Пример #1
0
int TestPoisson(void) {

  bool test = true;

  field f;
  init_empty_field(&f);
  
  int vec=1;

  // num of conservative variables f(vi) for each vi, phi, E, rho, u,
  // p, e (ou T)
  f.model.m=_MV+6; 
  f.vmax = _VMAX; // maximal wave speed
  f.model.NumFlux = VlasovP_Lagrangian_NumFlux;
  f.model.Source = VlasovP_Lagrangian_Source;
   //f.model.Source = NULL;
  
  f.model.BoundaryFlux = TestPoisson_BoundaryFlux;
  f.model.InitData = TestPoisson_InitData;
  f.model.ImposedData = TestPoisson_ImposedData;
 
  f.varindex = GenericVarindex;
  f.pre_dtfield = NULL;
  f.update_after_rk = NULL; 
    
    
  f.interp.interp_param[0] = f.model.m;  // _M
  f.interp.interp_param[1] = 3;  // x direction degree
  f.interp.interp_param[2] = 0;  // y direction degree
  f.interp.interp_param[3] = 0;  // z direction degree
  f.interp.interp_param[4] = 32;  // x direction refinement
  f.interp.interp_param[5] = 1;  // y direction refinement
  f.interp.interp_param[6] = 1;  // z direction refinement
  // read the gmsh file
  ReadMacroMesh(&(f.macromesh),"../test/testcube.msh");
  // try to detect a 2d mesh
  //bool is1d=Detect1DMacroMesh(&(f.macromesh));
  Detect1DMacroMesh(&(f.macromesh));
  bool is1d=f.macromesh.is1d;
  assert(is1d);

  // mesh preparation
  BuildConnectivity(&(f.macromesh));

  PrintMacroMesh(&(f.macromesh));
  //assert(1==2);
  //AffineMapMacroMesh(&(f.macromesh));
 
  // prepare the initial fields
  Initfield(&f);
  f.nb_diags=0;
  
  // prudence...
  CheckMacroMesh(&(f.macromesh),f.interp.interp_param+1);

  printf("cfl param =%f\n",f.hmin);

  // time derivative
  //dtField(&f);
  //DisplayField(&f);
  //assert(1==2);
  // apply the DG scheme
  // time integration by RK2 scheme 
  // up to final time = 1.
 
  /*Compute_electric_field(&f);

  // check the gradient on every glop
  for(int ie=0;ie<f.macromesh.nbelems;ie++){
    printf("elem %d\n",ie);
    for(int ipg=0;ipg<NPG(f.interp_param+1);ipg++){
      real xref[3],wpg;
      ref_pg_vol(f.interp_param+1,ipg,xref,&wpg,NULL);
      printf("Gauss point %d %f %f %f \n",ipg,xref[0],xref[1],xref[2]);
      int imem=f.varindex(f.interp_param,ie,ipg,_MV+1);
      printf("gradphi exact=%f gradphinum=%f\n",1-2*xref[0],f.wn[imem]);
      test=test && (fabs(f.wn[imem]-(1-2*xref[0]))<1e-10);
    }
    }*/

  //Computation_charge_density(f);
  
  SolvePoisson1D(&f,f.wn,1,0.0,0.0,LU,NONE);

  // check the gradient given by the poisson solver
  for(int ie=0;ie<f.macromesh.nbelems;ie++){
    MacroCell *mcell = f.mcell + ie;

    for(int ipg=0;ipg<NPG(mcell->raf, mcell->deg);ipg++){
      real xref[3],wpg;
      int *raf = f.interp_param+4;
      int *deg = f.interp_param+1;
      ref_pg_vol(raf, deg, ipg, xref, &wpg, NULL);
      //printf("Gauss point %d %f %f %f \n",ipg,xref[0],xref[1],xref[2]);
      int imem=f.varindex(f.interp_param, ipg, _MV + 1) + mcell->woffset;
      // printf("gradphi exact=%f gradphinum=%f rap=%f\n",
      //1-2*xref[0],f.wn[imem],(1-2*xref[0])/f.wn[imem]);
      real tolerance;
      if(sizeof(real) == sizeof(double))
	tolerance = 1e-8;
      else
	tolerance = 1e-4;

      test=test && (fabs(f.wn[imem]-(-1+2*xref[0])) < tolerance);
    }
  }
  return test;
}
Пример #2
0
int Test_TransportVP()
{
  bool test = true;

  field f;
  init_empty_field(&f);

  int vec=1;
  
  f.model.m=_INDEX_MAX; // num of conservative variables f(vi) for
			// each vi, phi, E, rho, u, p, e (ou T)
  f.model.NumFlux=VlasovP_Lagrangian_NumFlux;
 
