pprzLogFile != -1) {
    if (log_started == FALSE) {
      // Log MD5SUM once
      DOWNLINK_SEND_ALIVE(pprzlog_tp, chibios_sdlog, 16, MD5SUM);
      log_started = true;
    }
    // Log GPS for time reference
    uint8_t foo = 0;
    int16_t climb = -gps.ned_vel.z;
    int16_t course = (DegOfRad(gps.course) / ((int32_t)1e6));
    struct UtmCoor_f utm = *stateGetPositionUtm_f();
    int32_t east = utm.east * 100;
    int32_t north = utm.north * 100;
    DOWNLINK_SEND_GPS(pprzlog_tp, chibios_sdlog, &gps.fix,
                      &east, &north, &course, &gps.hmsl, &gps.gspeed, &climb,
                      &gps.week, &gps.tow, &utm.zone, &foo);
  }
}
Пример #11
0
void aoa_pwm_update(void) {
  static float prev_aoa = 0.0f;

  // raw duty cycle in usec
  uint32_t duty_raw = get_pwm_input_duty_in_usec(AOA_PWM_CHANNEL);

  // remove some offset if needed
  aoa_pwm.raw = duty_raw - AOA_PWM_OFFSET;
  // FIXME for some reason, the last value of the MA3 encoder is not 4096 but 4097
  // this case is not handled since we don't care about angles close to +- 180 deg
  aoa_pwm.angle = AOA_SIGN * (((float)aoa_pwm.raw * aoa_pwm.sens) - aoa_pwm.offset - AOA_ANGLE_OFFSET);
  // filter angle
  aoa_pwm.angle = aoa_pwm.filter * prev_aoa + (1.0f - aoa_pwm.filter) * aoa_pwm.angle;
  prev_aoa = aoa_pwm.angle;

#if USE_AOA
  stateSetAngleOfAttack_f(aoa_adc.angle);
#endif

#if SEND_SYNC_AOA
  RunOnceEvery(10, DOWNLINK_SEND_AOA(DefaultChannel, DefaultDevice, &aoa_pwm.raw, &aoa_pwm.angle));
#endif

#if LOG_AOA
  if(pprzLogFile != -1) {
    if (!log_started) {
      sdLogWriteLog(pprzLogFile, "AOA_PWM: ANGLE(deg) RAW(int16)\n");
      log_started = true;
    } else {
      float angle = DegOfRad(aoa_pwm.angle);
      sdLogWriteLog(pprzLogFile, "AOA_PWM: %.3f %d\n", angle, aoa_pwm.raw);
    }
  }
#endif
}
Пример #12
0
bool_t disc_survey( uint8_t center, float radius) {
  float wind_dir = atan2(wind_north, wind_east) + M_PI;

  /** Not null even if wind_east=wind_north=0 */
  float upwind_x = cos(wind_dir);
  float upwind_y = sin(wind_dir);

  float grid = nav_survey_shift / 2;

  switch (status) {
  case UTURN:
    nav_circle_XY(c.x, c.y, grid*sign);
    if (NavQdrCloseTo(DegOfRad(M_PI_2-wind_dir))) {
      c1.x = estimator_x;
      c1.y = estimator_y;

      float d = ScalarProduct(upwind_x, upwind_y, estimator_x-WaypointX(center), estimator_y-WaypointY(center));
      if (d > radius) {
	status = DOWNWIND;
      } else {
	float w = sqrt(radius*radius - d*d) - 1.5*grid;

	float crosswind_x = - upwind_y;
	float crosswind_y = upwind_x;

	c2.x = WaypointX(center)+d*upwind_x-w*sign*crosswind_x;
	c2.y = WaypointY(center)+d*upwind_y-w*sign*crosswind_y;

	status = SEGMENT;
      }
      nav_init_stage();
    }
    break;

  case DOWNWIND:
    c2.x = WaypointX(center) - upwind_x * radius;
    c2.y = WaypointY(center) - upwind_y * radius;
    status = SEGMENT;
    /* No break; */

  case SEGMENT:
    nav_route_xy(c1.x, c1.y, c2.x, c2.y);
    if (nav_approaching_xy(c2.x, c2.y, c1.x, c1.y, CARROT)) {
      c.x = c2.x + grid*upwind_x;
      c.y = c2.y + grid*upwind_y;

      sign = -sign;
      status = UTURN;
      nav_init_stage();
    }
    break;
  default:
    break;
  }

