/** Function for 'openinfo' command. @param[in] ImageHandle Handle to the Image (NULL if Internal). @param[in] SystemTable Pointer to the System Table (NULL if Internal). **/ SHELL_STATUS EFIAPI ShellCommandRunOpenInfo ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; LIST_ENTRY *Package; CHAR16 *ProblemParam; SHELL_STATUS ShellStatus; EFI_HANDLE TheHandle; CONST CHAR16 *Param1; UINT64 Intermediate; ShellStatus = SHELL_SUCCESS; // // initialize the shell lib (we must be in non-auto-init...) // Status = ShellInitialize(); ASSERT_EFI_ERROR(Status); Status = CommandInit(); ASSERT_EFI_ERROR(Status); // // parse the command line // Status = ShellCommandLineParse (EmptyParamList, &Package, &ProblemParam, TRUE); if (EFI_ERROR(Status)) { if (Status == EFI_VOLUME_CORRUPTED && ProblemParam != NULL) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PROBLEM), gShellDriver1HiiHandle, L"openinfo", ProblemParam); FreePool(ProblemParam); ShellStatus = SHELL_INVALID_PARAMETER; } else { ASSERT(FALSE); } } else { if (ShellCommandLineGetCount(Package) > 2){ // // error for too many parameters // ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_TOO_MANY), gShellDriver1HiiHandle, L"openinfo"); ShellStatus = SHELL_INVALID_PARAMETER; } else if (ShellCommandLineGetCount(Package) == 0) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_TOO_FEW), gShellDriver1HiiHandle, L"openinfo"); ShellStatus = SHELL_INVALID_PARAMETER; } else { Param1 = ShellCommandLineGetRawValue(Package, 1); Status = ShellConvertStringToUint64(Param1, &Intermediate, TRUE, FALSE); if (EFI_ERROR(Status) || Param1 == NULL || ConvertHandleIndexToHandle((UINTN)Intermediate) == NULL){ ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_INV_HANDLE), gShellDriver1HiiHandle, L"openinfo", Param1); ShellStatus = SHELL_INVALID_PARAMETER; } else { TheHandle = ConvertHandleIndexToHandle((UINTN)Intermediate); ASSERT(TheHandle != NULL); ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_OPENINFO_HEADER_LINE), gShellDriver1HiiHandle, (UINTN)Intermediate, TheHandle); Status = TraverseHandleDatabase (TheHandle); if (!EFI_ERROR(Status)) { } else { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_INV_HANDLE), gShellDriver1HiiHandle, L"openinfo", Param1); ShellStatus = SHELL_NOT_FOUND; } } } } return (ShellStatus); }
/** Open the database and print out all the info about TheHandle. @param[in] TheHandle The handle to print info on. @retval EFI_SUCCESS The operation was successful. @retval EFI_INVALID_PARAMETER TheHandle was NULL. **/ EFI_STATUS EFIAPI TraverseHandleDatabase ( IN CONST EFI_HANDLE TheHandle ) { EFI_STATUS Status; EFI_GUID **ProtocolGuidArray; UINTN ArrayCount; UINTN ProtocolIndex; EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfo; UINTN OpenInfoCount; UINTN OpenInfoIndex; CONST CHAR16 *OpenTypeString; CHAR16 *TempString; UINTN HandleIndex; CONST CHAR16 *Name; UINTN ControllerIndex; if (TheHandle == NULL) { return (EFI_INVALID_PARAMETER); } // // Retrieve the list of all the protocols on the handle // Status = gBS->ProtocolsPerHandle ( TheHandle, &ProtocolGuidArray, &ArrayCount ); ASSERT_EFI_ERROR(Status); if (!EFI_ERROR (Status)) { for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++) { // // print out the human readable name for this one. // TempString = GetStringNameFromGuid(ProtocolGuidArray[ProtocolIndex], NULL); if (TempString == NULL) { continue; } ShellPrintEx(-1, -1, L"%H%s%N\r\n", TempString); FreePool(TempString); // // Retrieve the list of agents that have opened each protocol // Status = gBS->OpenProtocolInformation ( TheHandle, ProtocolGuidArray[ProtocolIndex], &OpenInfo, &OpenInfoCount ); ASSERT_EFI_ERROR(Status); if (!EFI_ERROR (Status)) { for (OpenInfoIndex = 0; OpenInfoIndex < OpenInfoCount; OpenInfoIndex++) { switch (OpenInfo[OpenInfoIndex].Attributes) { case EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL: OpenTypeString = StringHandProt; break; case EFI_OPEN_PROTOCOL_GET_PROTOCOL: OpenTypeString = StringGetProt; break; case EFI_OPEN_PROTOCOL_TEST_PROTOCOL: OpenTypeString = StringTestProt; break; case EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER: OpenTypeString = StringChild; break; case EFI_OPEN_PROTOCOL_BY_DRIVER: OpenTypeString = StringDriver; break; case EFI_OPEN_PROTOCOL_EXCLUSIVE: OpenTypeString = StringExclusive; break; case EFI_OPEN_PROTOCOL_BY_DRIVER|EFI_OPEN_PROTOCOL_EXCLUSIVE: OpenTypeString = StringDriverEx; break; default: OpenTypeString = StringUnknown; break; } HandleIndex = ConvertHandleToHandleIndex(OpenInfo[OpenInfoIndex].AgentHandle); Name = GetStringNameFromHandle(OpenInfo[OpenInfoIndex].AgentHandle, NULL); ControllerIndex = ConvertHandleToHandleIndex(OpenInfo[OpenInfoIndex].ControllerHandle); if (ControllerIndex != 0) { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN(STR_OPENINFO_LINE), gShellDriver1HiiHandle, HandleIndex, ControllerIndex, OpenInfo[OpenInfoIndex].OpenCount, OpenTypeString, Name ); } else { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN(STR_OPENINFO_MIN_LINE), gShellDriver1HiiHandle, HandleIndex, OpenInfo[OpenInfoIndex].OpenCount, OpenTypeString, Name ); } } FreePool (OpenInfo); } } FreePool (ProtocolGuidArray); } return Status; }
EFI_STATUS RequiredElementsBbTest ( IN EFI_BB_TEST_PROTOCOL *This, IN VOID *ClientInterface, IN EFI_TEST_LEVEL TestLevel, IN EFI_HANDLE SupportHandle ) /*++ Routine Description: Check the required elements, which defined in the EFI spec 1.10, section 2.6.1. --*/ { EFI_STATUS Status; EFI_STANDARD_TEST_LIBRARY_PROTOCOL *StandardLib; // // Locate the standard test library protocol // Status = gtBS->HandleProtocol ( SupportHandle, &gEfiStandardTestLibraryGuid, &StandardLib ); if (EFI_ERROR (Status)) { return Status; } // // Check the EFI System Table // CheckSystemTable (StandardLib); // // Check the EFI Boot Services // CheckBootServices (StandardLib); // // Check the EFI Runtime Services // CheckRuntimeServices (StandardLib); // // Check the LOADED_IMAGE Protocol // CheckLoadedImageProtocol (StandardLib); // // Check the DEVICE_PATH Protocol // CheckDevicePathProtocol (StandardLib); // // Check the DECOMPRESS Protocol // CheckDecompressProtocol (StandardLib); // // Check the EBC Interpreter // CheckEbcProtocol (StandardLib); // // Done // return EFI_SUCCESS; }
