Пример #1
0
/**
 * Cellular automata sample main function.
 * */
int main(int argc, char* argv[]) {

	/* Wrappers for OpenCL objects. */
	CCLContext* ctx;
	CCLDevice* dev;
	CCLImage* img1;
	CCLImage* img2;
	CCLProgram* prg;
	CCLKernel* krnl;
	CCLEvent* evt1;
	CCLEvent* evt2;
	/* Other variables. */
	CCLEventWaitList ewl = NULL;
	/* Profiler object. */
	CCLProf* prof;
	/* Output images filename. */
	char* filename;
	/* Selected device, may be given in command line. */
	int dev_idx = -1;
	/* Error handling object (must be NULL). */
	GError* err = NULL;
	/* Does selected device support images? */
	cl_bool image_ok;
	/* Initial sim state. */
	cl_uchar4* input_image;
	/* Simulation states. */
	cl_uchar4** output_images;
	/* RNG seed, may be given in command line. */
	unsigned int seed;
	/* Image file write status. */
	int file_write_status;
	/* Image format. */
	cl_image_format image_format = { CL_RGBA, CL_UNSIGNED_INT8 };
	/* Thread data. */
	struct thread_data td;

	/* Global and local worksizes. */
	size_t gws[2];
	size_t lws[2];
	/* Threads. */
	GThread* comm_thread;
	GThread* exec_thread;

	/* Check arguments. */
	if (argc >= 2) {
		/* Check if a device was specified in the command line. */
		dev_idx = atoi(argv[1]);
	}
	if (argc >= 3) {
		/* Check if a RNG seed was specified. */
		seed = atoi(argv[2]);
	} else {
		seed = (unsigned int) time(NULL);
	}

	/* Initialize RNG. */
	srand(seed);

	/* Create random initial state. */
	input_image = (cl_uchar4*)
		malloc(CA_WIDTH * CA_HEIGHT * sizeof(cl_uchar4));
	for (cl_uint i = 0; i < CA_WIDTH * CA_HEIGHT; ++i) {
		cl_uchar state = (rand() & 0x3) ? 0xFF : 0x00;
		input_image[i] = (cl_uchar4) {{ state, state, state, 0xFF }};
	}

	/* Allocate space for simulation results. */
	output_images = (cl_uchar4**)
		malloc((CA_ITERS + 1) * sizeof(cl_uchar4*));
	for (cl_uint i = 0; i < CA_ITERS + 1; ++i)
		output_images[i] = (cl_uchar4*)
			malloc(CA_WIDTH * CA_HEIGHT * sizeof(cl_uchar4));

	/* Create context using device selected from menu. */
	ctx = ccl_context_new_from_menu_full(&dev_idx, &err);
	HANDLE_ERROR(err);

	/* Get first device in context. */
	dev = ccl_context_get_device(ctx, 0, &err);
	HANDLE_ERROR(err);

	/* Ask device if it supports images. */
	image_ok = ccl_device_get_info_scalar(
		dev, CL_DEVICE_IMAGE_SUPPORT, cl_bool, &err);
	HANDLE_ERROR(err);
	if (!image_ok)
		ERROR_MSG_AND_EXIT("Selected device doesn't support images.");

	/* Create command queues. */
	queue_exec = ccl_queue_new(ctx, dev, CL_QUEUE_PROFILING_ENABLE, &err);
	HANDLE_ERROR(err);
	queue_comm = ccl_queue_new(ctx, dev, CL_QUEUE_PROFILING_ENABLE, &err);
	HANDLE_ERROR(err);

	/* Create 2D image for initial state. */
	img1 = ccl_image_new(ctx, CL_MEM_READ_WRITE,
		&image_format, NULL, &err,
		"image_type", (cl_mem_object_type) CL_MEM_OBJECT_IMAGE2D,
		"image_width", (size_t) CA_WIDTH,
		"image_height", (size_t) CA_HEIGHT,
		NULL);
	HANDLE_ERROR(err);