  NavVerticalAutoThrottleMode(0.); /* No pitch */
  NavVerticalAltitudeMode(WaypointAlt(center), 0.); /* No preclimb */

  return TRUE;
}
Пример #13
0
void ins_reset_local_origin( void ) {
#if INS_UPDATE_FW_ESTIMATOR
  struct UtmCoor_f utm;
#ifdef GPS_USE_LATLONG
  /* Recompute UTM coordinates in this zone */
  struct LlaCoor_f lla;
  lla.lat = gps.lla_pos.lat / 1e7;
  lla.lon = gps.lla_pos.lon / 1e7;
  utm.zone = (DegOfRad(gps.lla_pos.lon/1e7)+180) / 6 + 1;
  utm_of_lla_f(&utm, &lla);
#else
  utm.zone = gps.utm_pos.zone;
  utm.east = gps.utm_pos.east / 100.0f;
  utm.north = gps.utm_pos.north / 100.0f;
#endif
  // ground_alt
  utm.alt = gps.hmsl / 1000.0f;
  // reset state UTM ref
  stateSetLocalUtmOrigin_f(&utm);
#else
  struct LtpDef_i ltp_def;
  ltp_def_from_ecef_i(&ltp_def, &gps.ecef_pos);
  ltp_def.hmsl = gps.hmsl;
  stateSetLocalOrigin_i(&ltp_def);
#endif
}
Пример #14
0
/** Reset the geographic reference to the current GPS fix */
unit_t nav_reset_reference( void ) {
#ifdef GPS_USE_LATLONG
  /* Set the real UTM zone */
  nav_utm_zone0 = (DegOfRad(gps.lla_pos.lon/1e7)+180) / 6 + 1;

  /* Recompute UTM coordinates in this zone */
  struct LlaCoor_f lla;
  lla.lat = gps.lla_pos.lat/1e7;
  lla.lon = gps.lla_pos.lon/1e7;
  struct UtmCoor_f utm;
  utm.zone = nav_utm_zone0;
  utm_of_lla_f(&utm, &lla);
  nav_utm_east0 = utm.east;
  nav_utm_north0 = utm.north;
#else
  nav_utm_zone0 = gps.utm_pos.zone;
  nav_utm_east0 = gps.utm_pos.east/100;
  nav_utm_north0 = gps.utm_pos.north/100;
#endif

  // reset state UTM ref
  struct UtmCoor_f utm0 = { nav_utm_north0, nav_utm_east0, 0., nav_utm_zone0 };
  stateSetLocalUtmOrigin_f(&utm0);

  previous_ground_alt = ground_alt;
  ground_alt = gps.hmsl/1000.;
  return 0;
}
Пример #15
0
void ArduIMU_periodicGPS( void ) {

  if (ardu_gps_trans.status != I2CTransDone) { return; }

  // Test for high acceleration:
  //  - low speed
  //  - high thrust
  if (estimator_hspeed_dir < HIGH_ACCEL_LOW_SPEED && ap_state->commands[COMMAND_THROTTLE] > HIGH_ACCEL_HIGH_THRUST && !high_accel_done) {
    high_accel_flag = TRUE;
  } else {
    high_accel_flag = FALSE;
    if (estimator_hspeed_dir > HIGH_ACCEL_LOW_SPEED && !high_accel_flag) {
      high_accel_done = TRUE; // After takeoff, don't use high accel before landing (GS small, Throttle small)
    }
    if (estimator_hspeed_dir < HIGH_ACCEL_HIGH_THRUST_RESUME && ap_state->commands[COMMAND_THROTTLE] < HIGH_ACCEL_HIGH_THRUST_RESUME) {
      high_accel_done = FALSE; // Activate high accel after landing
    }
  }

