Пример #1
0
void RTTIBuilder::push_funcptr(FuncDeclaration *fd, Type *castto) {
  if (fd) {
    DtoResolveFunction(fd);
    LLConstant *F = getIrFunc(fd)->func;
    if (castto) {
      F = DtoBitCast(F, DtoType(castto));
    }
    push(F);
  } else if (castto) {
    push_null(castto);
  } else {
    push_null_vp();
  }
}
Пример #2
0
DValue* DtoNewClass(Loc& loc, TypeClass* tc, NewExp* newexp)
{
    // resolve type
    DtoResolveClass(tc->sym);

    // allocate
    LLValue* mem;
    if (newexp->onstack)
    {
        // FIXME align scope class to its largest member
        mem = DtoRawAlloca(DtoType(tc)->getContainedType(0), 0, ".newclass_alloca");
    }
    // custom allocator
    else if (newexp->allocator)
    {
        DtoResolveFunction(newexp->allocator);
        DFuncValue dfn(newexp->allocator, getIrFunc(newexp->allocator)->func);
        DValue* res = DtoCallFunction(newexp->loc, NULL, &dfn, newexp->newargs);
        mem = DtoBitCast(res->getRVal(), DtoType(tc), ".newclass_custom");
    }
    // default allocator
    else
    {
        llvm::Function* fn = LLVM_D_GetRuntimeFunction(loc, gIR->module, "_d_newclass");
        LLConstant* ci = DtoBitCast(getIrAggr(tc->sym)->getClassInfoSymbol(), DtoType(Type::typeinfoclass->type));
        mem = gIR->CreateCallOrInvoke(fn, ci, ".newclass_gc_alloc").getInstruction();
        mem = DtoBitCast(mem, DtoType(tc), ".newclass_gc");
    }

    // init
    DtoInitClass(tc, mem);

    // init inner-class outer reference
    if (newexp->thisexp)
    {
        Logger::println("Resolving outer class");
        LOG_SCOPE;
        DValue* thisval = toElem(newexp->thisexp);
        unsigned idx = getFieldGEPIndex(tc->sym, tc->sym->vthis);
        LLValue* src = thisval->getRVal();
        LLValue* dst = DtoGEPi(mem, 0, idx);
        IF_LOG Logger::cout() << "dst: " << *dst << "\nsrc: " << *src << '\n';
        DtoStore(src, DtoBitCast(dst, getPtrToType(src->getType())));
    }
    // set the context for nested classes
    else if (tc->sym->isNested() && tc->sym->vthis)
    {
        DtoResolveNestedContext(loc, tc->sym, mem);
    }

    // call constructor
    if (newexp->member)
    {
        Logger::println("Calling constructor");
        assert(newexp->arguments != NULL);
        DtoResolveFunction(newexp->member);
        DFuncValue dfn(newexp->member, getIrFunc(newexp->member)->func, mem);
        return DtoCallFunction(newexp->loc, tc, &dfn, newexp->arguments);
    }

    // return default constructed class
    return new DImValue(tc, mem);
}
Пример #3
0
DValue *DtoNewClass(Loc &loc, TypeClass *tc, NewExp *newexp) {
  // resolve type
  DtoResolveClass(tc->sym);

