Пример #1
0
/****************
 Edge EdgeTree2EdgeList

 Write the edgelist of a network into tail and head arrays.
 Returns the number of edges in the network.
****************/
Edge EdgeTree2EdgeList(Vertex *tails, Vertex *heads, Network *nwp, Edge nmax){
  Edge nextedge=0;

  /* *** don't forget,  tail -> head */
  if (nwp->directed_flag) {
    for (Vertex v=1; v<=nwp->nnodes; v++){
      for(Vertex e = EdgetreeMinimum(nwp->outedges, v);
      nwp->outedges[e].value != 0 && nextedge < nmax;
      e = EdgetreeSuccessor(nwp->outedges, e)){
        tails[nextedge] = v;
        heads[nextedge] = nwp->outedges[e].value;
        nextedge++;
      }
    }
  }else{
    for (Vertex v=1; v<=nwp->nnodes; v++){
      for(Vertex e = EdgetreeMinimum(nwp->outedges, v);
      nwp->outedges[e].value != 0 && nextedge < nmax;
      e = EdgetreeSuccessor(nwp->outedges, e)){
        Vertex k = nwp->outedges[e].value;
        if(v < k){
          tails[nextedge] = k;
          heads[nextedge] = v;
          nextedge++;
        }else{
          tails[nextedge] = v;
          heads[nextedge] = k;
          nextedge++;
        }
      }
    }
  }
  return nextedge;
}
Пример #2
0
int FindithEdge (Vertex *tail, Vertex *head, Edge i, Network *nwp) {
  Vertex taili=1;
  Edge e;

  /* TODO: This could be speeded up by a factor of 3 or more by starting
     the search from the tail n rather than tail 1 if i > ndyads/2. */

  if (i > nwp->nedges || i<=0)
    return 0;
  while (i > nwp->outdegree[taili]) {
    i -= nwp->outdegree[taili];
    taili++;
  }

  /* TODO: This could be speeded up by a factor of 3 or more by starting
     the search from the tree maximum rather than minimum (left over) i > outdegree[taili]. */

  e=EdgetreeMinimum(nwp->outedges,taili);
  while (i-- > 1) {
    e=EdgetreeSuccessor(nwp->outedges, e);
  }
  *tail = taili;
  *head = nwp->outedges[e].value;
  return 1;
}
Пример #3
0
int FindithNonedge (Vertex *tail, Vertex *head, Edge i, Network *nwp) {
  Vertex taili=1;
  Edge e;
  Edge ndyads = DYADCOUNT(nwp->nnodes, nwp->bipartite, nwp->directed_flag);
  
  // If the index is too high or too low, exit immediately.
  if (i > ndyads - nwp->nedges || i<=0)
    return 0;

  /* TODO: This could be speeded up by a factor of 3 or more by starting
     the search from the tail n rather than tail 1 if i > ndyads/2. */

  Vertex nnt;
  while (i > (nnt = nwp->nnodes - (nwp->bipartite ? nwp->bipartite : (nwp->directed_flag?1:taili))
	      - nwp->outdegree[taili])) {   // nnt is the number of nonties incident on taili. Note that when network is undirected, tail<head.
    i -= nnt;
    taili++;
  }

  // Now, our tail is taili.

  /* TODO: This could be speeded up by a factor of 3 or more by starting
     the search from the tree maximum rather than minimum (left over) i > outdegree[taili]. */