/** Allocates one or more 4KB pages of a certain memory type at a specified alignment. Allocates the number of 4KB pages specified by Pages of a certain memory type with an alignment specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is returned. If there is not enough memory at the specified alignment remaining to satisfy the request, then NULL is returned. If Alignment is not a power of two and Alignment is not zero, then ASSERT(). If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT(). @param MemoryType The type of memory to allocate. @param Pages The number of 4 KB pages to allocate. @param Alignment The requested alignment of the allocation. Must be a power of two. If Alignment is zero, then byte alignment is used. @return A pointer to the allocated buffer or NULL if allocation fails. **/ VOID * InternalAllocateAlignedPages ( IN EFI_MEMORY_TYPE MemoryType, IN UINTN Pages, IN UINTN Alignment ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS Memory; UINTN AlignedMemory; UINTN AlignmentMask; UINTN UnalignedPages; UINTN RealPages; // // Alignment must be a power of two or zero. // ASSERT ((Alignment & (Alignment - 1)) == 0); if (Pages == 0) { return NULL; } if (Alignment > EFI_PAGE_SIZE) { // // Calculate the total number of pages since alignment is larger than page size. // AlignmentMask = Alignment - 1; RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment); // // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow. // ASSERT (RealPages > Pages); Status = gSmst->SmmAllocatePages (AllocateAnyPages, MemoryType, RealPages, &Memory); if (EFI_ERROR (Status)) { return NULL; } AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask; UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory); if (UnalignedPages > 0) { // // Free first unaligned page(s). // Status = gSmst->SmmFreePages (Memory, UnalignedPages); ASSERT_EFI_ERROR (Status); } Memory = AlignedMemory + EFI_PAGES_TO_SIZE (Pages); UnalignedPages = RealPages - Pages - UnalignedPages; if (UnalignedPages > 0) { // // Free last unaligned page(s). // Status = gSmst->SmmFreePages (Memory, UnalignedPages); ASSERT_EFI_ERROR (Status); } } else { // // Do not over-allocate pages in this case. // Status = gSmst->SmmAllocatePages (AllocateAnyPages, MemoryType, Pages, &Memory); if (EFI_ERROR (Status)) { return NULL; } AlignedMemory = (UINTN) Memory; } return (VOID *) AlignedMemory; }
/** This function uses policy data from the platform to determine what operating system or system utility should be loaded and invoked. This function call also optionally make the use of user input to determine the operating system or system utility to be loaded and invoked. When the DXE Core has dispatched all the drivers on the dispatch queue, this function is called. This function will attempt to connect the boot devices required to load and invoke the selected operating system or system utility. During this process, additional firmware volumes may be discovered that may contain addition DXE drivers that can be dispatched by the DXE Core. If a boot device cannot be fully connected, this function calls the DXE Service Dispatch() to allow the DXE drivers from any newly discovered firmware volumes to be dispatched. Then the boot device connection can be attempted again. If the same boot device connection operation fails twice in a row, then that boot device has failed, and should be skipped. This function should never return. @param This The EFI_BDS_ARCH_PROTOCOL instance. @return None. **/ VOID EFIAPI BdsEntry ( IN EFI_BDS_ARCH_PROTOCOL *This ) { UINTN Size; EFI_STATUS Status; UINT16 *BootNext; UINTN BootNextSize; CHAR16 BootVariableName[9]; EFI_EVENT EndOfDxeEvent; VOID *NewBase; // // Signal EndOfDxe PI Event // Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, EmptyCallbackFunction, NULL, &gEfiEndOfDxeEventGroupGuid, &EndOfDxeEvent ); if (!EFI_ERROR (Status)) { gBS->SignalEvent (EndOfDxeEvent); } PERF_END (NULL, "DXE", NULL, 0); OemPostEndIndicator(); //?им1??и▓бф?иж?б└бзиви┤и║б└1?б└и╣бд?бу?бъ?ж╠б└ижи║??2G?и▓бф?и║б└бъ??и▓бф?2?1?ио?бъ??ик?ив??HOB?D //memory reserved идидDикимивижy?asystem memory идидDик NewBase = AllocatePages (EFI_SIZE_TO_PAGES(SIZE_2GB)); if (NULL == NewBase) { DEBUG ((EFI_D_ERROR, "There are not enough memory space..........\n")); } else { FreePages(NewBase,EFI_SIZE_TO_PAGES(SIZE_2GB)); } // // Declare the Firmware Vendor // if (FixedPcdGetPtr(PcdFirmwareVendor) != NULL) { Size = 0x100; gST->FirmwareVendor = AllocateRuntimePool (Size); ASSERT (gST->FirmwareVendor != NULL); UnicodeSPrint (gST->FirmwareVendor, Size, L"%a EFI %a %a", PcdGetPtr(PcdFirmwareVendor), __DATE__, __TIME__); } // // Fixup Table CRC after we updated Firmware Vendor // gST->Hdr.CRC32 = 0; Status = gBS->CalculateCrc32 ((VOID*)gST, gST->Hdr.HeaderSize, &gST->Hdr.CRC32); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { //for fortify } // If BootNext environment variable is defined then we just load it ! BootNextSize = sizeof(UINT16); Status = GetGlobalEnvironmentVariable (L"BootNext", NULL, &BootNextSize, (VOID**)&BootNext); if (!EFI_ERROR(Status)) { ASSERT(BootNextSize == sizeof(UINT16)); // Generate the requested Boot Entry variable name UnicodeSPrint (BootVariableName, 9 * sizeof(CHAR16), L"Boot%04X", *BootNext); // Set BootCurrent variable gRT->SetVariable (L"BootCurrent", &gEfiGlobalVariableGuid, EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, BootNextSize, BootNext); FreePool (BootNext); // Start the requested Boot Entry Status = BdsStartBootOption (BootVariableName); if (Status != EFI_NOT_FOUND) { // BootNext has not been succeeded launched if (EFI_ERROR(Status)) { Print(L"Fail to start BootNext.\n"); } // Delete the BootNext environment variable gRT->SetVariable (L"BootNext", &gEfiGlobalVariableGuid, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL); } // Clear BootCurrent variable gRT->SetVariable (L"BootCurrent", &gEfiGlobalVariableGuid, EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL); } // If Boot Order does not exist then create a default entry DefineDefaultBootEntries (); // Now we need to setup the EFI System Table with information about the console devices. InitializeConsole (); // // Update the CRC32 in the EFI System Table header // gST->Hdr.CRC32 = 0; Status = gBS->CalculateCrc32 ((VOID*)gST, gST->Hdr.HeaderSize, &gST->Hdr.CRC32); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { //for fortify } // Timer before initiating the default boot selection StartDefaultBootOnTimeout (); Status = VerifyBootLineEntry (); if(EFI_ERROR(Status)) { DEBUG((EFI_D_ERROR,"Input Password Error, Boot failed!\n")); return; } // Start the Boot Menu Status = BootMenuMain (); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { //for fortify } }
