int D_PAD::boundingRadius() const { int x, y; int radius; switch( GetShape() ) { case PAD_SHAPE_CIRCLE: radius = m_Size.x / 2; break; case PAD_SHAPE_OVAL: radius = std::max( m_Size.x, m_Size.y ) / 2; break; case PAD_SHAPE_RECT: radius = 1 + KiROUND( EuclideanNorm( m_Size ) / 2 ); break; case PAD_SHAPE_TRAPEZOID: x = m_Size.x + std::abs( m_DeltaSize.y ); // Remember: m_DeltaSize.y is the m_Size.x change y = m_Size.y + std::abs( m_DeltaSize.x ); // Remember: m_DeltaSize.x is the m_Size.y change radius = 1 + KiROUND( hypot( x, y ) / 2 ); break; case PAD_SHAPE_ROUNDRECT: radius = GetRoundRectCornerRadius(); x = m_Size.x >> 1; y = m_Size.y >> 1; radius += 1 + KiROUND( EuclideanNorm( wxSize( x - radius, y - radius ))); break; case PAD_SHAPE_CUSTOM: radius = 0; for( int cnt = 0; cnt < m_customShapeAsPolygon.OutlineCount(); ++cnt ) { const SHAPE_LINE_CHAIN& poly = m_customShapeAsPolygon.COutline( cnt ); for( int ii = 0; ii < poly.PointCount(); ++ii ) { int dist = KiROUND( poly.CPoint( ii ).EuclideanNorm() ); radius = std::max( radius, dist ); } } radius += 1; break; default: radius = 0; } return radius; }
/* This function shows on screen the bounding box of the inductor that will be * created at the end of the build inductor process */ static void ShowBoundingBoxMicroWaveInductor( EDA_DRAW_PANEL* aPanel, wxDC* aDC, const wxPoint& aPosition, bool aErase ) { /* Calculate the orientation and size of the box containing the inductor: * the box is a rectangle with height = lenght/2 * the shape is defined by a rectangle, nor necessary horizontal or vertical */ GRSetDrawMode( aDC, GR_XOR ); wxPoint poly[5]; wxPoint pt = s_inductor_pattern.m_End - s_inductor_pattern.m_Start; double angle = -ArcTangente( pt.y, pt.x ); int len = KiROUND( EuclideanNorm( pt ) ); // calculate corners pt.x = 0; pt.y = len / 4; RotatePoint( &pt, angle ); poly[0] = s_inductor_pattern.m_Start + pt; poly[1] = s_inductor_pattern.m_End + pt; pt.x = 0; pt.y = -len / 4; RotatePoint( &pt, angle ); poly[2] = s_inductor_pattern.m_End + pt; poly[3] = s_inductor_pattern.m_Start + pt; poly[4] = poly[0]; if( aErase ) { GRPoly( aPanel->GetClipBox(), aDC, 5, poly, false, 0, YELLOW, YELLOW ); } s_inductor_pattern.m_End = aPanel->GetParent()->GetCrossHairPosition(); pt = s_inductor_pattern.m_End - s_inductor_pattern.m_Start; angle = -ArcTangente( pt.y, pt.x ); len = KiROUND( EuclideanNorm( pt ) ); // calculate new corners pt.x = 0; pt.y = len / 4; RotatePoint( &pt, angle ); poly[0] = s_inductor_pattern.m_Start + pt; poly[1] = s_inductor_pattern.m_End + pt; pt.x = 0; pt.y = -len / 4; RotatePoint( &pt, angle ); poly[2] = s_inductor_pattern.m_End + pt; poly[3] = s_inductor_pattern.m_Start + pt; poly[4] = poly[0]; GRPoly( aPanel->GetClipBox(), aDC, 5, poly, false, 0, YELLOW, YELLOW ); }
int D_PAD::boundingRadius() const { int x, y; int radius; switch( GetShape() ) { case PAD_SHAPE_CIRCLE: radius = m_Size.x / 2; break; case PAD_SHAPE_OVAL: radius = std::max( m_Size.x, m_Size.y ) / 2; break; case PAD_SHAPE_RECT: radius = 1 + KiROUND( EuclideanNorm( m_Size ) / 2 ); break; case PAD_SHAPE_TRAPEZOID: x = m_Size.x + std::abs( m_DeltaSize.y ); // Remember: m_DeltaSize.y is the m_Size.x change y = m_Size.y + std::abs( m_DeltaSize.x ); // Remember: m_DeltaSize.x is the m_Size.y change radius = 1 + KiROUND( hypot( x, y ) / 2 ); break; default: radius = 0; } return radius; }
bool D_PAD::HitTest( const wxPoint& aPosition ) { int dx, dy; wxPoint shape_pos = ReturnShapePos(); wxPoint delta = aPosition - shape_pos; // first test: a test point must be inside a minimum sized bounding circle. int radius = GetBoundingRadius(); if( ( abs( delta.x ) > radius ) || ( abs( delta.y ) > radius ) ) return false; dx = m_Size.x >> 1; // dx also is the radius for rounded pads dy = m_Size.y >> 1; switch( m_PadShape & 0x7F ) { case PAD_CIRCLE: if( KiROUND( EuclideanNorm( delta ) ) <= dx ) return true; break; case PAD_TRAPEZOID: { wxPoint poly[4]; BuildPadPolygon( poly, wxSize(0,0), 0 ); RotatePoint( &delta, -m_Orient ); return TestPointInsidePolygon( poly, 4, delta ); } default: RotatePoint( &delta, -m_Orient ); if( (abs( delta.x ) <= dx ) && (abs( delta.y ) <= dy) ) return true; break; } return false; }
