void
BuildingsPathlossTestCase::DoRun (void)
{
  NS_LOG_FUNCTION (this);

  // the building basically occupies the negative x plane, so any node
  // in this area will fall in the building 
  Ptr<Building> building1 = CreateObject<Building> ();
  building1->SetBoundaries (Box (-3000, -1, -4000, 4000.0, 0.0, 12));
  building1->SetBuildingType (Building::Residential);
  building1->SetExtWallsType (Building::ConcreteWithWindows);
  building1->SetNFloors (3);
  
  Ptr<MobilityModel> mma = CreateMobilityModel (m_mobilityModelIndex1);
  Ptr<MobilityModel> mmb = CreateMobilityModel (m_mobilityModelIndex2);

  Ptr<HybridBuildingsPropagationLossModel> propagationLossModel = CreateObject<HybridBuildingsPropagationLossModel> ();
  propagationLossModel->SetAttribute ("Frequency", DoubleValue (m_freq));
  propagationLossModel->SetAttribute ("Environment", EnumValue (m_env));
  propagationLossModel->SetAttribute ("CitySize", EnumValue (m_city));
  // cancel shadowing effect
  propagationLossModel->SetAttribute ("ShadowSigmaOutdoor", DoubleValue (0.0));
  propagationLossModel->SetAttribute ("ShadowSigmaIndoor", DoubleValue (0.0));
  propagationLossModel->SetAttribute ("ShadowSigmaExtWalls", DoubleValue (0.0));

  double loss = propagationLossModel->GetLoss (mma, mmb);

  NS_LOG_INFO ("Calculated loss: " << loss);
  NS_LOG_INFO ("Theoretical loss: " << m_lossRef);
 
  NS_TEST_ASSERT_MSG_EQ_TOL (loss, m_lossRef, 0.1, "Wrong loss !");
  Simulator::Destroy ();
}
Пример #2
0
/*
	subKey を指定した場合は subkey を含むキー以下を削除
	subkey が NULL の場合、カレント の配下を削除
*/
BOOL TRegistry::DeleteChildTree(LPSTR subKey)
{
	char	buf[100];
	BOOL	ret = TRUE;

	if (subKey != NULL && OpenKey(subKey) != TRUE)
		return	FALSE;

	while (EnumKey(0, buf, sizeof(buf)))
	{
		if ((ret = DeleteChildTree(buf)) != TRUE)
			break;
	}
	if (subKey != NULL)
	{
		CloseKey();
		ret = DeleteKey(subKey) ? ret : FALSE;
	}
	else {
		while (EnumValue(0, buf, sizeof(buf)))
		{
			if (DeleteValue(buf) != TRUE)
			{
				ret = FALSE;
				break;
			}
		}
	}
	return	ret;
}
Пример #3
0
void TitleScreenModel::Update() {
	
  UpdatePlayerPosition(player1_top,
                       Lerp(GetPlayer1TopLeft(EnumValue(court_position)),
                            GetPlayer1TopRight(EnumValue(court_position)), Player1Position()));
  UpdatePlayerPosition(player1_bottom,
                       Lerp(GetPlayer1BottomLeft(EnumValue(court_position)),
                            GetPlayer1BottomRight(EnumValue(court_position)), Player1Position()));
  UpdatePlayerPosition(player2_top,
                       Lerp(GetPlayer2TopLeft(EnumValue(court_position)),
                            GetPlayer2TopRight(EnumValue(court_position)), Player2Position()));
  UpdatePlayerPosition(player2_bottom,
                       Lerp(GetPlayer2BottomLeft(EnumValue(court_position)),
                            GetPlayer2BottomRight(EnumValue(court_position)), Player2Position()));
  