  FillBufWith32bit(ardu_gps_trans.buf, 0, (int32_t)gps.speed_3d); // speed 3D
  FillBufWith32bit(ardu_gps_trans.buf, 4, (int32_t)gps.gspeed);   // ground speed
  FillBufWith32bit(ardu_gps_trans.buf, 8, (int32_t)DegOfRad(gps.course / 1e6));   // course
  ardu_gps_trans.buf[12] = gps.fix;                              // status gps fix
  ardu_gps_trans.buf[13] = gps_ubx.status_flags;                      // status flags
  ardu_gps_trans.buf[14] = (uint8_t)high_accel_flag;              // high acceleration flag (disable accelerometers in the arduimu filter)
  I2CTransmit(ARDUIMU_I2C_DEV, ardu_gps_trans, ArduIMU_SLAVE_ADDR, 15);

}
Пример #16
0
bool_t snav_circle1(void) {
  /* circle around CD until QDR_TD */
  NavVerticalAutoThrottleMode(0); /* No pitch */
  NavVerticalAltitudeMode(wp_cd.a, 0.);
  nav_circle_XY(wp_cd.x, wp_cd.y, d_radius);
  return(! NavQdrCloseTo(DegOfRad(qdr_td)));
}
Пример #17
0
void dc_send_shot_position(void)
{
  // angles in decideg
  int16_t phi = DegOfRad(stateGetNedToBodyEulers_f()->phi * 10.0f);
  int16_t theta = DegOfRad(stateGetNedToBodyEulers_f()->theta * 10.0f);
  int16_t psi = DegOfRad(stateGetNedToBodyEulers_f()->psi * 10.0f);
  // course in decideg
  int16_t course = DegOfRad(stateGetHorizontalSpeedDir_f()) * 10;
  // ground speed in cm/s
  uint16_t speed = stateGetHorizontalSpeedNorm_f() * 10;
  int16_t photo_nr = -1;

  if (dc_photo_nr < DC_IMAGE_BUFFER) {
    dc_photo_nr++;
    photo_nr = dc_photo_nr;
  }

#if DC_SHOT_EXTRA_DL
  // send a message on second datalink first
  // (for instance an embedded CPU)
  DOWNLINK_SEND_DC_SHOT(extra_pprz_tp, EXTRA_DOWNLINK_DEVICE,
                        &photo_nr,
                        &stateGetPositionLla_i()->lat,
                        &stateGetPositionLla_i()->lon,
                        &stateGetPositionLla_i()->alt,
                        &gps.hmsl,
                        &phi,
                        &theta,
                        &psi,
                        &course,
                        &speed,
                        &gps.tow);
#endif
  DOWNLINK_SEND_DC_SHOT(DefaultChannel, DefaultDevice,
                        &photo_nr,
                        &stateGetPositionLla_i()->lat,
                        &stateGetPositionLla_i()->lon,
                        &stateGetPositionLla_i()->alt,
                        &gps.hmsl,
                        &phi,
                        &theta,
                        &psi,
                        &course,
                        &speed,
                        &gps.tow);
}
Пример #18
0
int main(int argc, char **argv)
{
  // Set the default tracking system position and angle
  struct EcefCoor_d tracking_ecef;
  //alt 45 m because of ellipsoid altitude in Delft
  tracking_ecef.x = 3924331.5;
  tracking_ecef.y = 300361.7;
  tracking_ecef.z = 5002197.1;
  tracking_offset_angle = 33.0 / 57.6;
  ltp_def_from_ecef_d(&tracking_ltp, &tracking_ecef);

  // Parse the options from cmdline
  parse_options(argc, argv);
  printf_debug("Tracking system Latitude: %f Longitude: %f Offset to North: %f degrees\n", DegOfRad(tracking_ltp.lla.lat),
               DegOfRad(tracking_ltp.lla.lon), DegOfRad(tracking_offset_angle));

  // Create the network connections
  printf_debug("Starting NatNet listening (multicast address: %s, data port: %d, version: %d.%d)\n",
               natnet_multicast_addr, natnet_data_port, natnet_major, natnet_minor);
  udp_socket_create(&natnet_data, "", -1, natnet_data_port, 0); // Only receiving
  udp_socket_subscribe_multicast(&natnet_data, natnet_multicast_addr);
  udp_socket_set_recvbuf(&natnet_data, 0x100000); // 1MB

  printf_debug("Starting NatNet command socket (server address: %s, command port: %d)\n", natnet_addr, natnet_cmd_port);
  udp_socket_create(&natnet_cmd, natnet_addr, natnet_cmd_port, 0, 1);
  udp_socket_set_recvbuf(&natnet_cmd, 0x100000); // 1MB