  // allocate
  LLValue *mem;
  bool doInit = true;
  if (newexp->onstack) {
    unsigned alignment = tc->sym->alignsize;
    if (alignment == STRUCTALIGN_DEFAULT)
      alignment = 0;
    mem = DtoRawAlloca(DtoType(tc)->getContainedType(0), alignment,
                       ".newclass_alloca");
  }
  // custom allocator
  else if (newexp->allocator) {
    DtoResolveFunction(newexp->allocator);
    DFuncValue dfn(newexp->allocator, DtoCallee(newexp->allocator));
    DValue *res = DtoCallFunction(newexp->loc, nullptr, &dfn, newexp->newargs);
    mem = DtoBitCast(DtoRVal(res), DtoType(tc), ".newclass_custom");
  }
  // default allocator
  else {
    const bool useEHAlloc = global.params.ehnogc && newexp->thrownew;
    llvm::Function *fn = getRuntimeFunction(
        loc, gIR->module, useEHAlloc ? "_d_newThrowable" : "_d_allocclass");
    LLConstant *ci = DtoBitCast(getIrAggr(tc->sym)->getClassInfoSymbol(),
                                DtoType(getClassInfoType()));
    mem = gIR->CreateCallOrInvoke(fn, ci,
                                  useEHAlloc ? ".newthrowable_alloc"
                                             : ".newclass_gc_alloc")
              .getInstruction();
    mem = DtoBitCast(mem, DtoType(tc),
                     useEHAlloc ? ".newthrowable" : ".newclass_gc");
    doInit = !useEHAlloc;
  }

  // init
  if (doInit)
    DtoInitClass(tc, mem);

  // init inner-class outer reference
  if (newexp->thisexp) {
    Logger::println("Resolving outer class");
    LOG_SCOPE;
    unsigned idx = getFieldGEPIndex(tc->sym, tc->sym->vthis);
    LLValue *src = DtoRVal(newexp->thisexp);
    LLValue *dst = DtoGEPi(mem, 0, idx);
    IF_LOG Logger::cout() << "dst: " << *dst << "\nsrc: " << *src << '\n';
    DtoStore(src, DtoBitCast(dst, getPtrToType(src->getType())));
  }
  // set the context for nested classes
  else if (tc->sym->isNested() && tc->sym->vthis) {
    DtoResolveNestedContext(loc, tc->sym, mem);
  }

  // call constructor
  if (newexp->member) {
    // evaluate argprefix
    if (newexp->argprefix) {
      toElemDtor(newexp->argprefix);
    }

    Logger::println("Calling constructor");
    assert(newexp->arguments != NULL);
    DtoResolveFunction(newexp->member);
    DFuncValue dfn(newexp->member, DtoCallee(newexp->member), mem);
    // ignore ctor return value (C++ ctors on Posix may not return `this`)
    DtoCallFunction(newexp->loc, tc, &dfn, newexp->arguments);
    return new DImValue(tc, mem);
  }

  assert(newexp->argprefix == NULL);

  // return default constructed class
  return new DImValue(tc, mem);
}
Пример #4
0
void DtoDefineFunction(FuncDeclaration* fd)
{
    IF_LOG Logger::println("DtoDefineFunction(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
    LOG_SCOPE;

    if (fd->ir.isDefined()) return;

    if ((fd->type && fd->type->ty == Terror) ||
        (fd->type && fd->type->ty == Tfunction && static_cast<TypeFunction *>(fd->type)->next == NULL) ||
        (fd->type && fd->type->ty == Tfunction && static_cast<TypeFunction *>(fd->type)->next->ty == Terror))
    {
        IF_LOG Logger::println("Ignoring; has error type, no return type or returns error type");
        fd->ir.setDefined();
        return;
    }

    if (fd->semanticRun == PASSsemanticdone)
    {
        /* What happened is this function failed semantic3() with errors,
         * but the errors were gagged.
         * Try to reproduce those errors, and then fail.
         */
        error(fd->loc, "errors compiling function %s", fd->toPrettyChars());
        fd->ir.setDefined();
        return;
    }

    DtoResolveFunction(fd);

    if (fd->isUnitTestDeclaration() && !global.params.useUnitTests)
    {
        IF_LOG Logger::println("No code generation for unit test declaration %s", fd->toChars());
        fd->ir.setDefined();
        return;
    }

    // Skip array ops implemented in druntime
    if (fd->isArrayOp && isDruntimeArrayOp(fd))
    {
        IF_LOG Logger::println("No code generation for array op %s implemented in druntime", fd->toChars());
        fd->ir.setDefined();
        return;
    }