	if(player1_position == 1.0f && player2_position == 1.0f) {
      dynamic_cast<WitchBall *>(ofGetAppPtr())->RunPlayScreen();
      return;
	}
  world.Step(kTimeStep, kBox2dVelocityIterations, kBox2dPositionIterations);
}
Пример #4
0
TypeId
FdNetDevice::GetTypeId (void)
{
  static TypeId tid = TypeId ("ns3::FdNetDevice")
    .SetParent<NetDevice> ()
    .AddConstructor<FdNetDevice> ()
    .AddAttribute ("Address",
                   "The MAC address of this device.",
                   Mac48AddressValue (Mac48Address ("ff:ff:ff:ff:ff:ff")),
                   MakeMac48AddressAccessor (&FdNetDevice::m_address),
                   MakeMac48AddressChecker ())
    .AddAttribute ("Start",
                   "The simulation time at which to spin up the device thread.",
                   TimeValue (Seconds (0.)),
                   MakeTimeAccessor (&FdNetDevice::m_tStart),
                   MakeTimeChecker ())
    .AddAttribute ("Stop",
                   "The simulation time at which to tear down the device thread.",
                   TimeValue (Seconds (0.)),
                   MakeTimeAccessor (&FdNetDevice::m_tStop),
                   MakeTimeChecker ())
    .AddAttribute ("EncapsulationMode",
                   "The link-layer encapsulation type to use.",
                   EnumValue (DIX),
                   MakeEnumAccessor (&FdNetDevice::m_encapMode),
                   MakeEnumChecker (DIX, "Dix",
                                    LLC, "Llc",
                                    DIXPI, "DixPi"))
    .AddAttribute ("RxQueueSize", "Maximum size of the read queue.  "
                   "This value limits number of packets that have been read "
                   "from the network into a memory buffer but have not yet "
                   "been processed by the simulator.",
                   UintegerValue (1000),
                   MakeUintegerAccessor (&FdNetDevice::m_maxPendingReads),
                   MakeUintegerChecker<uint32_t> ())
    //
    // Trace sources at the "top" of the net device, where packets transition
    // to/from higher layers.  These points do not really correspond to the
    // MAC layer of the underlying operating system, but exist to provide
    // a consitent tracing environment.  These trace hooks should really be
    // interpreted as the points at which a packet leaves the ns-3 environment
    // destined for the underlying operating system or vice-versa.
    //
    .AddTraceSource ("MacTx",
                     "Trace source indicating a packet has arrived for transmission by this device",
                     MakeTraceSourceAccessor (&FdNetDevice::m_macTxTrace))
    .AddTraceSource ("MacTxDrop",
                     "Trace source indicating a packet has been dropped by the device before transmission",
                     MakeTraceSourceAccessor (&FdNetDevice::m_macTxDropTrace))
    .AddTraceSource ("MacPromiscRx",
                     "A packet has been received by this device, has been passed up from the physical layer "
                     "and is being forwarded up the local protocol stack.  This is a promiscuous trace,",
                     MakeTraceSourceAccessor (&FdNetDevice::m_macPromiscRxTrace))
    .AddTraceSource ("MacRx",
                     "A packet has been received by this device, has been passed up from the physical layer "
                     "and is being forwarded up the local protocol stack.  This is a non-promiscuous trace,",
                     MakeTraceSourceAccessor (&FdNetDevice::m_macRxTrace))

    //
    // Trace sources designed to simulate a packet sniffer facility (tcpdump).
    //
    .AddTraceSource ("Sniffer",
                     "Trace source simulating a non-promiscuous packet sniffer attached to the device",
                     MakeTraceSourceAccessor (&FdNetDevice::m_snifferTrace))
    .AddTraceSource ("PromiscSniffer",
                     "Trace source simulating a promiscuous packet sniffer attached to the device",
                     MakeTraceSourceAccessor (&FdNetDevice::m_promiscSnifferTrace))
  ;
  return tid;
}
Пример #5
0
void TitleScreenModel::CreatePlayers() {
  player1_top = CreatePlayer(GetPlayer1TopLeft(EnumValue(CourtPosition::POSITION_1)));
  player1_bottom = CreatePlayer(GetPlayer1BottomLeft(EnumValue(CourtPosition::POSITION_1)));
  player2_top = CreatePlayer(GetPlayer2TopLeft(EnumValue(CourtPosition::POSITION_1)));
  player2_bottom = CreatePlayer(GetPlayer2BottomLeft(EnumValue(CourtPosition::POSITION_1)));
}
Пример #6
0
void
LenaMimoTestCase::DoRun (void)
{
  NS_LOG_FUNCTION (this << GetName ());
  Config::SetDefault ("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue (false));
  Config::SetDefault ("ns3::LteAmc::AmcModel", EnumValue (LteAmc::PiroEW2010));
  Config::SetDefault ("ns3::LteHelper::UseIdealRrc", BooleanValue (m_useIdealRrc));

