Пример #1
0
static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
		    ActiveRegion *reg2 )
/*
 * Both edges must be directed from right to left (this is the canonical
 * direction for the upper edge of each region).
 *
 * The strategy is to evaluate a "t" value for each edge at the
 * current sweep line position, given by tess->event.  The calculations
 * are designed to be very stable, but of course they are not perfect.
 *
 * Special case: if both edge destinations are at the sweep event,
 * we sort the edges by slope (they would otherwise compare equally).
 */
{
  GLUvertex *event = tess->event;
  GLUhalfEdge *e1, *e2;
  GLdouble t1, t2;

  e1 = reg1->eUp;
  e2 = reg2->eUp;

  if( e1->Dst == event ) {
    if( e2->Dst == event ) {
      /* Two edges right of the sweep line which meet at the sweep event.
       * Sort them by slope.
       */
      if( VertLeq( e1->Org, e2->Org )) {
	return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
      }
      return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
    }
    return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
  }
  if( e2->Dst == event ) {
    return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
  }

  /* General case - compute signed distance *from* e1, e2 to event */
  t1 = EdgeEval( e1->Dst, event, e1->Org );
  t2 = EdgeEval( e2->Dst, event, e2->Org );
  return (t1 >= t2);
}
Пример #2
0
void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
			 GLUvertex *o2, GLUvertex *d2,
			 GLUvertex *v )
/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
 * The computed point is guaranteed to lie in the intersection of the
 * bounding rectangles defined by each edge.
 */
{
  GLdouble z1, z2;

  /* This is certainly not the most efficient way to find the intersection
   * of two line segments, but it is very numerically stable.
   *
   * Strategy: find the two middle vertices in the VertLeq ordering,
   * and interpolate the intersection s-value from these.  Then repeat
   * using the TransLeq ordering to find the intersection t-value.
   */

  if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
  if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
  if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }

  if( ! VertLeq( o2, d1 )) {
    /* Technically, no intersection -- do our best */
    v->s = (o2->s + d1->s) / 2;
  } else if( VertLeq( d1, d2 )) {
    /* Interpolate between o2 and d1 */
    z1 = EdgeEval( o1, o2, d1 );
    z2 = EdgeEval( o2, d1, d2 );
    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    v->s = Interpolate( z1, o2->s, z2, d1->s );
  } else {
    /* Interpolate between o2 and d2 */
    z1 = EdgeSign( o1, o2, d1 );
    z2 = -EdgeSign( o1, d2, d1 );
    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    v->s = Interpolate( z1, o2->s, z2, d2->s );
  }

  /* Now repeat the process for t */

  if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
  if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
  if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }

  if( ! TransLeq( o2, d1 )) {
    /* Technically, no intersection -- do our best */
    v->t = (o2->t + d1->t) / 2;
  } else if( TransLeq( d1, d2 )) {
    /* Interpolate between o2 and d1 */
    z1 = TransEval( o1, o2, d1 );
    z2 = TransEval( o2, d1, d2 );
    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    v->t = Interpolate( z1, o2->t, z2, d1->t );
  } else {
    /* Interpolate between o2 and d2 */
    z1 = TransSign( o1, o2, d1 );
    z2 = -TransSign( o1, d2, d1 );
    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    v->t = Interpolate( z1, o2->t, z2, d2->t );
  }
}