    // Check whether the frontend knows that the function is already defined
    // in some other module (see DMD's FuncDeclaration::toObjFile).
    for (FuncDeclaration *f = fd; f; )
    {
        if (!f->isInstantiated() && f->inNonRoot())
        {
            IF_LOG Logger::println("Skipping '%s'.", fd->toPrettyChars());
            // TODO: Emit as available_externally for inlining purposes instead
            // (see #673).
            fd->ir.setDefined();
            return;
        }
        if (f->isNested())
            f = f->toParent2()->isFuncDeclaration();
        else
            break;
    }

    DtoDeclareFunction(fd);
    assert(fd->ir.isDeclared());

    // DtoResolveFunction might also set the defined flag for functions we
    // should not touch.
    if (fd->ir.isDefined()) return;
    fd->ir.setDefined();

    // We cannot emit nested functions with parents that have not gone through
    // semantic analysis. This can happen as DMD leaks some template instances
    // from constraints into the module member list. DMD gets away with being
    // sloppy as functions in template contraints obviously never need to access
    // data from the template function itself, but it would still mess up our
    // nested context creation code.
    FuncDeclaration* parent = fd;
    while ((parent = getParentFunc(parent, true)))
    {
        if (parent->semanticRun != PASSsemantic3done || parent->semantic3Errors)
        {
            IF_LOG Logger::println("Ignoring nested function with unanalyzed parent.");
            return;
        }
    }

    assert(fd->semanticRun == PASSsemantic3done);
    assert(fd->ident != Id::empty);

    if (fd->isUnitTestDeclaration()) {
        gIR->unitTests.push_back(fd);
    } else if (fd->isSharedStaticCtorDeclaration()) {
        gIR->sharedCtors.push_back(fd);
    } else if (StaticDtorDeclaration *dtorDecl = fd->isSharedStaticDtorDeclaration()) {
        gIR->sharedDtors.push_front(fd);
        if (dtorDecl->vgate)
            gIR->sharedGates.push_front(dtorDecl->vgate);
    } else if (fd->isStaticCtorDeclaration()) {
        gIR->ctors.push_back(fd);
    } else if (StaticDtorDeclaration *dtorDecl = fd->isStaticDtorDeclaration()) {
        gIR->dtors.push_front(fd);
        if (dtorDecl->vgate)
            gIR->gates.push_front(dtorDecl->vgate);
    }


    // if this function is naked, we take over right away! no standard processing!
    if (fd->naked)
    {
        DtoDefineNakedFunction(fd);
        return;
    }

    IrFunction *irFunc = getIrFunc(fd);
    IrFuncTy &irFty = irFunc->irFty;

    // debug info
    irFunc->diSubprogram = gIR->DBuilder.EmitSubProgram(fd);

    Type* t = fd->type->toBasetype();
    TypeFunction* f = static_cast<TypeFunction*>(t);
    // assert(f->ctype);

    llvm::Function* func = irFunc->func;

    // is there a body?
    if (fd->fbody == NULL)
        return;

    IF_LOG Logger::println("Doing function body for: %s", fd->toChars());
    gIR->functions.push_back(irFunc);

    if (fd->isMain())
        gIR->emitMain = true;

    func->setLinkage(lowerFuncLinkage(fd));

    // On x86_64, always set 'uwtable' for System V ABI compatibility.
    // TODO: Find a better place for this.
    // TODO: Is this required for Win64 as well?
    if (global.params.targetTriple.getArch() == llvm::Triple::x86_64)
    {
        func->addFnAttr(LDC_ATTRIBUTE(UWTable));
    }
#if LDC_LLVM_VER >= 303
    if (opts::sanitize != opts::None) {
        // Set the required sanitizer attribute.
        if (opts::sanitize == opts::AddressSanitizer) {
            func->addFnAttr(LDC_ATTRIBUTE(SanitizeAddress));
        }

        if (opts::sanitize == opts::MemorySanitizer) {
            func->addFnAttr(LDC_ATTRIBUTE(SanitizeMemory));
        }

        if (opts::sanitize == opts::ThreadSanitizer) {
            func->addFnAttr(LDC_ATTRIBUTE(SanitizeThread));
        }
    }
#endif

    llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(gIR->context(), "", func);
    llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "endentry", func);