  // Create the Ivy Client
  GMainLoop *ml =  g_main_loop_new(NULL, FALSE);
  IvyInit("natnet2ivy", "natnet2ivy READY", 0, 0, 0, 0);
  IvyStart(ivy_bus);

  // Create the main timers
  printf_debug("Starting transmitting and sampling timeouts (transmitting frequency: %dHz, minimum velocity samples: %d)\n",
               freq_transmit, min_velocity_samples);
  g_timeout_add(1000 / freq_transmit, timeout_transmit_callback, NULL);

  GIOChannel *sk = g_io_channel_unix_new(natnet_data.sockfd);
  g_io_add_watch(sk, G_IO_IN | G_IO_NVAL | G_IO_HUP,
                 sample_data, NULL);

  // Run the main loop
  g_main_loop_run(ml);

  return 0;
}
Пример #19
0
bool snav_circle2(void)
{
  /* circle around CA until QDR_A */
  NavVerticalAutoThrottleMode(0); /* No pitch */
  NavVerticalAltitudeMode(wp_cd.a, 0.);
  nav_circle_XY(wp_ca.x, wp_ca.y, a_radius);

  return (! NavQdrCloseTo(DegOfRad(qdr_a)));
}
Пример #20
0
void test_of_axis_angle(void)
{

  struct FloatVect3 axis = { 0., 1., 0.};
  FLOAT_VECT3_NORMALIZE(axis);
  DISPLAY_FLOAT_VECT3("axis", axis);
  const float angle = RadOfDeg(30.);
  printf("angle %f\n", DegOfRad(angle));

  struct FloatQuat my_q;
  FLOAT_QUAT_OF_AXIS_ANGLE(my_q, axis, angle);
  DISPLAY_FLOAT_QUAT_AS_EULERS_DEG("quat", my_q);

  struct FloatRMat my_r1;
  float_rmat_of_quat(&my_r1, &my_q);
  DISPLAY_FLOAT_RMAT_AS_EULERS_DEG("rmat1", my_r1);
  DISPLAY_FLOAT_RMAT("rmat1", my_r1);

  struct FloatRMat my_r;
  FLOAT_RMAT_OF_AXIS_ANGLE(my_r, axis, angle);
  DISPLAY_FLOAT_RMAT_AS_EULERS_DEG("rmat", my_r);
  DISPLAY_FLOAT_RMAT("rmat", my_r);

  printf("\n");

  struct FloatEulers eul = {RadOfDeg(30.), RadOfDeg(30.), 0.};

  struct FloatVect3 uz = { 0., 0., 1.};
  struct FloatRMat r_yaw;
  FLOAT_RMAT_OF_AXIS_ANGLE(r_yaw, uz, eul.psi);

  struct FloatVect3 uy = { 0., 1., 0.};
  struct FloatRMat r_pitch;
  FLOAT_RMAT_OF_AXIS_ANGLE(r_pitch, uy, eul.theta);

  struct FloatVect3 ux = { 1., 0., 0.};
  struct FloatRMat r_roll;
  FLOAT_RMAT_OF_AXIS_ANGLE(r_roll, ux, eul.phi);

  struct FloatRMat r_yaw_pitch;
  float_rmat_comp(&r_yaw_pitch, &r_yaw, &r_pitch);

  struct FloatRMat r_yaw_pitch_roll;
  float_rmat_comp(&r_yaw_pitch_roll, &r_yaw_pitch, &r_roll);

  DISPLAY_FLOAT_RMAT_AS_EULERS_DEG("rmat", r_yaw_pitch_roll);
  DISPLAY_FLOAT_RMAT("rmat", r_yaw_pitch_roll);