	/* Create another 2D image for double buffering. */
	img2 = ccl_image_new(ctx, CL_MEM_READ_WRITE,
		&image_format, NULL, &err,
		"image_type", (cl_mem_object_type) CL_MEM_OBJECT_IMAGE2D,
		"image_width", (size_t) CA_WIDTH,
		"image_height", (size_t) CA_HEIGHT,
		NULL);
	HANDLE_ERROR(err);

	/* Create program from kernel source and compile it. */
	prg = ccl_program_new_from_source(ctx, CA_KERNEL, &err);
	HANDLE_ERROR(err);

	ccl_program_build(prg, NULL, &err);
	HANDLE_ERROR(err);

	/* Get kernel wrapper. */
	krnl = ccl_program_get_kernel(prg, "ca", &err);
	HANDLE_ERROR(err);

	/* Determine nice local and global worksizes. */
	ccl_kernel_suggest_worksizes(krnl, dev, 2, real_ws, gws, lws, &err);
	HANDLE_ERROR(err);

	printf("\n * Global work-size: (%d, %d)\n", (int) gws[0], (int) gws[1]);
	printf(" * Local work-size: (%d, %d)\n", (int) lws[0], (int) lws[1]);

	/* Create thread communication queues. */
	comm_thread_queue = g_async_queue_new();
	exec_thread_queue = g_async_queue_new();
	host_thread_queue = g_async_queue_new();

	/* Setup thread data. */
	td.krnl = krnl;
	td.img1 = img1;
	td.img2 = img2;
	td.gws = gws;
	td.lws = lws;
	td.output_images = output_images;

	/* Create threads. */
	exec_thread = g_thread_new("exec_thread", exec_func, &td);
	comm_thread = g_thread_new("comm_thread", comm_func, &td);

	/* Start profiling. */
	prof = ccl_prof_new();
	ccl_prof_start(prof);

	/* Write initial state. */
	ccl_image_enqueue_write(img1, queue_comm, CL_TRUE,
		origin, region, 0, 0, input_image, NULL, &err);
	HANDLE_ERROR(err);

	/* Run CA_ITERS iterations of the CA. */
	for (cl_uint i = 0; i < CA_ITERS; ++i) {

		/* Send message to comms thread. */
		g_async_queue_push(comm_thread_queue, &go_msg);

		/* Send message to exec thread. */
		g_async_queue_push(exec_thread_queue, &go_msg);

		/* Get event wrappers from both threads. */
		evt1 = (CCLEvent*) g_async_queue_pop(host_thread_queue);
		evt2 = (CCLEvent*) g_async_queue_pop(host_thread_queue);

		/* Can't continue until this iteration is over. */
		ccl_event_wait_list_add(&ewl, evt1, evt2, NULL);

		/* Wait for events. */
		ccl_event_wait(&ewl, &err);
		HANDLE_ERROR(err);

	}

	/* Send message to comms thread to read last result. */
	g_async_queue_push(comm_thread_queue, &go_msg);

	/* Send stop messages to both threads. */
	g_async_queue_push(comm_thread_queue, &stop_msg);
	g_async_queue_push(exec_thread_queue, &stop_msg);

	/* Get event wrapper from comms thread. */
	evt1 = (CCLEvent*) g_async_queue_pop(host_thread_queue);

	/* Can't continue until final read is over. */
	ccl_event_wait_list_add(&ewl, evt1, NULL);
	ccl_event_wait(&ewl, &err);
	HANDLE_ERROR(err);

	/* Make sure both queues are finished. */
	ccl_queue_finish(queue_comm, &err);
	HANDLE_ERROR(err);
	ccl_queue_finish(queue_exec, &err);
	HANDLE_ERROR(err);

	/* Stop profiling timer and add queues for analysis. */
	ccl_prof_stop(prof);
	ccl_prof_add_queue(prof, "Comms", queue_comm);
	ccl_prof_add_queue(prof, "Exec", queue_exec);

	/* Allocate space for base filename. */
	filename = (char*) malloc(
		(strlen(IMAGE_FILE_PREFIX ".png") + IMAGE_FILE_NUM_DIGITS + 1) * sizeof(char));