EFI_STATUS CheckEbcProtocol ( IN EFI_STANDARD_TEST_LIBRARY_PROTOCOL *StandardLib ) { EFI_STATUS Status; EFI_EBC_PROTOCOL *Ebc; EFI_TEST_ASSERTION AssertionType; // // Check the EBC Interpreter protocol // Status = gtBS->LocateProtocol ( &gEfiEbcProtocolGuid, NULL, &Ebc ); if ((Status == EFI_SUCCESS) && (Ebc->CreateThunk != NULL ) && (Ebc->UnloadImage != NULL ) && (Ebc->RegisterICacheFlush != NULL ) && (Ebc->GetVersion != NULL )) { AssertionType = EFI_TEST_ASSERTION_PASSED; } else { AssertionType = EFI_TEST_ASSERTION_FAILED; } StandardLib->RecordAssertion ( StandardLib, AssertionType, gEfiCompliantBbTestRequiredAssertionGuid007, L"EFI Compliant - EBC Interpreter protocol must exist", L"%a:%d:Status - %r, Expected - %r", __FILE__, __LINE__, Status, EFI_SUCCESS ); // // Record the entire EBC Interpreter protocol // if (!EFI_ERROR (Status)) { StandardLib->RecordMessage ( StandardLib, EFI_VERBOSE_LEVEL_DEFAULT, L" CreateThunk : %X\n" L" UnloadImage : %X\n" L" RegisterICacheFlush : %X\n" L" GetVersion : %X\n", Ebc->CreateThunk, Ebc->UnloadImage, Ebc->RegisterICacheFlush, Ebc->GetVersion ); } // // EBC Image Execution test will be included in the Protocol's Black-Box Test // // // Done // return EFI_SUCCESS; }
STATIC EFI_STATUS GetConsoleDevicePathFromVariable ( IN CHAR16* ConsoleVarName, IN CHAR16* DefaultConsolePaths, OUT EFI_DEVICE_PATH** DevicePaths ) { EFI_STATUS Status; UINTN Size; EFI_DEVICE_PATH_PROTOCOL* DevicePathInstances; EFI_DEVICE_PATH_PROTOCOL* DevicePathInstance; CHAR16* DevicePathStr; CHAR16* NextDevicePathStr; EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL *EfiDevicePathFromTextProtocol; Status = GetGlobalEnvironmentVariable (ConsoleVarName, NULL, NULL, (VOID**)&DevicePathInstances); if (EFI_ERROR(Status)) { // In case no default console device path has been defined we assume a driver handles the console (eg: SimpleTextInOutSerial) if ((DefaultConsolePaths == NULL) || (DefaultConsolePaths[0] == L'\0')) { *DevicePaths = NULL; return EFI_SUCCESS; } Status = gBS->LocateProtocol (&gEfiDevicePathFromTextProtocolGuid, NULL, (VOID **)&EfiDevicePathFromTextProtocol); ASSERT_EFI_ERROR(Status); DevicePathInstances = NULL; // Extract the Device Path instances from the multi-device path string while ((DefaultConsolePaths != NULL) && (DefaultConsolePaths[0] != L'\0')) { NextDevicePathStr = StrStr (DefaultConsolePaths, L";"); if (NextDevicePathStr == NULL) { DevicePathStr = DefaultConsolePaths; DefaultConsolePaths = NULL; } else { DevicePathStr = (CHAR16*)AllocateCopyPool (((UINTN)NextDevicePathStr - (UINTN)DefaultConsolePaths + 1) * sizeof(CHAR16), DefaultConsolePaths); if (NULL == DevicePathStr){ return EFI_INVALID_PARAMETER; } *(DevicePathStr + (NextDevicePathStr - DefaultConsolePaths)) = L'\0'; DefaultConsolePaths = NextDevicePathStr; if (DefaultConsolePaths[0] == L';') { DefaultConsolePaths++; } } DevicePathInstance = EfiDevicePathFromTextProtocol->ConvertTextToDevicePath (DevicePathStr); ASSERT(DevicePathInstance != NULL); DevicePathInstances = AppendDevicePathInstance (DevicePathInstances, DevicePathInstance); if (NextDevicePathStr != NULL) { FreePool (DevicePathStr); } FreePool (DevicePathInstance); } // Set the environment variable with this device path multi-instances Size = GetDevicePathSize (DevicePathInstances); if (Size > 0) { gRT->SetVariable ( ConsoleVarName, &gEfiGlobalVariableGuid, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, Size, DevicePathInstances ); } else { Status = EFI_INVALID_PARAMETER; } } if (!EFI_ERROR(Status)) { *DevicePaths = DevicePathInstances; } return Status; }
EFI_STATUS fsw_efi_dnode_fill_FileInfo(IN FSW_VOLUME_DATA *Volume, IN struct fsw_dnode *dno, IN OUT UINTN *BufferSize, OUT VOID *Buffer) { EFI_STATUS Status; EFI_FILE_INFO *FileInfo; UINTN RequiredSize; struct fsw_dnode *target_dno; struct fsw_dnode_stat sb; // make sure the dnode has complete info Status = fsw_efi_map_status(fsw_dnode_fill(dno), Volume); if (EFI_ERROR(Status)) return Status; // TODO: check/assert that the dno's name is in UTF16 // check buffer size RequiredSize = SIZE_OF_EFI_FILE_INFO + fsw_efi_strsize(&dno->name); if (*BufferSize < RequiredSize) { // TODO: wind back the directory in this case #if DEBUG_LEVEL Print(L"...BUFFER TOO SMALL\n"); #endif *BufferSize = RequiredSize; return EFI_BUFFER_TOO_SMALL; } // fill structure ZeroMem(Buffer, RequiredSize); FileInfo = (EFI_FILE_INFO *)Buffer; // must preserve the original file name fsw_efi_strcpy(FileInfo->FileName, &dno->name); // if the node is a symlink, also resolve it Status = fsw_efi_map_status(fsw_dnode_resolve(dno, &target_dno), Volume); fsw_dnode_release(dno); if (EFI_ERROR(Status)) return Status; dno = target_dno; // make sure the dnode has complete info again Status = fsw_efi_map_status(fsw_dnode_fill(dno), Volume); if (EFI_ERROR(Status)) return Status; FileInfo->Size = RequiredSize; FileInfo->FileSize = dno->size; FileInfo->Attribute = 0; if (dno->type == FSW_DNODE_TYPE_DIR) FileInfo->Attribute |= EFI_FILE_DIRECTORY; // get the missing info from the fs driver ZeroMem(&sb, sizeof(struct fsw_dnode_stat)); sb.store_time_posix = fsw_efi_store_time_posix; sb.store_attr_posix = fsw_efi_store_attr_posix; sb.host_data = FileInfo; Status = fsw_efi_map_status(fsw_dnode_stat(dno, &sb), Volume); if (EFI_ERROR(Status)) return Status; FileInfo->PhysicalSize = sb.used_bytes; // prepare for return *BufferSize = RequiredSize; #if DEBUG_LEVEL Print(L"...returning '%s'\n", FileInfo->FileName); #endif return EFI_SUCCESS; }