void PLOTTER::segmentAsOval( const wxPoint& start, const wxPoint& end, int width, EDA_DRAW_MODE_T tracemode ) { wxPoint center( (start.x + end.x) / 2, (start.y + end.y) / 2 ); wxSize size( end.x - start.x, end.y - start.y ); double orient; if( size.y == 0 ) orient = 0; else if( size.x == 0 ) orient = 900; else orient = -ArcTangente( size.y, size.x ); size.x = KiROUND( EuclideanNorm( size ) ) + width; size.y = width; FlashPadOval( center, size, orient, tracemode ); }
bool LIB_ARC::HitTest( wxPoint aPosition, int aThreshold, const TRANSFORM& aTransform ) { if( aThreshold < 0 ) aThreshold = GetPenSize() / 2; // TODO: use aTransMat to calculates parameters wxPoint relativePosition = aPosition; NEGATE( relativePosition.y ); // reverse Y axis int distance = wxRound( EuclideanNorm( TwoPointVector( m_Pos, relativePosition ) ) ); if( abs( distance - m_Radius ) > aThreshold ) return false; // We are on the circle, ensure we are only on the arc, i.e. between // m_ArcStart and m_ArcEnd wxPoint startEndVector = TwoPointVector( m_ArcStart, m_ArcEnd); wxPoint startRelativePositionVector = TwoPointVector( m_ArcStart, relativePosition ); wxPoint centerStartVector = TwoPointVector( m_Pos, m_ArcStart ); wxPoint centerEndVector = TwoPointVector( m_Pos, m_ArcEnd ); wxPoint centerRelativePositionVector = TwoPointVector( m_Pos, relativePosition ); // Compute the cross product to check if the point is in the sector int crossProductStart = CrossProduct( centerStartVector, centerRelativePositionVector ); int crossProductEnd = CrossProduct( centerEndVector, centerRelativePositionVector ); // The cross products need to be exchanged, depending on which side the center point // relative to the start point to end point vector lies if( CrossProduct( startEndVector, startRelativePositionVector ) < 0 ) { EXCHG( crossProductStart, crossProductEnd ); } // When the cross products have a different sign, the point lies in sector // also check, if the reference is near start or end point return HitTestPoints( m_ArcStart, relativePosition, MINIMUM_SELECTION_DISTANCE ) || HitTestPoints( m_ArcEnd, relativePosition, MINIMUM_SELECTION_DISTANCE ) || ( crossProductStart <= 0 && crossProductEnd >= 0 ); }
/** * Helper function checkMarginToCircle * Check the distance between a circle (round pad, via or round end of track) * and a segment. the segment is expected starting at 0,0, and on the X axis * return true if distance >= aRadius */ bool DRC::checkMarginToCircle( wxPoint aCentre, int aRadius, int aLength ) { if( abs( aCentre.y ) >= aRadius ) // trivial case return true; // Here, distance between aCentre and X axis is < aRadius if( (aCentre.x > -aRadius ) && ( aCentre.x < (aLength + aRadius) ) ) { if( (aCentre.x >= 0) && (aCentre.x <= aLength) ) return false; // aCentre is between the starting point and the ending point of the segm if( aCentre.x > aLength ) // aCentre is after the ending point aCentre.x -= aLength; // move aCentre to the starting point of the segment if( EuclideanNorm( aCentre ) < aRadius ) // distance between aCentre and the starting point or the ending point is < aRadius return false; } return true; }
/* Populates .m_connected with tracks/vias connected to aTrack * param aTrack = track or via to use as reference * For calculation time reason, an exhaustive search cannot be made * and a proximity search is made: * Only tracks with one end near one end of aTrack are collected. * near means dist <= aTrack width / 2 * because with this constraint we can make a fast search in track list * m_candidates is expected to be populated by the track candidates ends list */ int CONNECTIONS::SearchConnectedTracks( const TRACK* aTrack ) { int count = 0; m_connected.clear(); LSET layerMask = aTrack->GetLayerSet(); // Search for connections to starting point: #define USE_EXTENDED_SEARCH #ifdef USE_EXTENDED_SEARCH int dist_max = aTrack->GetWidth() / 2; static std::vector<CONNECTED_POINT*> tracks_candidates; #endif wxPoint position = aTrack->GetStart(); for( int kk = 0; kk < 2; kk++ ) { #ifndef USE_EXTENDED_SEARCH int idx = searchEntryPointInCandidatesList( position ); if( idx >= 0 ) { // search after: for( unsigned ii = idx; ii < m_candidates.size(); ii ++ ) { if( m_candidates[ii].GetTrack() == aTrack ) continue; if( m_candidates[ii].GetPoint() != position ) break; if( ( m_candidates[ii].GetTrack()->GetLayerSet() & layerMask ).any() ) m_connected.push_back( m_candidates[ii].GetTrack() ); } // search before: for( int ii = idx-1; ii >= 0; ii -- ) { if( m_candidates[ii].GetTrack() == aTrack ) continue; if( m_candidates[ii].GetPoint() != position ) break; if( ( m_candidates[ii].GetTrack()->GetLayerSet() & layerMask ).any() ) m_connected.push_back( m_candidates[ii].GetTrack() ); } } #else tracks_candidates.clear(); CollectItemsNearTo( tracks_candidates, position, dist_max ); for( unsigned ii = 0; ii < tracks_candidates.size(); ii++ ) { TRACK* ctrack = tracks_candidates[ii]->GetTrack(); if( !( ctrack->GetLayerSet() & layerMask ).any() ) continue; if( ctrack == aTrack ) continue; // We have a good candidate: calculate the actual distance // between ends, which should be <= dist max. wxPoint delta = tracks_candidates[ii]->GetPoint() - position; int dist = KiROUND( EuclideanNorm( delta ) ); if( dist > dist_max ) continue; m_connected.push_back( ctrack ); } #endif // Search for connections to ending point: if( aTrack->Type() == PCB_VIA_T ) break; position = aTrack->GetEnd(); } return count; }
/** * Function TransformRoundedEndsSegmentToPolygon * convert a segment with rounded ends to a polygon * Convert arcs to multiple straight lines * @param aCornerBuffer = a buffer to store the polygon * @param aStart = the segment start point coordinate * @param aEnd = the segment end point coordinate * @param aCircleToSegmentsCount = the number of segments to approximate a circle * @param aWidth = the segment width * Note: the polygon is inside the arc ends, so if you want to have the polygon * outside the circle, you should give aStart and aEnd calculated with a correction factor */ void TransformRoundedEndsSegmentToPolygon( SHAPE_POLY_SET& aCornerBuffer, wxPoint aStart, wxPoint aEnd, int aCircleToSegmentsCount, int aWidth ) { int radius = aWidth / 2; wxPoint endp = aEnd - aStart; // end point coordinate for the same segment starting at (0,0) wxPoint startp = aStart; wxPoint corner; VECTOR2I polypoint; aCornerBuffer.NewOutline(); // normalize the position in order to have endp.x >= 0; if( endp.x < 0 ) { endp = aStart - aEnd; startp = aEnd; } double delta_angle = ArcTangente( endp.y, endp.x ); // delta_angle is in 0.1 degrees int seg_len = KiROUND( EuclideanNorm( endp ) ); int delta = 3600 / aCircleToSegmentsCount; // rot angle in 0.1 degree // Compute the outlines of the segment, and creates a polygon // add right rounded end: for( int ii = 0; ii < 1800; ii += delta ) { corner = wxPoint( 0, radius ); RotatePoint( &corner, ii ); corner.x += seg_len; RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); } // Finish arc: corner = wxPoint( seg_len, -radius ); RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); // add left rounded end: for( int ii = 0; ii < 1800; ii += delta ) { corner = wxPoint( 0, -radius ); RotatePoint( &corner, ii ); RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); } // Finish arc: corner = wxPoint( 0, radius ); RotatePoint( &corner, -delta_angle ); corner += startp; polypoint.x = corner.x; polypoint.y = corner.y; aCornerBuffer.Append( polypoint.x, polypoint.y ); }
/* test DRC between 2 pads. * this function can be also used to test DRC between a pad and a hole, * because a hole is like a round or oval pad. */ bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad ) { int dist; double pad_angle; // Get the clearance between the 2 pads. this is the min distance between aRefPad and aPad int dist_min = aRefPad->GetClearance( aPad ); // relativePadPos is the aPad shape position relative to the aRefPad shape position wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos(); dist = KiROUND( EuclideanNorm( relativePadPos ) ); // Quick test: Clearance is OK if the bounding circles are further away than "dist_min" if( (dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius()) >= dist_min ) return true; /* Here, pads are near and DRC depend on the