	/* Write results to image files. */
	for (cl_uint i = 0; i < CA_ITERS; ++i) {

		/* Determine next filename. */
		sprintf(filename, "%s%0" G_STRINGIFY(IMAGE_FILE_NUM_DIGITS) "d.png", IMAGE_FILE_PREFIX, i);

		/* Save next image. */
		file_write_status = stbi_write_png(filename, CA_WIDTH, CA_HEIGHT, 4,
			output_images[i], CA_WIDTH * sizeof(cl_uchar4));

		/* Give feedback if unable to save image. */
		if (!file_write_status) {
			ERROR_MSG_AND_EXIT("Unable to save image in file.");
		}
	}

	/* Process profiling info. */
	ccl_prof_calc(prof, &err);
	HANDLE_ERROR(err);

	/* Print profiling info. */
	ccl_prof_print_summary(prof);

	/* Save profiling info. */
	ccl_prof_export_info_file(prof, "prof.tsv", &err);
	HANDLE_ERROR(err);

	/* Destroy threads. */
	g_thread_join(exec_thread);
	g_thread_join(comm_thread);

	/* Destroy thread communication queues. */
	g_async_queue_unref(comm_thread_queue);
	g_async_queue_unref(exec_thread_queue);
	g_async_queue_unref(host_thread_queue);

	/* Release host buffers. */
	free(filename);
	free(input_image);
	for (cl_uint i = 0; i < CA_ITERS + 1; ++i)
		free(output_images[i]);
	free(output_images);

	/* Release wrappers. */
	ccl_image_destroy(img1);
	ccl_image_destroy(img2);
	ccl_program_destroy(prg);
	ccl_queue_destroy(queue_comm);
	ccl_queue_destroy(queue_exec);
	ccl_context_destroy(ctx);

	/* Destroy profiler. */
	ccl_prof_destroy(prof);

	/* Check all wrappers have been destroyed. */
	g_assert(ccl_wrapper_memcheck());

	/* Terminate. */
	return 0;

}
Пример #2
0
/**
 * Image filter main function.
 * */
int main(int argc, char * argv[]) {

    /* Wrappers for OpenCL objects. */
    CCLContext * ctx;
    CCLDevice * dev;
    CCLImage * img_in;
    CCLImage * img_out;
    CCLQueue * queue;
    CCLProgram * prg;
    CCLKernel * krnl;
    CCLSampler * smplr;

    /* Device selected specified in the command line. */
    int dev_idx = -1;

    /* Error handling object (must be initialized to NULL). */
    CCLErr * err = NULL;

    /* Does selected device support images? */
    cl_bool image_ok;

    /* Image data in host. */
    unsigned char * input_image;
    unsigned char * output_image;

    /* Image properties. */
    int width, height, n_channels;

    /* Image file write status. */
    int file_write_status;

    /* Image parameters. */
    cl_image_format image_format = { CL_RGBA, CL_UNSIGNED_INT8 };

    /* Origin and region of complete image. */
    size_t origin[3] = { 0, 0, 0 };
    size_t region[3];

    /* Real worksize. */
    size_t real_ws[2];

    /* Global and local worksizes. */
    size_t gws[2];
    size_t lws[2];

    /* Check arguments. */
    if (argc < 2) {
        ERROR_MSG_AND_EXIT("Usage: image_filter <image_file> [device_index]");
    } else if (argc >= 3) {
        /* Check if a device was specified in the command line. */
        dev_idx = atoi(argv[2]);
    }

    /* Load image. */
    input_image = stbi_load(argv[1], &width, &height, &n_channels, 4);
    if (!input_image) ERROR_MSG_AND_EXIT(stbi_failure_reason());

    /* Real work size. */
    real_ws[0] = width; real_ws[1] = height;

    /* Set image region. */
    region[0] = width; region[1] = height; region[2] = 1;