    //assert(gIR->scopes.empty());
    gIR->scopes.push_back(IRScope(beginbb, endbb));

    // create alloca point
    // this gets erased when the function is complete, so alignment etc does not matter at all
    llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::getInt32Ty(gIR->context()), "alloca point", beginbb);
    irFunc->allocapoint = allocaPoint;

    // debug info - after all allocas, but before any llvm.dbg.declare etc
    gIR->DBuilder.EmitFuncStart(fd);

    // this hack makes sure the frame pointer elimination optimization is disabled.
    // this this eliminates a bunch of inline asm related issues.
    if (fd->hasReturnExp & 8) // has inline asm
    {
        // emit a call to llvm_eh_unwind_init
        LLFunction* hack = GET_INTRINSIC_DECL(eh_unwind_init);
        gIR->ir->CreateCall(hack, "");
    }

    // give the 'this' argument storage and debug info
    if (irFty.arg_this)
    {
        LLValue* thisvar = irFunc->thisArg;
        assert(thisvar);

        LLValue* thismem = thisvar;
        if (!irFty.arg_this->byref)
        {
            thismem = DtoRawAlloca(thisvar->getType(), 0, "this"); // FIXME: align?
            DtoStore(thisvar, thismem);
            irFunc->thisArg = thismem;
        }

        assert(getIrParameter(fd->vthis)->value == thisvar);
        getIrParameter(fd->vthis)->value = thismem;

        gIR->DBuilder.EmitLocalVariable(thismem, fd->vthis);
    }

    // give the 'nestArg' storage
    if (irFty.arg_nest)
    {
        LLValue *nestArg = irFunc->nestArg;
        LLValue *val = DtoRawAlloca(nestArg->getType(), 0, "nestedFrame");
        DtoStore(nestArg, val);
        irFunc->nestArg = val;
    }

    // give arguments storage
    // and debug info
    if (fd->parameters)
    {
        size_t n = irFty.args.size();
        assert(n == fd->parameters->dim);
        for (size_t i=0; i < n; ++i)
        {
            Dsymbol* argsym = static_cast<Dsymbol*>(fd->parameters->data[i]);
            VarDeclaration* vd = argsym->isVarDeclaration();
            assert(vd);

            IrParameter* irparam = getIrParameter(vd);
            assert(irparam);

            bool refout = vd->storage_class & (STCref | STCout);
            bool lazy = vd->storage_class & STClazy;
            if (!refout && (!irparam->arg->byref || lazy))
            {
                // alloca a stack slot for this first class value arg
                LLValue* mem = DtoAlloca(irparam->arg->type, vd->ident->toChars());

                // let the abi transform the argument back first
                DImValue arg_dval(vd->type, irparam->value);
                irFty.getParam(vd->type, i, &arg_dval, mem);

                // set the arg var value to the alloca
                irparam->value = mem;
            }

            if (global.params.symdebug && !(isaArgument(irparam->value) && isaArgument(irparam->value)->hasByValAttr()) && !refout)
                gIR->DBuilder.EmitLocalVariable(irparam->value, vd);
        }
    }

    FuncGen fg;
    irFunc->gen = &fg;

    DtoCreateNestedContext(fd);

    if (fd->vresult && !
        fd->vresult->nestedrefs.dim // FIXME: not sure here :/
    )
    {
        DtoVarDeclaration(fd->vresult);
    }

    // D varargs: prepare _argptr and _arguments
    if (f->linkage == LINKd && f->varargs == 1)
    {
        // allocate _argptr (of type core.stdc.stdarg.va_list)
        LLValue* argptrmem = DtoAlloca(Type::tvalist, "_argptr_mem");
        irFunc->_argptr = argptrmem;

        // initialize _argptr with a call to the va_start intrinsic
        LLValue* vaStartArg = gABI->prepareVaStart(argptrmem);
        llvm::CallInst::Create(GET_INTRINSIC_DECL(vastart), vaStartArg, "", gIR->scopebb());