STATIC EFI_STATUS InitializeConsolePipe ( IN EFI_DEVICE_PATH *ConsoleDevicePaths, IN EFI_GUID *Protocol, OUT EFI_HANDLE *Handle, OUT VOID* *Interface ) { EFI_STATUS Status; UINTN Size; UINTN NoHandles; EFI_HANDLE *Buffer; EFI_DEVICE_PATH_PROTOCOL* DevicePath; // Connect all the Device Path Consoles while (ConsoleDevicePaths != NULL) { DevicePath = GetNextDevicePathInstance (&ConsoleDevicePaths, &Size); Status = BdsConnectDevicePath (DevicePath, Handle, NULL); DEBUG_CODE_BEGIN(); if (EFI_ERROR(Status)) { // We convert back to the text representation of the device Path EFI_DEVICE_PATH_TO_TEXT_PROTOCOL* DevicePathToTextProtocol; CHAR16* DevicePathTxt; EFI_STATUS Ret; Ret = gBS->LocateProtocol(&gEfiDevicePathToTextProtocolGuid, NULL, (VOID **)&DevicePathToTextProtocol); if (!EFI_ERROR(Ret)) { DevicePathTxt = DevicePathToTextProtocol->ConvertDevicePathToText (DevicePath, TRUE, TRUE); DEBUG((EFI_D_ERROR,"Fail to start the console with the Device Path '%s'. (Error '%r')\n", DevicePathTxt, Ret)); FreePool (DevicePathTxt); } } DEBUG_CODE_END(); // If the console splitter driver is not supported by the platform then use the first Device Path // instance for the console interface. if (!EFI_ERROR(Status) && (*Interface == NULL)) { Status = gBS->HandleProtocol (*Handle, Protocol, Interface); } } // No Device Path has been defined for this console interface. We take the first protocol implementation if (*Interface == NULL) { Status = gBS->LocateHandleBuffer (ByProtocol, Protocol, NULL, &NoHandles, &Buffer); if (EFI_ERROR (Status)) { BdsConnectAllDrivers(); Status = gBS->LocateHandleBuffer (ByProtocol, Protocol, NULL, &NoHandles, &Buffer); } if (!EFI_ERROR(Status)) { *Handle = Buffer[0]; Status = gBS->HandleProtocol (*Handle, Protocol, Interface); ASSERT_EFI_ERROR(Status); FreePool (Buffer); } } else { Status = EFI_SUCCESS; } return Status; }
EFI_STATUS GetBootDeviceTypeInfo ( VOID ) { EFI_STATUS Status = EFI_SUCCESS; LIST_ENTRY BootOptionsList; LIST_ENTRY* Entry; UINT16 *SataDes = NULL; UINT16 *MacDes = NULL; UINTN SataDesSize = 0; UINTN MacDesSize = 0; BDS_LOAD_OPTION* BootOption; UINTN OptionCount = 0; CHAR16* SataStr = L"Sata"; CHAR16* MacStr = L"MAC"; CHAR16* DevicePathTxt = NULL; EFI_DEVICE_PATH_TO_TEXT_PROTOCOL* DevicePathToTextProtocol = NULL; // Get Boot#### list BootOptionList (&BootOptionsList); // Display the Boot options for (Entry = GetFirstNode (&BootOptionsList); !IsNull (&BootOptionsList,Entry); Entry = GetNextNode (&BootOptionsList,Entry) ) { BootOption = LOAD_OPTION_FROM_LINK(Entry); //Print(L"[%d] %s\n", OptionCount, BootOption->Description); //DEBUG_CODE_BEGIN(); Status = gBS->LocateProtocol (&gEfiDevicePathToTextProtocolGuid, NULL, (VOID **)&DevicePathToTextProtocol); if (EFI_ERROR(Status)) { // You must provide an implementation of DevicePathToTextProtocol in your firmware (eg: DevicePathDxe) DEBUG((EFI_D_ERROR,"Error: Bds requires DevicePathToTextProtocol\n")); return Status; } DevicePathTxt = DevicePathToTextProtocol->ConvertDevicePathToText (BootOption->FilePathList, TRUE, TRUE); //Print(L"\t- %s\n",DevicePathTxt); //DEBUG_CODE_END(); //FIND SATA BOOT DEVICES if(!(StringFind(DevicePathTxt, SataStr))) { if(SataDesSize != 0) { SataDes = ReallocatePool (SataDesSize, SataDesSize + sizeof(UINT16), SataDes); SataDes[SataDesSize / sizeof(UINT16)] = BootOption->LoadOptionIndex; SataDesSize += sizeof(UINT16); }else{ SataDesSize = sizeof(UINT16); SataDes = &(BootOption->LoadOptionIndex); } // Print(L"liuhuan SATA boot num: %d\n",SataDesSize / sizeof(UINT16)); } //FIND PXE BOOT DEVICES if(!(StringFind(DevicePathTxt, MacStr) )) { if(MacDesSize != 0) { MacDes = ReallocatePool (MacDesSize, MacDesSize + sizeof(UINT16), MacDes); MacDes[MacDesSize / sizeof(UINT16)] = BootOption->LoadOptionIndex; MacDesSize += sizeof(UINT16); }else{ MacDesSize = sizeof(UINT16); MacDes = &(BootOption->LoadOptionIndex); } // Print(L"liuhuan PXE boot num: %d\n",MacDesSize / sizeof(UINT16)); } //FreePool(DevicePathTxt); OptionCount++; } OemGetSataBootNum(SataDesSize); OemGetPXEBootNum(MacDesSize); if(SataDes != NULL) { FreePool(SataDes); } if(MacDes != NULL) { FreePool(MacDes); } if(DevicePathTxt != NULL) { FreePool(DevicePathTxt); } return EFI_SUCCESS; }
/******************************************************************************** * Name: AmdFchWheaInitEntry * * Description * AmdFchWheaInit Entrypoint * * Input * ImageHandle : EFI Image Handle for the DXE driver * SystemTable : pointer to the EFI system table * * Output * EFI_SUCCESS : Module initialized successfully * EFI_ERROR : Initialization failed (see error for more details) * *********************************************************************************/ EFI_STATUS AmdFchWheaInitEntry ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; FCH_INIT_PROTOCOL *AmdFchInit; EFI_EVENT InstallAmdTableEvent; EFI_HANDLE Handle; UINT8 *buffer; Status = gBS->LocateProtocol ( &gFchInitProtocolGuid, NULL, &AmdFchInit ); ASSERT_EFI_ERROR (Status); if (AmdFchInit->FchPolicy.Gpp.PcieAer == 0) { return Status; } Status = EfiCreateEventReadyToBootEx ( TPL_CALLBACK, AmdWheaCheckInstallTables, NULL, &InstallAmdTableEvent ); // // Allocate memory and Initialize for Data block // Status = gBS->AllocatePool ( EfiReservedMemoryType, sizeof (AMD_FCH_WHEA_EINJ_BUFFER), (VOID **)&buffer ); if (EFI_ERROR (Status)) { return Status; } ZeroMem (buffer, sizeof (AMD_FCH_WHEA_EINJ_BUFFER)); mEinjData = (AMD_FCH_WHEA_EINJ_BUFFER *)buffer; mEinjData->Valid = FALSE; mEinjData->PlatformEinjValid = FALSE; // // Allocate memory and Initialize for Error Data block // Status = gBS->AllocatePool ( EfiReservedMemoryType, MAX_ERROR_BLOCK_SIZE, (VOID **)&buffer ); if (EFI_ERROR (Status)) { return Status; } ZeroMem (buffer, MAX_ERROR_BLOCK_SIZE); mEinjData->AmdHwErrBlk = (GENERIC_ERROR_STATUS_BLOCK *)buffer; AmdErrBlkAddressUpdate (); Handle = ImageHandle; Status = gBS->InstallProtocolInterface ( &Handle, &gEfiAmdFchWheaDataProtocolGuid, EFI_NATIVE_INTERFACE, mEinjData ); if (EFI_ERROR (Status)) { return (Status); } return Status; }