  DISPLAY_FLOAT_EULERS_DEG("eul", eul);
  struct FloatRMat rmat1;
  float_rmat_of_eulers(&rmat1, &eul);
  DISPLAY_FLOAT_RMAT_AS_EULERS_DEG("rmat1", rmat1);
  DISPLAY_FLOAT_RMAT("rmat1", rmat1);

}
Пример #21
0
static void send_gps_lla(struct transport_tx *trans, struct link_device *dev)
{
  uint8_t err = 0;
  int16_t climb = -gps.ned_vel.z;
  int16_t course = (DegOfRad(gps.course) / ((int32_t)1e6));
  pprz_msg_send_GPS_LLA(trans, dev, AC_ID,
                        &gps.lla_pos.lat, &gps.lla_pos.lon, &gps.lla_pos.alt,
                        &gps.hmsl, &course, &gps.gspeed, &climb,
                        &gps.week, &gps.tow,
                        &gps.fix, &err);
}
Пример #22
0
static void send_gps(struct transport_tx *trans, struct link_device *dev)
{
  uint8_t zero = 0;
  int16_t climb = -gps.ned_vel.z;
  int16_t course = (DegOfRad(gps.course) / ((int32_t)1e6));
  pprz_msg_send_GPS(trans, dev, AC_ID, &gps.fix,
                    &gps.utm_pos.east, &gps.utm_pos.north,
                    &course, &gps.hmsl, &gps.gspeed, &climb,
                    &gps.week, &gps.tow, &gps.utm_pos.zone, &zero);
  // send SVINFO for available satellites that have new data
  send_svinfo_available(trans, dev);
}
Пример #23
0
void handle_ins_msg( void) {
    EstimatorSetAtt(ins_phi, ins_psi, ins_theta);
    EstimatorSetRate(ins_p,ins_q);
    if (gps_mode != 0x03)
        gps_gspeed = 0;

    //gps_course = ins_psi * 1800 / M_PI;
    gps_course = (DegOfRad(atan2f((float)ins_vx, (float)ins_vy))*10.0f);
    gps_climb = (int16_t)(-ins_vz * 100);
    gps_gspeed = (uint16_t)(sqrt(ins_vx*ins_vx + ins_vy*ins_vy) * 100);

    EstimatorSetAtt(ins_phi, RadOfDeg(((float)gps_course) / 10.0), ins_theta);
    // EstimatorSetSpeedPol(gps_gspeed, gps_course, ins_vz);
    // EstimatorSetAlt(ins_z);
    estimator_update_state_gps();
    reset_gps_watchdog();
}
Пример #24
0
/* shoot on circle */
uint8_t dc_circle(float interval, float start) {
  dc_autoshoot = DC_AUTOSHOOT_CIRCLE;
  dc_gps_count = 0;
  dc_circle_interval = fmodf(fmaxf(interval, 1.), 360.);

  if(start == DC_IGNORE) {
    start = DegOfRad(stateGetNedToBodyEulers_f()->psi);
  }