        // copy _arguments to a memory location
        LLType* argumentsType = irFunc->_arguments->getType();
        LLValue* argumentsmem = DtoRawAlloca(argumentsType, 0, "_arguments_mem");
        new llvm::StoreInst(irFunc->_arguments, argumentsmem, gIR->scopebb());
        irFunc->_arguments = argumentsmem;
    }

    // output function body
    codegenFunction(fd->fbody, gIR);
    irFunc->gen = 0;

    llvm::BasicBlock* bb = gIR->scopebb();
    if (pred_begin(bb) == pred_end(bb) && bb != &bb->getParent()->getEntryBlock()) {
        // This block is trivially unreachable, so just delete it.
        // (This is a common case because it happens when 'return'
        // is the last statement in a function)
        bb->eraseFromParent();
    } else if (!gIR->scopereturned()) {
        // llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
        // in automatically, so we do it here.

        // pass the previous block into this block
        gIR->DBuilder.EmitFuncEnd(fd);
        if (func->getReturnType() == LLType::getVoidTy(gIR->context())) {
            llvm::ReturnInst::Create(gIR->context(), gIR->scopebb());
        }
        else if (!fd->isMain()) {
            AsmBlockStatement* asmb = fd->fbody->endsWithAsm();
            if (asmb) {
                assert(asmb->abiret);
                llvm::ReturnInst::Create(gIR->context(), asmb->abiret, bb);
            }
            else {
                llvm::ReturnInst::Create(gIR->context(), llvm::UndefValue::get(func->getReturnType()), bb);
            }
        }
        else
            llvm::ReturnInst::Create(gIR->context(), LLConstant::getNullValue(func->getReturnType()), bb);
    }

    // erase alloca point
    if (allocaPoint->getParent())
        allocaPoint->eraseFromParent();
    allocaPoint = 0;
    gIR->func()->allocapoint = 0;

    gIR->scopes.pop_back();

    // get rid of the endentry block, it's never used
    assert(!func->getBasicBlockList().empty());
    func->getBasicBlockList().pop_back();

    gIR->functions.pop_back();
}
Пример #5
0
void DtoDeclareFunction(FuncDeclaration* fdecl)
{
    DtoResolveFunction(fdecl);

    if (fdecl->ir.isDeclared()) return;
    fdecl->ir.setDeclared();

    IF_LOG Logger::println("DtoDeclareFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
    LOG_SCOPE;

    if (fdecl->isUnitTestDeclaration() && !global.params.useUnitTests)
    {
        Logger::println("unit tests not enabled");
        return;
    }

    //printf("declare function: %s\n", fdecl->toPrettyChars());

    // intrinsic sanity check
    if (fdecl->llvmInternal == LLVMintrinsic && fdecl->fbody) {
        error(fdecl->loc, "intrinsics cannot have function bodies");
        fatal();
    }

    // get TypeFunction*
    Type* t = fdecl->type->toBasetype();
    TypeFunction* f = static_cast<TypeFunction*>(t);

    // create IrFunction
    IrFunction *irFunc = getIrFunc(fdecl, true);

    LLFunction* vafunc = 0;
    if (DtoIsVaIntrinsic(fdecl))
        vafunc = DtoDeclareVaFunction(fdecl);

    // calling convention
    LINK link = f->linkage;
    if (vafunc || fdecl->llvmInternal == LLVMintrinsic
        // DMD treats _Dmain as having C calling convention and this has been
        // hardcoded into druntime, even if the frontend type has D linkage.
        // See Bugzilla issue 9028.
        || fdecl->isMain()
    )
    {
        link = LINKc;
    }

    // mangled name
    std::string mangledName(mangleExact(fdecl));
    mangledName = gABI->mangleForLLVM(mangledName, link);