EFI_STATUS EFIAPI MmcIdentificationMode ( IN MMC_HOST_INSTANCE *MmcHostInstance ) { EFI_STATUS Status; UINT32 Response[4]; UINTN Timeout; UINTN CmdArg; BOOLEAN IsHCS; EFI_MMC_HOST_PROTOCOL *MmcHost; MmcHost = MmcHostInstance->MmcHost; CmdArg = 0; IsHCS = FALSE; if (MmcHost == NULL) { return EFI_INVALID_PARAMETER; } // We can get into this function if we restart the identification mode if (MmcHostInstance->State == MmcHwInitializationState) { // Initialize the MMC Host HW Status = MmcNotifyState (MmcHostInstance, MmcHwInitializationState); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcHwInitializationState\n")); return Status; } } Status = MmcHost->SendCommand (MmcHost, MMC_CMD0, 0); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD0): Error\n")); return Status; } Status = MmcNotifyState (MmcHostInstance, MmcIdleState); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcIdleState\n")); return Status; } // Are we using SDIO ? Status = MmcHost->SendCommand (MmcHost, MMC_CMD5, 0); if (Status == EFI_SUCCESS) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD5): Error - SDIO not supported.\n")); return EFI_UNSUPPORTED; } // Check which kind of card we are using. Ver2.00 or later SD Memory Card (PL180 is SD v1.1) CmdArg = (0x0UL << 12 | BIT8 | 0xCEUL << 0); Status = MmcHost->SendCommand (MmcHost, MMC_CMD8, CmdArg); if (Status == EFI_SUCCESS) { DEBUG ((EFI_D_ERROR, "Card is SD2.0 => Supports high capacity\n")); IsHCS = TRUE; MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_R7, Response); PrintResponseR1 (Response[0]); //check if it is valid response if (Response[0] != CmdArg) { DEBUG ((EFI_D_ERROR, "The Card is not usable\n")); return EFI_UNSUPPORTED; } } else { DEBUG ((EFI_D_ERROR, "Not a SD2.0 Card\n")); } // We need to wait for the MMC or SD card is ready => (gCardInfo.OCRData.PowerUp == 1) Timeout = MAX_RETRY_COUNT; while (Timeout > 0) { // SD Card or MMC Card ? CMD55 indicates to the card that the next command is an application specific command Status = MmcHost->SendCommand (MmcHost, MMC_CMD55, 0); if (Status == EFI_SUCCESS) { DEBUG ((EFI_D_INFO, "Card should be SD\n")); if (IsHCS) { MmcHostInstance->CardInfo.CardType = SD_CARD_2; } else { MmcHostInstance->CardInfo.CardType = SD_CARD; } // Note: The first time CmdArg will be zero CmdArg = ((UINTN *) &(MmcHostInstance->CardInfo.OCRData))[0]; if (IsHCS) { CmdArg |= BIT30; } Status = MmcHost->SendCommand (MmcHost, MMC_ACMD41, CmdArg); if (!EFI_ERROR (Status)) { MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_OCR, Response); ((UINT32 *) &(MmcHostInstance->CardInfo.OCRData))[0] = Response[0]; } } else { DEBUG ((EFI_D_INFO, "Card should be MMC\n")); MmcHostInstance->CardInfo.CardType = MMC_CARD; Status = MmcHost->SendCommand (MmcHost, MMC_CMD1, 0x800000); if (!EFI_ERROR (Status)) { MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_OCR, Response); ((UINT32 *) &(MmcHostInstance->CardInfo.OCRData))[0] = Response[0]; } } if (!EFI_ERROR (Status)) { if (!MmcHostInstance->CardInfo.OCRData.PowerUp) { MicroSecondDelay (1); Timeout--; } else { if ((MmcHostInstance->CardInfo.CardType == SD_CARD_2) && (MmcHostInstance->CardInfo.OCRData.AccessMode & BIT1)) { MmcHostInstance->CardInfo.CardType = SD_CARD_2_HIGH; DEBUG ((EFI_D_ERROR, "High capacity card.\n")); } break; // The MMC/SD card is ready. Continue the Identification Mode } } else { MicroSecondDelay (1); Timeout--; } } if (Timeout == 0) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(): No Card\n")); return EFI_NO_MEDIA; } else { PrintOCR (Response[0]); } Status = MmcNotifyState (MmcHostInstance, MmcReadyState); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcReadyState\n")); return Status; } Status = MmcHost->SendCommand (MmcHost, MMC_CMD2, 0); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD2): Error\n")); return Status; } MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_CID, Response); PrintCID (Response); Status = MmcNotifyState (MmcHostInstance, MmcIdentificationState); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode() : Error MmcIdentificationState\n")); return Status; } // // Note, SD specifications say that "if the command execution causes a state change, it // will be visible to the host in the response to the next command" // The status returned for this CMD3 will be 2 - identification // CmdArg = 1; Status = MmcHost->SendCommand (MmcHost, MMC_CMD3, CmdArg); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MmcIdentificationMode(MMC_CMD3): Error\n")); return Status; } MmcHost->ReceiveResponse (MmcHost, MMC_RESPONSE_TYPE_RCA, Response); PrintRCA (Response[0]); // For MMC card, RCA is assigned by CMD3 while CMD3 dumps the RCA for SD card if (MmcHostInstance->CardInfo.CardType != MMC_CARD) { MmcHostInstance->CardInfo.RCA = Response[0] >> 16; } else {
EFI_STATUS fsw_efi_dnode_getinfo(IN FSW_FILE_DATA *File, IN EFI_GUID *InformationType, IN OUT UINTN *BufferSize, OUT VOID *Buffer) { EFI_STATUS Status; FSW_VOLUME_DATA *Volume = (FSW_VOLUME_DATA *)File->shand.dnode->vol->host_data; EFI_FILE_SYSTEM_INFO *FSInfo; UINTN RequiredSize; struct fsw_volume_stat vsb; if (CompareGuid(InformationType, &GUID_NAME(FileInfo))) { #if DEBUG_LEVEL Print(L"fsw_efi_dnode_getinfo: FILE_INFO\n"); #endif Status = fsw_efi_dnode_fill_FileInfo(Volume, File->shand.dnode, BufferSize, Buffer); } else if (CompareGuid(InformationType, &GUID_NAME(FileSystemInfo)) == 0) { #if DEBUG_LEVEL Print(L"fsw_efi_dnode_getinfo: FILE_SYSTEM_INFO\n"); #endif // check buffer size RequiredSize = SIZE_OF_EFI_FILE_SYSTEM_INFO + fsw_efi_strsize(&Volume->vol->label); if (*BufferSize < RequiredSize) { *BufferSize = RequiredSize; return EFI_BUFFER_TOO_SMALL; } // fill structure FSInfo = (EFI_FILE_SYSTEM_INFO *)Buffer; FSInfo->Size = RequiredSize; FSInfo->ReadOnly = TRUE; FSInfo->BlockSize = Volume->vol->log_blocksize; fsw_efi_strcpy(FSInfo->VolumeLabel, &Volume->vol->label); // get the missing info from the fs driver ZeroMem(&vsb, sizeof(struct fsw_volume_stat)); Status = fsw_efi_map_status(fsw_volume_stat(Volume->vol, &vsb), Volume); if (EFI_ERROR(Status)) return Status; FSInfo->VolumeSize = vsb.total_bytes; FSInfo->FreeSpace = vsb.free_bytes; // prepare for return *BufferSize = RequiredSize; Status = EFI_SUCCESS; } else if (CompareGuid(InformationType, &GUID_NAME(FileSystemVolumeLabelInfoId))) { #if DEBUG_LEVEL Print(L"fsw_efi_dnode_getinfo: FILE_SYSTEM_VOLUME_LABEL\n"); #endif // check buffer size RequiredSize = SIZE_OF_EFI_FILE_SYSTEM_VOLUME_LABEL_INFO + fsw_efi_strsize(&Volume->vol->label); if (*BufferSize < RequiredSize) { *BufferSize = RequiredSize; return EFI_BUFFER_TOO_SMALL; } // copy volume label fsw_efi_strcpy(((EFI_FILE_SYSTEM_VOLUME_LABEL_INFO *)Buffer)->VolumeLabel, &Volume->vol->label); // prepare for return *BufferSize = RequiredSize; Status = EFI_SUCCESS; } else { Status = EFI_UNSUPPORTED; } return Status; }
/** Function for 'drvcfg' command. @param[in] ImageHandle Handle to the Image (NULL if Internal). @param[in] SystemTable Pointer to the System Table (NULL if Internal). **/ SHELL_STATUS EFIAPI ShellCommandRunDrvCfg ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; LIST_ENTRY *Package; CHAR16 *ProblemParam; SHELL_STATUS ShellStatus; CHAR8 *Language; CONST CHAR16 *Lang; CONST CHAR16 *HandleIndex1; CONST CHAR16 *HandleIndex2; CONST CHAR16 *HandleIndex3; CONST CHAR16 *ForceTypeString; BOOLEAN Force; BOOLEAN Set; BOOLEAN Validate; BOOLEAN InFromFile; BOOLEAN OutToFile; BOOLEAN AllChildren; BOOLEAN UseHii; UINT32 ForceType; UINT64 Intermediate; EFI_HANDLE Handle1; EFI_HANDLE Handle2; EFI_HANDLE Handle3; CONST CHAR16 *FileName; ShellStatus = SHELL_SUCCESS; Status = EFI_SUCCESS; Language = NULL; UseHii = TRUE; // // initialize the shell lib (we must be in non-auto-init...) // Status = ShellInitialize(); ASSERT_EFI_ERROR(Status); Status = CommandInit(); ASSERT_EFI_ERROR(Status); // // parse the command line // Status = ShellCommandLineParse (ParamListHii, &Package, &ProblemParam, TRUE); if (EFI_ERROR(Status) || ShellCommandLineGetCount(Package) > 2) { UseHii = FALSE; if (Package != NULL) { ShellCommandLineFreeVarList (Package); } SHELL_FREE_NON_NULL(ProblemParam); Status = ShellCommandLineParse (ParamListPreHii, &Package, &ProblemParam, TRUE); if (EFI_ERROR(Status)) { if (Status == EFI_VOLUME_CORRUPTED && ProblemParam != NULL) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PROBLEM), gShellDriver1HiiHandle, ProblemParam); FreePool(ProblemParam); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } else { ASSERT(FALSE); } } } if (ShellStatus == SHELL_SUCCESS) { Lang = ShellCommandLineGetValue(Package, L"-l"); if (Lang != NULL) { Language = AllocateZeroPool(StrSize(Lang)); AsciiSPrint(Language, StrSize(Lang), "%S", Lang); } else if (ShellCommandLineGetFlag(Package, L"-l")){ ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_NO_VALUE), gShellDriver1HiiHandle, L"-l"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } Set = ShellCommandLineGetFlag (Package, L"-s"); Validate = ShellCommandLineGetFlag (Package, L"-v"); InFromFile = ShellCommandLineGetFlag (Package, L"-i"); OutToFile = ShellCommandLineGetFlag (Package, L"-o"); AllChildren = ShellCommandLineGetFlag (Package, L"-c"); Force = ShellCommandLineGetFlag (Package, L"-f"); ForceTypeString = ShellCommandLineGetValue(Package, L"-f"); if (OutToFile) { FileName = ShellCommandLineGetValue(Package, L"-o"); } else if (InFromFile) { FileName = ShellCommandLineGetValue(Package, L"-i"); } else { FileName = NULL; } if (InFromFile && EFI_ERROR(ShellFileExists(FileName))) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_FIND_FAIL), gShellDriver1HiiHandle, FileName); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (OutToFile && !EFI_ERROR(ShellFileExists(FileName))) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_FILE_EXIST), gShellDriver1HiiHandle, FileName); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (Force && ForceTypeString == NULL) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_NO_VALUE), gShellDriver1HiiHandle, L"-f"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (Force) { Status = ShellConvertStringToUint64(ForceTypeString, &Intermediate, FALSE, FALSE); if (EFI_ERROR(Status)) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PROBLEM_VAL), gShellDriver1HiiHandle, L"-f"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } ForceType = (UINT32)Intermediate; } else { ForceType = 0; } HandleIndex1 = ShellCommandLineGetRawValue(Package, 1); Handle1 = NULL; if (HandleIndex1 != NULL && !EFI_ERROR(ShellConvertStringToUint64(HandleIndex1, &Intermediate, TRUE, FALSE))) { Handle1 = ConvertHandleIndexToHandle((UINTN)Intermediate); if (Handle1 == NULL || (UINT64)(UINTN)Intermediate != Intermediate) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_INV_HANDLE), gShellDriver1HiiHandle, HandleIndex1); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } } HandleIndex2 = ShellCommandLineGetRawValue(Package, 2); Handle2 = NULL; if (HandleIndex2 != NULL && !EFI_ERROR(ShellConvertStringToUint64(HandleIndex2, &Intermediate, TRUE, FALSE))) { Handle2 = ConvertHandleIndexToHandle((UINTN)Intermediate); if (Handle2 == NULL || (UINT64)(UINTN)Intermediate != Intermediate) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_INV_HANDLE), gShellDriver1HiiHandle, HandleIndex2); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } } HandleIndex3 = ShellCommandLineGetRawValue(Package, 3); Handle3 = NULL; if (HandleIndex3 != NULL && !EFI_ERROR(ShellConvertStringToUint64(HandleIndex3, &Intermediate, TRUE, FALSE))) { Handle3 = ConvertHandleIndexToHandle((UINTN)Intermediate); if (Handle3 == NULL || (UINT64)(UINTN)Intermediate != Intermediate) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_INV_HANDLE), gShellDriver1HiiHandle, HandleIndex3); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } } if ((InFromFile || OutToFile) && (FileName == NULL)) { if (FileName == NULL) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_NO_VALUE), gShellDriver1HiiHandle, InFromFile?L"-i":L"-o"); } else { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_HANDLE_REQ), gShellDriver1HiiHandle); } ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (!UseHii && (InFromFile || OutToFile)) { if (InFromFile) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PROBLEM), gShellDriver1HiiHandle, L"-i"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (OutToFile) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PROBLEM), gShellDriver1HiiHandle, L"-o"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } } if (Validate && Force) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PARAM_CONF), gShellDriver1HiiHandle, L"-v", L"-f"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (Validate && Set) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PARAM_CONF), gShellDriver1HiiHandle, L"-v", L"-s"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (Set && Force) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PARAM_CONF), gShellDriver1HiiHandle, L"-s", L"-f"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } if (OutToFile && InFromFile) { ShellPrintHiiEx(-1, -1, NULL, STRING_TOKEN (STR_GEN_PARAM_CONF), gShellDriver1HiiHandle, L"-i", L"-o"); ShellStatus = SHELL_INVALID_PARAMETER; goto Done; } // // We do HII first. // if (UseHii) { if (Handle1 != NULL && EFI_ERROR(gBS->OpenProtocol(Handle1, &gEfiHiiConfigAccessProtocolGuid, NULL, gImageHandle, NULL, EFI_OPEN_PROTOCOL_TEST_PROTOCOL))) { // // no HII on this handle. // ShellStatus = SHELL_UNSUPPORTED; } else if (Validate) { } else if (Force) { } else if (Set) { } else if (InFromFile) { ShellStatus = ConfigFromFile(Handle1, FileName); if (Handle1 != NULL && ShellStatus == SHELL_SUCCESS) { goto Done; } } else if (OutToFile) { ShellStatus = ConfigToFile(Handle1, FileName); if (Handle1 != NULL && ShellStatus == SHELL_SUCCESS) { goto Done; } } else if (HandleIndex1 == NULL) { // // display all that are configurable // ShellStatus = PrintConfigInfoOnAll(AllChildren, Language, UseHii); goto Done; } else { if (!EFI_ERROR(gBS->OpenProtocol(Handle1, &gEfiHiiConfigAccessProtocolGuid, NULL, gImageHandle, NULL, EFI_OPEN_PROTOCOL_TEST_PROTOCOL))) { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN (STR_DRVCFG_LINE_HII), gShellDriver1HiiHandle, ConvertHandleToHandleIndex(Handle1) ); goto Done; } } } // // We allways need to do this one since it does both by default. // if (!InFromFile && !OutToFile) { ShellStatus = PreHiiDrvCfg ( Language, Force, ForceType, AllChildren, Validate, Set, Handle1, Handle2, Handle3); } if (ShellStatus == SHELL_UNSUPPORTED) { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN (STR_DRVCFG_NOT_SUPPORT), gShellDriver1HiiHandle, ConvertHandleToHandleIndex(Handle1) ); } } Done: ShellCommandLineFreeVarList (Package); SHELL_FREE_NON_NULL(Language); return (ShellStatus); }
EFI_STATUS StartDefaultBootOnTimeout ( VOID ) { UINTN Size; UINT16 Timeout; UINT16 *TimeoutPtr; EFI_EVENT WaitList[2]; UINTN WaitIndex; UINT16 *BootOrder = NULL; UINTN BootOrderSize = 0; UINTN Index; CHAR16 BootVariableName[9]; EFI_STATUS Status; EFI_INPUT_KEY Key; LIST_ENTRY BootOptionsList; BOOLEAN IsFlashBootFirst = FALSE; BOOLEAN FlashBootSupport = FALSE; // Get the Boot Option Order from the environment variable (a default value should have been created) Status = GetGlobalEnvironmentVariable (L"BootOrder", NULL, &BootOrderSize, (VOID**)&BootOrder); if (EFI_ERROR(Status)) { DEBUG((EFI_D_ERROR, "%a(%d):Return a error Status\n", __FUNCTION__,__LINE__)); } Status = GetBootDeviceTypeInfo(); if (EFI_ERROR(Status)) { DEBUG((EFI_D_ERROR, "%a(%d):Return a error Status\n", __FUNCTION__,__LINE__)); } Status = OemBootOrderSeting(BootOrder,BootOrderSize,&IsFlashBootFirst,&FlashBootSupport); if (EFI_ERROR(Status)) { DEBUG((EFI_D_ERROR, "%a(%d):Return a error Status\n", __FUNCTION__,__LINE__)); } // Update (or Create) the BootOrder environment variable Status = gRT->SetVariable ( L"BootOrder", &gEfiGlobalVariableGuid, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, BootOrderSize, BootOrder ); if (EFI_ERROR(Status)) { DEBUG((EFI_D_ERROR, "%a(%d):SetVariable failed!\n", __FUNCTION__,__LINE__)); } Size = sizeof(UINT16); Timeout = (UINT16)PcdGet16 (PcdPlatformBootTimeOut); Status = GetGlobalEnvironmentVariable (L"Timeout", &Timeout, &Size, (VOID**)&TimeoutPtr); if (!EFI_ERROR (Status)) { Timeout = *TimeoutPtr; FreePool (TimeoutPtr); } if (Timeout != 0xFFFF) { if (Timeout > 0) { // Create the waiting events (keystroke and 1sec timer) gBS->CreateEvent (EVT_TIMER, 0, NULL, NULL, &WaitList[0]); gBS->SetTimer (WaitList[0], TimerPeriodic, EFI_SET_TIMER_TO_SECOND); WaitList[1] = gST->ConIn->WaitForKey; // Start the timer WaitIndex = 0; Print(L"The default boot selection will start in "); while ((Timeout > 0) && (WaitIndex == 0)) { Print(L"%3d seconds",Timeout); gBS->WaitForEvent (2, WaitList, &WaitIndex); if (WaitIndex == 0) { Print(L"\b\b\b\b\b\b\b\b\b\b\b"); Timeout--; } } // Discard key in the buffer do { Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key); } while(!EFI_ERROR(Status)); gBS->CloseEvent (WaitList[0]); Print(L"\n\r"); } // In case of Timeout we start the default boot selection if (Timeout == 0) { // Get the Boot Option Order from the environment variable (a default value should have been created) Status = GetGlobalEnvironmentVariable (L"BootOrder", NULL, &BootOrderSize, (VOID**)&BootOrder); if (EFI_ERROR(Status)) { DEBUG((EFI_D_ERROR, "%a(%d):Return a error Status\n", __FUNCTION__,__LINE__)); } //display the final BootOrder EnviromentVariable, we'll start OS with it! BootOptionList (&BootOptionsList); DisplayBootOptions(&BootOptionsList); if(FlashBootSupport) { if(IsFlashBootFirst) { Print(L"Bds TimeOut First Start Boot Option [FLASH] ....Begin!...\n\r"); Flash_Start_OS (); Print(L"Bds TimeOut First Start Boot Option [FLASH] ....Fail!...