  dc_circle_start_angle = fmodf(start, 360.);
  if (start < 0.)
    start += 360.;
  //dc_circle_last_block = floorf(dc_circle_start_angle/dc_circle_interval);
  dc_circle_last_block = 0;
  dc_circle_max_blocks = floorf(360./dc_circle_interval);
  dc_info();
  return 0;
}
Пример #25
0
/**
 * Send Metrics typically displayed on a HUD for fixed wing aircraft.
 */
static void mavlink_send_vfr_hud(struct transport_tx *trans, struct link_device *dev)
{
  /* Current heading in degrees, in compass units (0..360, 0=north) */
  int16_t heading = DegOfRad(stateGetNedToBodyEulers_f()->psi);
  /* Current throttle setting in integer percent, 0 to 100 */
  // is a 16bit unsigned int but supposed to be from 0 to 100??
  uint16_t throttle;
#ifdef COMMAND_THRUST
  throttle = commands[COMMAND_THRUST] / (MAX_PPRZ / 100);
#elif defined COMMAND_THROTTLE
  throttle = commands[COMMAND_THROTTLE] / (MAX_PPRZ / 100);
#endif
  mavlink_msg_vfr_hud_send(MAVLINK_COMM_0,
                           stateGetAirspeed_f(),
                           stateGetHorizontalSpeedNorm_f(), // groundspeed
                           heading,
                           throttle,
                           stateGetPositionLla_f()->alt, // altitude, FIXME: should be MSL
                           stateGetSpeedNed_f()->z); // climb rate
  MAVLinkSendMessage();
}
Пример #26
0
static void mavlink_send_gps_raw_int(struct transport_tx *trans, struct link_device *dev)
{
#if USE_GPS
  int32_t course = DegOfRad(gps.course) / 1e5;
  if (course < 0) {
    course += 36000;
  }
  mavlink_msg_gps_raw_int_send(MAVLINK_COMM_0,
                               get_sys_time_usec(),
                               gps.fix,
                               gps.lla_pos.lat,
                               gps.lla_pos.lon,
                               gps.lla_pos.alt,
                               gps.pdop,
                               UINT16_MAX, // VDOP
                               gps.gspeed,
                               course,
                               gps.num_sv);
  MAVLinkSendMessage();
#endif
}
Пример #27
0
static void mavlink_send_global_position_int(struct transport_tx *trans, struct link_device *dev)
{
  float heading = DegOfRad(stateGetNedToBodyEulers_f()->psi);
  if (heading < 0.) {
    heading += 360;
  }
  uint16_t compass_heading = heading * 100;
  int32_t relative_alt = stateGetPositionLla_i()->alt - state.ned_origin_f.hmsl;
  /// TODO: check/ask what coordinate system vel is supposed to be in, not clear from docs
  mavlink_msg_global_position_int_send(MAVLINK_COMM_0,
                                       get_sys_time_msec(),
                                       stateGetPositionLla_i()->lat,
                                       stateGetPositionLla_i()->lon,
                                       stateGetPositionLla_i()->alt,
                                       relative_alt,
                                       stateGetSpeedNed_f()->x * 100,
                                       stateGetSpeedNed_f()->y * 100,
                                       stateGetSpeedNed_f()->z * 100,
                                       compass_heading);
  MAVLinkSendMessage();
}
Пример #28
0
uint8_t dc_info(void) {
#ifdef DOWNLINK_SEND_DC_INFO
  float course = DegOfRad(estimator_psi);
  DOWNLINK_SEND_DC_INFO(DefaultChannel,
                        &dc_autoshoot,
                        &estimator_x,
                        &estimator_y,
                        &course,
                        &dc_buffer,
                        &dc_gps_dist,
                        &dc_gps_next_dist,
                        &dc_gps_x,
                        &dc_gps_y,
                        &dc_circle_start_angle,
                        &dc_circle_interval,
                        &dc_circle_last_block,
                        &dc_gps_count,
                        &dc_autoshoot_quartersec_period);
#endif
  return 0;
}
Пример #29
0
/** Reset the geographic reference to the current GPS fix */
void ins_reset_local_origin(void) {
    struct UtmCoor_f utm;
#ifdef GPS_USE_LATLONG
    /* Recompute UTM coordinates in this zone */
    struct LlaCoor_f lla;
    lla.lat = gps.lla_pos.lat / 1e7;
    lla.lon = gps.lla_pos.lon / 1e7;
    utm.zone = (DegOfRad(gps.lla_pos.lon/1e7)+180) / 6 + 1;
    utm_of_lla_f(&utm, &lla);
#else
    utm.zone = gps.utm_pos.zone;
    utm.east = gps.utm_pos.east / 100.0f;
    utm.north = gps.utm_pos.north / 100.0f;
#endif
    // ground_alt
    utm.alt = gps.hmsl  /1000.0f;

    // reset state UTM ref
    stateSetLocalUtmOrigin_f(&utm);