    // construct function
    LLFunctionType* functype = DtoFunctionType(fdecl);
    LLFunction* func = vafunc ? vafunc : gIR->module->getFunction(mangledName);
    if (!func) {
        if(fdecl->llvmInternal == LLVMinline_ir)
        {
            func = DtoInlineIRFunction(fdecl);
        }
        else
        {
            // All function declarations are "external" - any other linkage type
            // is set when actually defining the function.
            func = LLFunction::Create(functype,
                llvm::GlobalValue::ExternalLinkage, mangledName, gIR->module);
        }
    } else if (func->getFunctionType() != functype) {
        error(fdecl->loc, "Function type does not match previously declared function with the same mangled name: %s", mangleExact(fdecl));
        fatal();
    }

    func->setCallingConv(gABI->callingConv(link));

    IF_LOG Logger::cout() << "func = " << *func << std::endl;

    // add func to IRFunc
    irFunc->func = func;

    // parameter attributes
    if (!DtoIsIntrinsic(fdecl)) {
        set_param_attrs(f, func, fdecl);
        if (global.params.disableRedZone) {
            func->addFnAttr(LDC_ATTRIBUTE(NoRedZone));
        }
    }

    // main
    if (fdecl->isMain()) {
        // Detect multiple main functions, which is disallowed. DMD checks this
        // in the glue code, so we need to do it here as well.
        if (gIR->mainFunc) {
            error(fdecl->loc, "only one main function allowed");
        }
        gIR->mainFunc = func;
    }

    if (fdecl->neverInline)
    {
        irFunc->setNeverInline();
    }

    if (fdecl->llvmInternal == LLVMglobal_crt_ctor || fdecl->llvmInternal == LLVMglobal_crt_dtor)
    {
        AppendFunctionToLLVMGlobalCtorsDtors(func, fdecl->priority, fdecl->llvmInternal == LLVMglobal_crt_ctor);
    }

    IrFuncTy &irFty = irFunc->irFty;

    // if (!declareOnly)
    {
        // name parameters
        llvm::Function::arg_iterator iarg = func->arg_begin();

        if (irFty.arg_sret) {
            iarg->setName(".sret_arg");
            irFunc->retArg = iarg;
            ++iarg;
        }

        if (irFty.arg_this) {
            iarg->setName(".this_arg");
            irFunc->thisArg = iarg;

            VarDeclaration* v = fdecl->vthis;
            if (v) {
                // We already build the this argument here if we will need it
                // later for codegen'ing the function, just as normal
                // parameters below, because it can be referred to in nested
                // context types. Will be given storage in DtoDefineFunction.
                assert(!isIrParameterCreated(v));
                IrParameter *irParam = getIrParameter(v, true);
                irParam->value = iarg;
                irParam->arg = irFty.arg_this;
                irParam->isVthis = true;
            }

            ++iarg;
        }
        else if (irFty.arg_nest) {
            iarg->setName(".nest_arg");
            irFunc->nestArg = iarg;
            assert(irFunc->nestArg);
            ++iarg;
        }

        if (irFty.arg_arguments) {
            iarg->setName("._arguments");
            irFunc->_arguments = iarg;
            ++iarg;
        }

        // we never reference parameters of function prototypes
        unsigned int k = 0;
        for (; iarg != func->arg_end(); ++iarg)
        {
            if (fdecl->parameters && fdecl->parameters->dim > k)
            {
                int paramIndex = irFty.reverseParams ? fdecl->parameters->dim-k-1 : k;
                Dsymbol* argsym = static_cast<Dsymbol*>(fdecl->parameters->data[paramIndex]);

                VarDeclaration* argvd = argsym->isVarDeclaration();
                assert(argvd);
                assert(!isIrLocalCreated(argvd));
                std::string str(argvd->ident->toChars());
                str.append("_arg");
                iarg->setName(str);

                IrParameter *irParam = getIrParameter(argvd, true);
                irParam->value = iarg;
                irParam->arg = irFty.args[paramIndex];

                k++;
            }
            else
            {
                iarg->setName("unnamed");
            }
        }
    }
}