  /**
   * Initialize Simulation Scenario: 1 eNB and m_nUser UEs
   */


  Ptr<LteHelper> lteHelper = CreateObject<LteHelper> ();
  Config::SetDefault ("ns3::RrFfMacScheduler::HarqEnabled", BooleanValue (false));
  Config::SetDefault ("ns3::PfFfMacScheduler::HarqEnabled", BooleanValue (false));
  
//   lteHelper->SetSchedulerAttribute ("HarqEnabled", BooleanValue (false));
  
  
  lteHelper->SetAttribute ("PathlossModel", StringValue ("ns3::HybridBuildingsPropagationLossModel"));
  lteHelper->SetPathlossModelAttribute ("ShadowSigmaOutdoor", DoubleValue (0.0));
  lteHelper->SetPathlossModelAttribute ("ShadowSigmaIndoor", DoubleValue (0.0));
  lteHelper->SetPathlossModelAttribute ("ShadowSigmaExtWalls", DoubleValue (0.0));
  
//   lteHelper->EnableLogComponents ();

  // Create Nodes: eNodeB and UE
  NodeContainer enbNodes;
  NodeContainer ueNodes;
  enbNodes.Create (1);
  ueNodes.Create (1);

  // Install Mobility Model
  MobilityHelper mobility;
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (enbNodes);
  BuildingsHelper::Install (enbNodes);
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (ueNodes);
  BuildingsHelper::Install (ueNodes);

  // Create Devices and install them in the Nodes (eNB and UE)
  NetDeviceContainer enbDevs;
  NetDeviceContainer ueDevs;
  lteHelper->SetSchedulerType (m_schedulerType);
  enbDevs = lteHelper->InstallEnbDevice (enbNodes);
  ueDevs = lteHelper->InstallUeDevice (ueNodes);
  
  // Attach a UE to a eNB
  lteHelper->Attach (ueDevs, enbDevs.Get (0));

  // Activate an EPS bearer
  enum EpsBearer::Qci q = EpsBearer::GBR_CONV_VOICE;
  EpsBearer bearer (q);
  lteHelper->ActivateDataRadioBearer (ueDevs, bearer);
  

  Ptr<LteEnbNetDevice> lteEnbDev = enbDevs.Get (0)->GetObject<LteEnbNetDevice> ();
  Ptr<LteEnbPhy> enbPhy = lteEnbDev->GetPhy ();
  enbPhy->SetAttribute ("TxPower", DoubleValue (46.0));
  enbPhy->SetAttribute ("NoiseFigure", DoubleValue (5.0));
  Ptr<MobilityModel> mmenb = enbNodes.Get (0)->GetObject<MobilityModel> ();
  mmenb->SetPosition (Vector (0.0, 0.0, 30.0));

  // Set UE's position and power
  Ptr<MobilityModel> mmue = ueNodes.Get (0)->GetObject<MobilityModel> ();
  mmue->SetPosition (Vector (m_dist, 0.0, 1.0));
  Ptr<LteUeNetDevice> lteUeDev = ueDevs.Get (0)->GetObject<LteUeNetDevice> ();
  Ptr<LteUePhy> uePhy = lteUeDev->GetPhy ();
  uePhy->SetAttribute ("TxPower", DoubleValue (23.0));
  uePhy->SetAttribute ("NoiseFigure", DoubleValue (9.0));
  
  // need to allow for RRC connection establishment + SRS before enabling traces
  lteHelper->EnableRlcTraces ();
  lteHelper->EnableMacTraces ();
  double simulationTime = 0.6; 
  double tolerance = 0.1;
  
  uint8_t rnti = 1;
  Ptr<LteEnbNetDevice> enbNetDev = enbDevs.Get (0)->GetObject<LteEnbNetDevice> ();
  
  PointerValue ptrval;
  enbNetDev->GetAttribute ("FfMacScheduler", ptrval);
  Ptr<PfFfMacScheduler> pfsched;
  Ptr<RrFfMacScheduler> rrsched;
  if (m_schedulerType.compare ("ns3::RrFfMacScheduler") == 0)
    {
      rrsched = ptrval.Get<RrFfMacScheduler> ();
      if (rrsched == 0)
        {
          NS_FATAL_ERROR ("No RR Scheduler available");
        }
      Simulator::Schedule (Seconds (0.2), &RrFfMacScheduler::TransmissionModeConfigurationUpdate, rrsched, rnti, 1);
      Simulator::Schedule (Seconds (0.4), &RrFfMacScheduler::TransmissionModeConfigurationUpdate, rrsched, rnti, 2);
    }
  else if (m_schedulerType.compare ("ns3::PfFfMacScheduler") == 0)
    {
      pfsched = ptrval.Get<PfFfMacScheduler> ();
      if (pfsched == 0)
        {
          NS_FATAL_ERROR ("No Pf Scheduler available");
        }
      