  //f.model.Source = NULL;
 
  f.model.InitData = Test_TransportVP_InitData;
  f.model.ImposedData = Test_TransportVP_ImposedData;
  f.model.BoundaryFlux = Test_TransportVP_BoundaryFlux;

  f.varindex = GenericVarindex;
    
  f.interp.interp_param[0] = f.model.m;  // _M
  f.interp.interp_param[1] = 2;  // x direction degree
  f.interp.interp_param[2] = 0;  // y direction degree
  f.interp.interp_param[3] = 0;  // z direction degree
  f.interp.interp_param[4] = 16;  // x direction refinement
  f.interp.interp_param[5] = 1;  // y direction refinement
  f.interp.interp_param[6] = 1;  // z direction refinement
  // read the gmsh file
  ReadMacroMesh(&(f.macromesh), "../test/testcube.msh");
  // try to detect a 2d mesh
  Detect1DMacroMesh(&(f.macromesh));
  bool is1d = f.macromesh.is1d;
  assert(is1d);

  // mesh preparation
  BuildConnectivity(&(f.macromesh));

  //AffineMapMacroMesh(&(f.macromesh));
 
  // prepare the initial fields
  f.model.cfl = 0.05;
  Initfield(&f);
  f.vmax = _VMAX; // maximal wave speed
  f.nb_diags = 3;
  f.pre_dtfield = UpdateVlasovPoisson;
  f.post_dtfield=NULL;
  f.update_after_rk = PlotVlasovPoisson;
  f.model.Source = VlasovP_Lagrangian_Source;
  // prudence...
  CheckMacroMesh(&(f.macromesh), f.interp.interp_param + 1);

  printf("cfl param =%f\n", f.hmin);

  real tmax = 0.03;
  real dt = set_dt(&f);
  RK2(&f, tmax, dt);
  //RK2(&f,0.03,0.05);

  // save the results and the error
  int iel = 2 * _NB_ELEM_V / 3;
  int iloc = _DEG_V;
  printf("Trace vi=%f\n", -_VMAX + iel * _DV + _DV * glop(_DEG_V, iloc));
  Plotfield(iloc + iel * _DEG_V, false, &f, "sol","dgvisu.msh");
  Plotfield(iloc + iel * _DEG_V, true, &f, "error","dgerror.msh");
  Plot_Energies(&f, dt);

  real dd_Kinetic = L2_Kinetic_error(&f);
  
  printf("erreur kinetic L2=%lf\n", dd_Kinetic);
  test= test && (dd_Kinetic < 1e-2);

  return test;
}
Пример #3
0
int TestPeriodic(void) {

  bool test=true;

  field f;
  init_empty_field(&f);  

  f.model.m=_INDEX_MAX; // num of conservative variables
  f.vmax = _VMAX; // maximal wave speed 
  f.model.NumFlux=VlasovP_Lagrangian_NumFlux;
  f.model.Source = NULL;
  
  f.model.BoundaryFlux = TestPeriodic_BoundaryFlux;
  f.model.InitData = TestPeriodic_InitData;
  f.model.ImposedData = TestPeriodic_ImposedData;
 
  f.varindex=GenericVarindex;
  f.pre_dtfield=NULL;
  f.post_dtfield=NULL;
  f.update_after_rk=NULL; 
  f.model.cfl=0.05;
    
  f.interp.interp_param[0]=f.model.m;  // _M
  f.interp.interp_param[1]=3;  // x direction degree
  f.interp.interp_param[2]=0;  // y direction degree
  f.interp.interp_param[3]=0;  // z direction degree
  f.interp.interp_param[4]=10;  // x direction refinement
  f.interp.interp_param[5]=1;  // y direction refinement
  f.interp.interp_param[6]=1;  // z direction refinement
  // read the gmsh file
  ReadMacroMesh(&(f.macromesh), "test/testcube.msh");
  // try to detect a 2d mesh
  Detect1DMacroMesh(&(f.macromesh));
  assert(f.macromesh.is1d);

  // mesh preparation
  f.macromesh.period[0]=1;

  BuildConnectivity(&(f.macromesh));

  PrintMacroMesh(&(f.macromesh));
  //assert(1==2);
  //AffineMapMacroMesh(&(f.macromesh));
 
  // prepare the initial fields
  Initfield(&f);
  f.nb_diags = 0;



  // prudence...
  CheckMacroMesh(&(f.macromesh),f.interp.interp_param+1);

  printf("cfl param =%f\n",f.hmin);

  // time derivative
  //dtField(&f);
  //DisplayField(&f);
  //assert(1==2);
  // apply the DG scheme
  // time integration by RK2 scheme 
  // up to final time = 1.
  //RK2(&f,0.5,0.1);
  f.vmax=_VMAX;
  real dt = set_dt(&f);
  RK2(&f,0.5, dt);
 