    // reset filter flag
    ins_impl.reset_alt_ref = TRUE;
}
Пример #30
0
static void test_enu_of_ecef_int(void) {

  printf("\n--- enu_of_ecef int ---\n");
  struct EcefCoor_f ref_coor_f = { 4624497.0 , 116475.0, 4376563.0};
  struct LtpDef_f ltp_def_f;
  ltp_def_from_ecef_f(&ltp_def_f, &ref_coor_f);

  struct EcefCoor_i ref_coor_i = { rint(CM_OF_M(ref_coor_f.x)),
				   rint(CM_OF_M(ref_coor_f.y)),
				   rint(CM_OF_M(ref_coor_f.z))};
  printf("ecef0 : (%d,%d,%d)\n", ref_coor_i.x, ref_coor_i.y, ref_coor_i.z);
  struct LtpDef_i ltp_def_i;
  ltp_def_from_ecef_i(&ltp_def_i, &ref_coor_i);
  printf("lla0 : (%d %d %d) (%f,%f,%f)\n", ltp_def_i.lla.lat, ltp_def_i.lla.lon, ltp_def_i.lla.alt,
	 DegOfRad(RAD_OF_EM7RAD((double)ltp_def_i.lla.lat)),
	 DegOfRad(RAD_OF_EM7RAD((double)ltp_def_i.lla.lon)),
	 M_OF_CM((double)ltp_def_i.lla.alt));

#define STEP    1000.
#define RANGE 100000.
  double sum_err = 0;
  struct FloatVect3 max_err;
  FLOAT_VECT3_ZERO(max_err);
  struct FloatVect3 offset;
  for (offset.x=-RANGE; offset.x<=RANGE; offset.x+=STEP) {
    for (offset.y=-RANGE; offset.y<=RANGE; offset.y+=STEP) {
      for (offset.z=-RANGE; offset.z<=RANGE; offset.z+=STEP) {
	struct EcefCoor_f my_ecef_point_f = ref_coor_f;
	VECT3_ADD(my_ecef_point_f, offset);
	struct EnuCoor_f  my_enu_point_f;
	enu_of_ecef_point_f(&my_enu_point_f, &ltp_def_f, &my_ecef_point_f);
#if DEBUG
	printf("ecef to enu float : (%.02f,%.02f,%.02f) -> (%.02f,%.02f,%.02f)\n",
	       my_ecef_point_f.x, my_ecef_point_f.y, my_ecef_point_f.z,
	       my_enu_point_f.x, my_enu_point_f.y, my_enu_point_f.z );
#endif

	struct EcefCoor_i my_ecef_point_i = { rint(CM_OF_M(my_ecef_point_f.x)),
					      rint(CM_OF_M(my_ecef_point_f.y)),
					      rint(CM_OF_M(my_ecef_point_f.z))};;
	struct EnuCoor_i  my_enu_point_i;
	enu_of_ecef_point_i(&my_enu_point_i, &ltp_def_i, &my_ecef_point_i);

#if DEBUG
	//	printf("def->ecef (%d,%d,%d)\n", ltp_def_i.ecef.x, ltp_def_i.ecef.y, ltp_def_i.ecef.z);
	printf("ecef to enu int   : (%.2f,%.02f,%.02f) -> (%.02f,%.02f,%.02f)\n\n",
	       M_OF_CM((double)my_ecef_point_i.x),
	       M_OF_CM((double)my_ecef_point_i.y),
	       M_OF_CM((double)my_ecef_point_i.z),
	       M_OF_CM((double)my_enu_point_i.x),
	       M_OF_CM((double)my_enu_point_i.y),
	       M_OF_CM((double)my_enu_point_i.z));
#endif

	float ex = my_enu_point_f.x - M_OF_CM((double)my_enu_point_i.x);
	if (fabs(ex) > max_err.x) max_err.x = fabs(ex);
	float ey = my_enu_point_f.y - M_OF_CM((double)my_enu_point_i.y);
	if (fabs(ey) > max_err.y) max_err.y = fabs(ey);
	float ez = my_enu_point_f.z - M_OF_CM((double)my_enu_point_i.z);
	if (fabs(ez) > max_err.z) max_err.z = fabs(ez);
	sum_err += ex*ex + ey*ey + ez*ez;
      }
    }
  }

  double nb_samples = (2*RANGE / STEP + 1) * (2*RANGE / STEP + 1) *  (2*RANGE / STEP + 1);


  printf("enu_of_ecef int/float comparison:\n");
  printf("error max (%f,%f,%f) m\n", max_err.x, max_err.y, max_err.z );
  printf("error avg (%f ) m \n", sqrt(sum_err) / nb_samples );
  printf("\n");


}