      Simulator::Schedule (Seconds (0.2), &PfFfMacScheduler::TransmissionModeConfigurationUpdate, pfsched, rnti, 1);
      Simulator::Schedule (Seconds (0.4), &PfFfMacScheduler::TransmissionModeConfigurationUpdate, pfsched, rnti, 2);
    }
  else
    {
      NS_FATAL_ERROR ("Scheduler not supported by this test");
    }
    
  
  Ptr<RadioBearerStatsCalculator> rlcStats = lteHelper->GetRlcStats ();
  rlcStats->SetAttribute ("EpochDuration", TimeValue (Seconds (0.1)));

  NS_LOG_INFO (m_schedulerType << " MIMO test:");
  double sampleTime = 0.199999; // at 0.2 RlcStats are reset
  for (uint8_t j = 0; j < m_estThrDl.size (); j ++)
    {
      NS_LOG_INFO ("\t test with user at distance " << m_dist << " time " << sampleTime);
      // get the imsi
      uint64_t imsi = ueDevs.Get (0)->GetObject<LteUeNetDevice> ()->GetImsi ();
      uint8_t lcId = 3;
      Time t = Seconds (sampleTime);
      Simulator::Schedule(t, &LenaMimoTestCase::GetRlcBufferSample, this, rlcStats, imsi, lcId);
      sampleTime += 0.2;
    }
  Simulator::Stop (Seconds (simulationTime));
  Simulator::Run ();
  Simulator::Destroy ();

  NS_LOG_INFO ("Check consistency");
    for (uint8_t i = 0; i < m_estThrDl.size (); i++)
      {
        NS_LOG_INFO ("interval " << i + 1 << ": bytes rxed " << (double)m_dlDataRxed.at (i) << " ref " << m_estThrDl.at (i));
        NS_TEST_ASSERT_MSG_EQ_TOL ((double)m_dlDataRxed.at (i) , m_estThrDl.at (i), m_estThrDl.at (i) * tolerance, " Unfair Throughput!");
      }