  // If taili 1, then head cannot be 1. If undirected, the smallest it can be is taili+1. If bipartite, the smallest it can be is nwp->bipartite+1.
  Vertex lhead = (
		  nwp->bipartite ? 
		  nwp->bipartite :
		  (nwp->directed_flag ?
		   taili==1 : taili)
		  );
  e = EdgetreeMinimum(nwp->outedges,taili);
  Vertex rhead = nwp->outedges[e].value;
  // Note that rhead-lhead-1-(lhead<taili && taili<rhead) is the number of nonties between two successive ties.
  // the -(lhead<taili && taili<rhead) is because (taili,taili) is not a valid nontie and must be skipped.
  // Note that if taili is an isolate, rhead will be 0.
  while (rhead && i > rhead-lhead-1-(lhead<taili && taili<rhead)) {
    i -= rhead-lhead-1-(lhead<taili && taili<rhead);
    lhead = rhead;
    e = EdgetreeSuccessor(nwp->outedges, e);
    // If rhead was the highest-indexed head, then e is now 0.
    if(e) rhead = nwp->outedges[e].value;
    else break; // Note that we don't actually need rhead in the final step.
  }

  // Now, the head we are looking for is (left over) i after lhead.

  *tail = taili;
  *head = lhead + i + (nwp->directed_flag && lhead+i>=taili); // Skip over the (taili,taili) dyad, if the network is directed.

  return 1;
}
Пример #4
0
/*****************
 int DeleteHalfedgeFromTree

 Delete the TreeNode with value b from the tree rooted at edges[a].
 Return 0 if no such TreeNode exists, 1 otherwise.  Also update the
 value of *last_edge appropriately.
*****************/
int DeleteHalfedgeFromTree(Vertex a, Vertex b, TreeNode *edges,
		     Edge *last_edge){
  Edge x, z, root=(Edge)a;
  TreeNode *xptr, *zptr, *ptr;

  if ((z=EdgetreeSearch(a, b, edges))==0)  /* z is the current TreeNode. */
    return 0;  /* This edge doesn't exist, so return 0 */
  /* First, determine which node to splice out; this is z.  If the current
     z has two children, then we'll actually splice out its successor. */
  if ((zptr=edges+z)->left != 0 && zptr->right != 0) {
    if(unif_rand()<0.5)
      z=EdgetreeSuccessor(edges, z);  
    else
      z=EdgetreePredecessor(edges, z);  
    zptr->value = (ptr=edges+z)->value;
    zptr=ptr;
  }
  /* Set x to the child of z (there is at most one). */
  if ((x=zptr->left) == 0)
    x = zptr->right;
  /* Splice out node z */
  if (z == root) {
    zptr->value = (xptr=edges+x)->value;
    if (x != 0) {
      if ((zptr->left=xptr->left) != 0)
	(edges+zptr->left)->parent = z;
      if ((zptr->right=xptr->right) != 0)
	(edges+zptr->right)->parent = z;
      zptr=edges+(z=x);
    }  else 
      return 1;
  } else {
    if (x != 0)
      (xptr=edges+x)->parent = zptr->parent;
    if (z==(ptr=(edges+zptr->parent))->left)
      ptr->left = x;
    else 
      ptr->right = x;
  }  
  /* Clear z node, update *last_edge if necessary. */
  zptr->value=0;
  if(z!=root){
    RelocateHalfedge(*last_edge,z,edges);
    (*last_edge)--;
  }
  return 1;
}
Пример #5
0
/*********************
 void MH_BipartiteCondDegreeDist
 Pick three nodes -- tail, head, alter -- such that
   * tail shares an edge with head
   * tail does not share an edge with A
   * deg(head) = deg(A) + 1
 Then, propose swapping the (tail,head) edge for a (tail,A) edge so that
 deg(tail) stays the same while deg(head) and deg(A) swap
 with one another.
*********************/
void MH_BipartiteCondDegreeDist (MHproposal *MHp, Network *nwp) {  
  int valid, count;
  Edge e;
  Vertex tail, head, A, tailin, tailout, headdeg, Adeg, minA, maxA, i, k;
  double u;
  TreeNode *tail_edges;
  Vertex *headA_degrees; 

  /* *** don't forget, edges are (tail, head) now */

  if(MHp->ntoggles == 0) { /* Initialize */
    MHp->ntoggles=2;    
    return;
  }
  