    /* Create context using device selected from menu. */
    ctx = ccl_context_new_from_menu_full(&dev_idx, &err);
    HANDLE_ERROR(err);

    /* Get first device in context. */
    dev = ccl_context_get_device(ctx, 0, &err);
    HANDLE_ERROR(err);

    /* Ask device if it supports images. */
    image_ok = ccl_device_get_info_scalar(
        dev, CL_DEVICE_IMAGE_SUPPORT, cl_bool, &err);
    HANDLE_ERROR(err);
    if (!image_ok)
        ERROR_MSG_AND_EXIT("Selected device doesn't support images.");

    /* Create a command queue. */
    queue = ccl_queue_new(ctx, dev, 0, &err);
    HANDLE_ERROR(err);

    /* Create 2D input image using loaded image data. */
    img_in = ccl_image_new(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
        &image_format, input_image, &err,
        "image_type", (cl_mem_object_type) CL_MEM_OBJECT_IMAGE2D,
        "image_width", (size_t) width,
        "image_height", (size_t) height,
        NULL);
    HANDLE_ERROR(err);

    /* Create 2D output image. */
    img_out = ccl_image_new(ctx, CL_MEM_WRITE_ONLY,
        &image_format, NULL, &err,
        "image_type", (cl_mem_object_type) CL_MEM_OBJECT_IMAGE2D,
        "image_width", (size_t) width,
        "image_height", (size_t) height,
        NULL);
    HANDLE_ERROR(err);

    /* Create program from kernel source and compile it. */
    prg = ccl_program_new_from_source(ctx, FILTER_KERNEL, &err);
    HANDLE_ERROR(err);

    ccl_program_build(prg, NULL, &err);
    HANDLE_ERROR(err);

    /* Get kernel wrapper. */
    krnl = ccl_program_get_kernel(prg, "do_filter", &err);
    HANDLE_ERROR(err);

    /* Determine nice local and global worksizes. */
    ccl_kernel_suggest_worksizes(krnl, dev, 2, real_ws, gws, lws, &err);
    HANDLE_ERROR(err);

    /* Show information to user. */
    printf("\n * Image size: %d x %d, %d channels\n",
        width, height, n_channels);
    printf(" * Global work-size: (%d, %d)\n", (int) gws[0], (int) gws[1]);
    printf(" * Local work-size: (%d, %d)\n", (int) lws[0], (int) lws[1]);

    /* Create sampler (this could also be created in-kernel). */
    smplr = ccl_sampler_new(ctx, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE,
        CL_FILTER_NEAREST, &err);
    HANDLE_ERROR(err);

    /* Apply filter. */
    ccl_kernel_set_args_and_enqueue_ndrange(
        krnl, queue, 2, NULL, gws, lws, NULL, &err,
        img_in, img_out, smplr, NULL);
    HANDLE_ERROR(err);

    /* Allocate space for output image. */
    output_image = (unsigned char *)
        malloc(width * height * 4 * sizeof(unsigned char));

    /* Read image data back to host. */
    ccl_image_enqueue_read(img_out, queue, CL_TRUE, origin, region,
        0, 0, output_image, NULL, &err);
    HANDLE_ERROR(err);

    /* Write image to file. */
    file_write_status = stbi_write_png(IMAGE_FILE, width, height, 4,
        output_image, width * 4);

    /* Give feedback. */
    if (file_write_status) {
        fprintf(stdout, "\nImage saved in file '" IMAGE_FILE "'\n");
    } else {
        ERROR_MSG_AND_EXIT("Unable to save image in file.");
    }

    /* Release host images. */
    free(output_image);
    stbi_image_free(input_image);

    /* Release wrappers. */
    ccl_image_destroy(img_in);
    ccl_image_destroy(img_out);
    ccl_sampler_destroy(smplr);
    ccl_program_destroy(prg);
    ccl_queue_destroy(queue);
    ccl_context_destroy(ctx);

    /* Check all wrappers have been destroyed. */
    assert(ccl_wrapper_memcheck());

    /* Terminate. */
    return EXIT_SUCCESS;
}