}
Пример #7
0
 virtual bool get(size_t Index, value& Value) override {
     return m_Key && EnumValue(m_Key.Key(), Index, Value);
 }
Пример #8
0
TypeId RedQueue::GetTypeId (void)
{
  static TypeId tid = TypeId ("ns3::RedQueue")
    .SetParent<Queue> ()
    .AddConstructor<RedQueue> ()
    .AddAttribute ("Mode",
                   "Determines unit for QueueLimit",
                   EnumValue (QUEUE_MODE_PACKETS),
                   MakeEnumAccessor (&RedQueue::SetMode),
                   MakeEnumChecker (QUEUE_MODE_BYTES, "QUEUE_MODE_BYTES",
                                    QUEUE_MODE_PACKETS, "QUEUE_MODE_PACKETS"))
    .AddAttribute ("MeanPktSize",
                   "Average of packet size",
                   UintegerValue (500),
                   MakeUintegerAccessor (&RedQueue::m_meanPktSize),
                   MakeUintegerChecker<uint32_t> ())
    .AddAttribute ("IdlePktSize",
                   "Average packet size used during idle times. Used when m_cautions = 3",
                   UintegerValue (0),
                   MakeUintegerAccessor (&RedQueue::m_idlePktSize),
                   MakeUintegerChecker<uint32_t> ())
    .AddAttribute ("Wait",
                   "True for waiting between dropped packets",
                   BooleanValue (true),
                   MakeBooleanAccessor (&RedQueue::m_isWait),
                   MakeBooleanChecker ())
    .AddAttribute ("Gentle",
                   "True to increases dropping probability slowly when average queue exceeds maxthresh",
                   BooleanValue (true),
                   MakeBooleanAccessor (&RedQueue::m_isGentle),
                   MakeBooleanChecker ())
    .AddAttribute ("MinTh",
                   "Minimum average length threshold in packets/bytes",
                   DoubleValue (5),
                   MakeDoubleAccessor (&RedQueue::m_minTh),
                   MakeDoubleChecker<double> ())
    .AddAttribute ("MaxTh",
                   "Maximum average length threshold in packets/bytes",
                   DoubleValue (15),
                   MakeDoubleAccessor (&RedQueue::m_maxTh),
                   MakeDoubleChecker<double> ())
    .AddAttribute ("QueueLimit",
                   "Queue limit in bytes/packets",
                   UintegerValue (25),
                   MakeUintegerAccessor (&RedQueue::m_queueLimit),
                   MakeUintegerChecker<uint32_t> ())
    .AddAttribute ("QW",
                   "Queue weight related to the exponential weighted moving average (EWMA)",
                   DoubleValue (0.002),
                   MakeDoubleAccessor (&RedQueue::m_qW),
                   MakeDoubleChecker <double> ())
    .AddAttribute ("LInterm",
                   "The maximum probability of dropping a packet",
                   DoubleValue (50),
                   MakeDoubleAccessor (&RedQueue::m_lInterm),
                   MakeDoubleChecker <double> ())
    .AddAttribute ("Ns1Compat",
                   "NS-1 compatibility",
                   BooleanValue (false),
                   MakeBooleanAccessor (&RedQueue::m_isNs1Compat),
                   MakeBooleanChecker ())
    .AddAttribute ("LinkBandwidth", 
                   "The RED link bandwidth",
                   DataRateValue (DataRate ("1.5Mbps")),
                   MakeDataRateAccessor (&RedQueue::m_linkBandwidth),
                   MakeDataRateChecker ())
    .AddAttribute ("LinkDelay", 
                   "The RED link delay",
                   TimeValue (MilliSeconds (20)),
                   MakeTimeAccessor (&RedQueue::m_linkDelay),
                   MakeTimeChecker ())
  ;

  return tid;
}
void
LenaDlCtrlPhyErrorModelTestCase::DoRun (void)
{
  
  double ber = 0.03;
  Config::SetDefault ("ns3::LteAmc::Ber", DoubleValue (ber));
  Config::SetDefault ("ns3::LteAmc::AmcModel", EnumValue (LteAmc::PiroEW2010));
  Config::SetDefault ("ns3::LteSpectrumPhy::CtrlErrorModelEnabled", BooleanValue (true));
  Config::SetDefault ("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue (false));
  Config::SetDefault ("ns3::RrFfMacScheduler::HarqEnabled", BooleanValue (false));
  Config::SetGlobal ("RngRun", IntegerValue (m_rngRun));

  /*
   * Initialize Simulation Scenario: 1 eNB and m_nUser UEs
   */

  int64_t stream = 1;
  Ptr<LteHelper> lena = CreateObject<LteHelper> ();
  
  // Create Nodes: eNodeB and UE
  NodeContainer enbNodes;
  NodeContainer ueNodes;
  enbNodes.Create (m_nEnb);
  ueNodes.Create (1);
  
  // Install Mobility Model
  MobilityHelper mobility;
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (enbNodes);
  BuildingsHelper::Install (enbNodes);
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (ueNodes);
  BuildingsHelper::Install (ueNodes);
  
  // remove random shadowing component
  lena->SetAttribute ("PathlossModel", StringValue ("ns3::HybridBuildingsPropagationLossModel"));
  lena->SetPathlossModelAttribute ("ShadowSigmaOutdoor", DoubleValue (0.0));
  lena->SetPathlossModelAttribute ("ShadowSigmaIndoor", DoubleValue (0.0));
  lena->SetPathlossModelAttribute ("ShadowSigmaExtWalls", DoubleValue (0.0));
  
  // Create Devices and install them in the Nodes (eNB and UE)
  NetDeviceContainer enbDevs;
  NetDeviceContainer ueDevs;
  lena->SetSchedulerType ("ns3::RrFfMacScheduler");
  lena->SetSchedulerAttribute ("UlCqiFilter", EnumValue (FfMacScheduler::PUSCH_UL_CQI));
  
  enbDevs = lena->InstallEnbDevice (enbNodes);
  stream += lena->AssignStreams (enbDevs, stream);
  ueDevs = lena->InstallUeDevice (ueNodes);
  stream += lena->AssignStreams (ueDevs, stream);
  