  MHp->logratio += 0;  /* By symmetry:  P(choosing tail,head,A) must equal  */
  /*                   P(choosing tail,A,head after head and A swap roles), */
  /*                   which makes the ratio equal to 1.           */
  
  for(valid = count = 0; valid == 0 && count<MAX_TRIES/10; count++) {
    tailin = tailout = 0;  
    /* choose a node at random; ensure it has some edges */
    while (tailin + tailout == 0) {
      u = unif_rand();
      if (u < .5) { /* Pick "male" and "female" nodes with equal prob */
        tail = 1 + unif_rand() * nwp->bipartite;
      } else {
        tail = 1 + nwp->bipartite + unif_rand() * (nwp->nnodes - nwp->bipartite);
      }
      tailin = nwp->indegree[tail];
      tailout = nwp->outdegree[tail];
    }
    
    /* select an edge to/from tail at random */
    k = (int)(unif_rand() * (tailout + tailin));  
    if (k < tailout) { /* we chose an outedge */
      tail_edges = nwp->outedges;
      i = k;
      headA_degrees = nwp->indegree;
    } else { /* we chose an inedge */
      tail_edges = nwp->inedges;
      i = k - tailout;
      headA_degrees = nwp->outdegree;
    }
    /* Find ith edge in correct edgetree for tail; this will be (tail,head) or (head,tail) */
    e=EdgetreeMinimum(tail_edges, tail);
    while (i-- > 0) {
      e=EdgetreeSuccessor(tail_edges, e);
    } 
    head = tail_edges[e].value; 
    headdeg = nwp->directed_flag ? headA_degrees[head] : nwp->indegree[head] + nwp->outdegree[head];
    
    /* Now choose alter at random */
    /* Now search for eligible alters */
    minA = (u<.5) ? 1 + nwp->bipartite : 1 ;
    maxA = (u<.5) ? nwp->nnodes : nwp->bipartite;    
    i=0;
    for (A=minA; A<=maxA; A++) {
      Adeg = nwp->directed_flag ? headA_degrees[A] : nwp->indegree[A] + nwp->outdegree[A];
      /* To be a valid choice, alter (A) must not be tied to tail and it must have */
      /* a degree one less than the head */
      if (headdeg == Adeg + 1 && EdgetreeSearch(tail, A, tail_edges) == 0) {
        if (nwp->directed_flag || EdgetreeSearch(A, tail, tail_edges) ==0) {
          i++;
        }
      }
    } /* After for-loop, i is # of eligible alters.  */
    if (i>0) {
      valid = 1;
      i = 1 + unif_rand()*i; /* Pick an eligible alter at random */
      for (A=minA; i>0; A++) {
        Adeg = nwp->directed_flag ? headA_degrees[A] : nwp->indegree[A] + nwp->outdegree[A];
        /* To be a valid choice, alter (A) must not be tied to tail and it must have */
        /* a degree one less than the head */
        if (headdeg == Adeg + 1 && EdgetreeSearch(tail, A, tail_edges) == 0) {
          if (nwp->directed_flag || EdgetreeSearch(A, tail, tail_edges) ==0) {
            i--; /* By counting down, when i==0 we have the selected A. */
          }
        }
      } 
    }    
  }
      
  if ( (!nwp->directed_flag && tail > head) ||
    (nwp->directed_flag && k < tailout) )
  {
    Mtail[0] = head;
    Mhead[0] = tail;
  }else{
    Mtail[0] = tail;
    Mhead[0] = head;
  }

  if(!valid) {
    Mtail[1] = Mtail[0];
    Mhead[1] = Mtail[0];
  } else {
    if ( (!nwp->directed_flag && tail > A) ||
      (nwp->directed_flag && k < tailout) )
    {
      Mtail[0] = A;
      Mhead[0] = tail;
    }else{
      Mtail[0] = tail;
      Mhead[0] = A;
    }
  }
}