  // save the results and the error
  Plotfield(0,(1==0),&f,"sol","dgvisu.msh");
  Plotfield(0,(1==1),&f,"error","dgerror.msh");

  real dd=L2error(&f);
  real dd_Kinetic=L2_Kinetic_error(&f);
  
  printf("erreur kinetic L2=%lf\n",dd_Kinetic);
  printf("erreur L2=%lf\n",dd);
  test= test && (dd<3e-3);


  //SolvePoisson(&f);

  return test;

}
Пример #4
0
int TestMHD1D(int argc, char *argv[]) {
  real cfl = 0.2;
  real tmax = 1.0;
  bool writemsh = false;
  real vmax = 6.0;
  bool usegpu = false;
  real dt = 0.0;

  for (;;) {
    int cc = getopt(argc, argv, "c:t:w:D:P:g:s:");
    if (cc == -1) break;
    switch (cc) {
    case 0:
      break;
    case 'c':
      cfl = atof(optarg);
      break;
    case 'g':
      usegpu = atoi(optarg);
      break;
    case 't':
      tmax = atof(optarg);
      break;
    case 'w':
      writemsh = true;
      break;
    case 'D':
       ndevice_cl= atoi(optarg);
      break;
    case 'P':
      nplatform_cl = atoi(optarg);
      break;
    default:
      printf("Error: invalid option.\n");
      printf("Usage:\n");
      printf("./testmanyv -c <cfl> -d <deg> -n <nraf> -t <tmax> -C\n -P <cl platform number> -D <cl device number> FIXME");
      exit(1);
    }
  }

  bool test = true;
  field f;
  init_empty_field(&f);  

  f.varindex = GenericVarindex;
  f.model.m = 9;
  f.model.cfl = cfl;

  strcpy(f.model.name,"MHD");

  f.model.NumFlux=MHDNumFluxRusanov;
  f.model.BoundaryFlux=MHDBoundaryFlux;
  f.model.InitData=MHDInitData;
  f.model.ImposedData=MHDImposedData;
  
  char buf[1000];
  sprintf(buf, "-D _M=%d", f.model.m);
  strcat(cl_buildoptions, buf);

  sprintf(numflux_cl_name, "%s", "MHDNumFluxRusanov");
  sprintf(buf," -D NUMFLUX=");
  strcat(buf, numflux_cl_name);
  strcat(cl_buildoptions, buf);

  sprintf(buf, " -D BOUNDARYFLUX=%s", "MHDBoundaryFlux");
  strcat(cl_buildoptions, buf);
  
  // Set the global parameters for the Vlasov equation
  f.interp.interp_param[0] = f.model.m; // _M
  f.interp.interp_param[1] = 1; // x direction degree
  f.interp.interp_param[2] = 0; // y direction degree
  f.interp.interp_param[3] = 0; // z direction degree
  f.interp.interp_param[4] = 10; // x direction refinement
  f.interp.interp_param[5] = 1; // y direction refinement
  f.interp.interp_param[6] = 1; // z direction refinement


  //set_vlasov_params(&(f.model));

  // Read the gmsh file
  ReadMacroMesh(&(f.macromesh), "test/testcartesiangrid1d.msh");
  //ReadMacroMesh(&(f.macromesh), "test/testcube.msh");
  // Try to detect a 2d mesh
  Detect1DMacroMesh(&(f.macromesh));
  bool is1d=f.macromesh.is1d; 
  assert(is1d);  

  f.macromesh.period[0]=10;
  
  // Mesh preparation
  BuildConnectivity(&(f.macromesh));

  // Prepare the initial fields
  Initfield(&f);

  
  // Prudence...
  CheckMacroMesh(&(f.macromesh), f.interp.interp_param + 1);

  Plotfield(0, (1==0), &f, "Rho", "dginit.msh");

  f.vmax=vmax;

  if(dt <= 0)
    dt = set_dt(&f);

  real executiontime;
  if(usegpu) {
    printf("Using OpenCL:\n");
    //executiontime = seconds();
    assert(1==2);
    RK2(&f, tmax, dt);
    //executiontime = seconds() - executiontime;
  } else { 
    printf("Using C:\n");
    //executiontime = seconds();
    RK2(&f, tmax, dt);
    //executiontime = seconds() - executiontime;
  }

  Plotfield(0,false,&f, "Rho", "dgvisu.msh");
  Gnuplot(&f,0,0.0,"data1D.dat");

  printf("tmax: %f, cfl: %f\n", tmax, f.model.cfl);

  printf("deltax:\n");
  printf("%f\n", f.hmin);

  printf("deltat:\n");
  printf("%f\n", dt);

  printf("DOF:\n");
  printf("%d\n", f.wsize);

  printf("executiontime (s):\n");
  printf("%f\n", executiontime);

  printf("time per RK2 (s):\n");
  printf("%f\n", executiontime / (real)f.itermax);

  return test;
}