  // Attach a UE to one eNB (the others are interfering ones)
  lena->Attach (ueDevs, enbDevs.Get (0));
  
  // Activate an EPS bearer
  enum EpsBearer::Qci q = EpsBearer::GBR_CONV_VOICE;
  EpsBearer bearer (q);
  lena->ActivateDataRadioBearer (ueDevs, bearer);
  
  // Set UEs' position and power
  for (int i = 0; i < m_nEnb; i++)
    {
      // place the HeNB over the default rooftop level (20 mt.)
      Ptr<MobilityModel> mm = enbNodes.Get (i)->GetObject<MobilityModel> ();
      mm->SetPosition (Vector (0.0, 0.0, 30.0));
      Ptr<LteEnbNetDevice> lteEnbDev = enbDevs.Get (i)->GetObject<LteEnbNetDevice> ();
      Ptr<LteEnbPhy> enbPhy = lteEnbDev->GetPhy ();
      enbPhy->SetAttribute ("TxPower", DoubleValue (43.0));
      enbPhy->SetAttribute ("NoiseFigure", DoubleValue (5.0));
    }
  
  // Set UEs' position and power
  Ptr<MobilityModel> mm = ueNodes.Get (0)->GetObject<MobilityModel> ();
  mm->SetPosition (Vector (m_dist, 0.0, 1.0));
  Ptr<LteUeNetDevice> lteUeDev = ueDevs.Get (0)->GetObject<LteUeNetDevice> ();
  Ptr<LteUePhy> uePhy = lteUeDev->GetPhy ();
  uePhy->SetAttribute ("TxPower", DoubleValue (23.0));
  uePhy->SetAttribute ("NoiseFigure", DoubleValue (9.0));
  
  Time statsDuration = Seconds (1.0);
  Simulator::Stop (m_statsStartTime + statsDuration - Seconds (0.0001));

  lena->EnableRlcTraces ();
  Ptr<RadioBearerStatsCalculator> rlcStats = lena->GetRlcStats ();
  rlcStats->SetAttribute ("StartTime", TimeValue (m_statsStartTime));
  rlcStats->SetAttribute ("EpochDuration", TimeValue (statsDuration));

  Simulator::Run ();
  
  NS_LOG_INFO ("\tTest downlink control channels (PCFICH+PDCCH)");
  NS_LOG_INFO ("Test with " << m_nEnb << " eNB(s) at distance " << m_dist << " expected BLER " << m_blerRef);
  int nUser = 1;
  for (int i = 0; i < nUser; i++)
    {
      // get the imsi
      uint64_t imsi = ueDevs.Get (i)->GetObject<LteUeNetDevice> ()->GetImsi ();
      uint8_t lcId = 3;
      double dlRxPackets = rlcStats->GetDlRxPackets (imsi, lcId);
      double dlTxPackets = rlcStats->GetDlTxPackets (imsi, lcId);
      double dlBler = 1.0 - (dlRxPackets/dlTxPackets);
      double expectedDlRxPackets = dlTxPackets -dlTxPackets*m_blerRef;
      NS_LOG_INFO ("\tUser " << i << " imsi " << imsi << " DOWNLINK"
                   << " pkts rx " << dlRxPackets << " tx " << dlTxPackets
                   << " BLER " << dlBler << " Err " << std::fabs (m_blerRef - dlBler)
                   << " expected rx " << expectedDlRxPackets
                   << " difference " << std::abs (expectedDlRxPackets - dlRxPackets)
                   << " tolerance " << m_toleranceRxPackets);
      NS_UNUSED (dlBler);

      // sanity check for whether the tx packets reported by the stats are correct
      // we expect one packet per TTI
      double expectedDlTxPackets = statsDuration.GetMilliSeconds ();
      NS_TEST_ASSERT_MSG_EQ_TOL (dlTxPackets, expectedDlTxPackets, expectedDlTxPackets * 0.005, 
                                 " too different DL TX packets reported");

      // this is the main test condition: check that the RX packets are within the expected range
      NS_TEST_ASSERT_MSG_EQ_TOL (dlRxPackets, expectedDlRxPackets, m_toleranceRxPackets,
                                 "too different DL RX packets reported");

    }
  
  Simulator::Destroy ();
}