\n\r"); } } for (Index = 0; Index < BootOrderSize / sizeof (UINT16); Index++) { UnicodeSPrint (BootVariableName, 9 * sizeof(CHAR16), L"Boot%04X", BootOrder[Index]); OemPreStartBootOptionAction(BootOrder[Index]); Print(L"Bds TimeOut Start Boot Option [%s] ....Begin!...\n\r",BootVariableName); Status = BdsStartBootOption (BootVariableName); if(!EFI_ERROR(Status)){ // Boot option returned successfully, hence don't need to start next boot option break; } Print(L"Bds TimeOut Start Boot Option [%s] ....Fail!...\n\r",BootVariableName); } if(FlashBootSupport) { if(!IsFlashBootFirst) { Print(L"Bds TimeOut Start Boot Option [FLASH] ....Begin!...\n\r"); Flash_Start_OS (); Print(L"Bds TimeOut Start Boot Option [FLASH] ....Fail!...\n\r"); } }else{} // We only free it if the UEFI Variable 'BootOrder' was already existing if (BootOrderSize > sizeof(UINT16)) { FreePool (BootOrder); } OpenAlarmLed(); Print(L"[WARNING]Bds TimeOut: All Boot Option Start Fail! Lighting The Alarm Led!!! \n\r"); } } return EFI_SUCCESS; }
/** Function to print out all HII configuration information to a file. @param[in] Handle The handle to get info on. NULL to do all handles. @param[in] FileName The filename to rwite the info to. **/ SHELL_STATUS EFIAPI ConfigToFile( IN CONST EFI_HANDLE Handle, IN CONST CHAR16 *FileName ) { EFI_HII_DATABASE_PROTOCOL *HiiDatabase; EFI_STATUS Status; VOID *MainBuffer; UINTN MainBufferSize; EFI_HII_HANDLE HiiHandle; SHELL_FILE_HANDLE FileHandle; HiiDatabase = NULL; MainBufferSize = 0; MainBuffer = NULL; FileHandle = NULL; Status = ShellOpenFileByName(FileName, &FileHandle, EFI_FILE_MODE_READ|EFI_FILE_MODE_WRITE|EFI_FILE_MODE_CREATE, 0); if (EFI_ERROR(Status)) { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN(STR_GEN_FILE_OPEN), gShellDriver1HiiHandle, FileName, Status); return (SHELL_DEVICE_ERROR); } // // Locate HII Database protocol // Status = gBS->LocateProtocol ( &gEfiHiiDatabaseProtocolGuid, NULL, (VOID **) &HiiDatabase ); if (EFI_ERROR(Status) || HiiDatabase == NULL) { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN(STR_GEN_PROTOCOL_NF), gShellDriver1HiiHandle, L"EfiHiiDatabaseProtocol", &gEfiHiiDatabaseProtocolGuid); ShellCloseFile(&FileHandle); return (SHELL_NOT_FOUND); } Status = ConvertHandleToHiiHandle(Handle, &HiiHandle, HiiDatabase); if (EFI_ERROR(Status)) { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN(STR_GEN_HANDLE_NOT), gShellDriver1HiiHandle, ConvertHandleToHandleIndex(Handle), L"Device"); ShellCloseFile(&FileHandle); return (SHELL_DEVICE_ERROR); } Status = HiiDatabase->ExportPackageLists(HiiDatabase, HiiHandle, &MainBufferSize, MainBuffer); if (Status == EFI_BUFFER_TOO_SMALL) { MainBuffer = AllocateZeroPool(MainBufferSize); Status = HiiDatabase->ExportPackageLists(HiiDatabase, HiiHandle, &MainBufferSize, MainBuffer); } Status = ShellWriteFile(FileHandle, &MainBufferSize, MainBuffer); ShellCloseFile(&FileHandle); SHELL_FREE_NON_NULL(MainBuffer); if (EFI_ERROR(Status)) { ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN(STR_FILE_WRITE_FAIL), gShellDriver1HiiHandle, FileName, Status); return (SHELL_DEVICE_ERROR); } ShellPrintHiiEx( -1, -1, NULL, STRING_TOKEN(STR_DRVCFG_COMP), gShellDriver1HiiHandle); return (SHELL_SUCCESS); }
/** Notification event handler registered by CoreNotifyOnArchProtocolInstallation (). This notify function is registered for every architectural protocol. This handler updates mArchProtocol[] array entry with protocol instance data and sets it's present flag to TRUE. If any constructor is required it is executed. The EFI System Table headers are updated. @param Event The Event that is being processed, not used. @param Context Event Context, not used. **/ VOID EFIAPI GenericProtocolNotify ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; EFI_CORE_PROTOCOL_NOTIFY_ENTRY *Entry; VOID *Protocol; LIST_ENTRY *Link; LIST_ENTRY TempLinkNode; Protocol = NULL; // // Get Entry from Context // Entry = (EFI_CORE_PROTOCOL_NOTIFY_ENTRY *)Context; // // See if the expected protocol is present in the handle database // Status = CoreLocateProtocol (Entry->ProtocolGuid, Entry->Registration, &Protocol); if (EFI_ERROR (Status)) { return; } // // Mark the protocol as present // Entry->Present = TRUE; // // Update protocol global variable if one exists. Entry->Protocol points to a global variable // if one exists in the DXE core for this Architectural Protocol // if (Entry->Protocol != NULL) { *(Entry->Protocol) = Protocol; } // // Do special operations for Architectural Protocols // if (CompareGuid (Entry->ProtocolGuid, &gEfiTimerArchProtocolGuid)) { // // Register the Core timer tick handler with the Timer AP // gTimer->RegisterHandler (gTimer, CoreTimerTick); } if (CompareGuid (Entry->ProtocolGuid, &gEfiRuntimeArchProtocolGuid)) { // // When runtime architectural protocol is available, updates CRC32 in the Debug Table // CoreUpdateDebugTableCrc32 (); // // Update the Runtime Architectural protocol with the template that the core was // using so there would not need to be a dependency on the Runtime AP // // // Copy all the registered Image to new gRuntime protocol // for (Link = gRuntimeTemplate.ImageHead.ForwardLink; Link != &gRuntimeTemplate.ImageHead; Link = TempLinkNode.ForwardLink) { CopyMem (&TempLinkNode, Link, sizeof(LIST_ENTRY)); InsertTailList (&gRuntime->ImageHead, Link); } // // Copy all the registered Event to new gRuntime protocol // for (Link = gRuntimeTemplate.EventHead.ForwardLink; Link != &gRuntimeTemplate.EventHead; Link = TempLinkNode.ForwardLink) { CopyMem (&TempLinkNode, Link, sizeof(LIST_ENTRY)); InsertTailList (&gRuntime->EventHead, Link); } // // Clean up gRuntimeTemplate // gRuntimeTemplate.ImageHead.ForwardLink = &gRuntimeTemplate.ImageHead; gRuntimeTemplate.ImageHead.BackLink = &gRuntimeTemplate.ImageHead; gRuntimeTemplate.EventHead.ForwardLink = &gRuntimeTemplate.EventHead; gRuntimeTemplate.EventHead.BackLink = &gRuntimeTemplate.EventHead; } // // It's over kill to do them all every time, but it saves a lot of code. // CalculateEfiHdrCrc (&gDxeCoreRT->Hdr); CalculateEfiHdrCrc (&gBS->Hdr); CalculateEfiHdrCrc (&gDxeCoreST->Hdr); CalculateEfiHdrCrc (&gDxeCoreDS->Hdr); }