pad shapes * We must compare distance using a fine shape analysis * Because a circle or oval shape is the easier shape to test, try to have * aRefPad shape type = PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. * if aRefPad = TRAP. and aPad = RECT, also swap pads * Swap aRefPad and aPad if needed */ bool swap_pads; swap_pads = false; // swap pads to make comparisons easier // Note also a ROUNDRECT pad with a corner radius = r can be considered as // a smaller RECT (size - 2*r) with a clearance increased by r // priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE ) { // pad ref shape is here oval, rect, roundrect, trapezoid or custom switch( aPad->GetShape() ) { case PAD_SHAPE_CIRCLE: swap_pads = true; break; case PAD_SHAPE_OVAL: swap_pads = true; break; case PAD_SHAPE_RECT: case PAD_SHAPE_ROUNDRECT: if( aRefPad->GetShape() != PAD_SHAPE_OVAL ) swap_pads = true; break; default: break; } } if( swap_pads ) { std::swap( aRefPad, aPad ); relativePadPos = -relativePadPos; } // corners of aRefPad (used only for rect/roundrect/trap pad) wxPoint polyref[4]; // corners of aRefPad (used only for custom pad) SHAPE_POLY_SET polysetref; // corners of aPad (used only for rect/roundrect/trap pad) wxPoint polycompare[4]; // corners of aPad (used only custom pad) SHAPE_POLY_SET polysetcompare; /* Because pad exchange, aRefPad shape is PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL, * if one of the 2 pads was a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. * Therefore, if aRefPad is a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID, * aPad is also a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID */ bool diag = true; switch( aRefPad->GetShape() ) { case PAD_SHAPE_CIRCLE: /* One can use checkClearanceSegmToPad to test clearance * aRefPad is like a track segment with a null length and a witdth = GetSize().x */ m_segmLength = 0; m_segmAngle = 0; m_segmEnd.x = m_segmEnd.y = 0; m_padToTestPos = relativePadPos; diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min ); break; case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_ROUNDRECT: case PAD_SHAPE_RECT: // pad_angle = pad orient relative to the aRefPad orient pad_angle = aRefPad->GetOrientation() + aPad->GetOrientation(); NORMALIZE_ANGLE_POS( pad_angle ); if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT ) { int padRadius = aRefPad->GetRoundRectCornerRadius(); dist_min += padRadius; GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ), aRefPad->GetSize(), aRefPad->GetOrientation() ); } else aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); switch( aPad->GetShape() ) { case PAD_SHAPE_ROUNDRECT: case PAD_SHAPE_RECT: case PAD_SHAPE_TRAPEZOID: if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT ) { int padRadius = aPad->GetRoundRectCornerRadius(); dist_min += padRadius; GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos, aPad->GetSize(), aPad->GetOrientation() ); } else { aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; } // And now test polygons: if( polysetref.OutlineCount() ) { const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 ); // And now test polygons: if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(), polycompare, 4, dist_min ) ) diag = false; } else if( !poly2polyDRC( polyref, 4, polycompare, 4, dist_min ) ) diag = false; break; default: wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() ); break; } break; case PAD_SHAPE_OVAL: /* an oval pad is like a track segment */ { /* Create a track segment with same dimensions as the oval aRefPad * and use checkClearanceSegmToPad function to test aPad to aRefPad clearance */ int segm_width; m_segmAngle = aRefPad->GetOrientation(); // Segment orient. if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment { segm_width = aRefPad->GetSize().y; m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y; } else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg { segm_width = aRefPad->GetSize().x; m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x; m_segmAngle += 900; } /* the start point must be 0,0 and currently relativePadPos * is relative the center of pad coordinate */ wxPoint segstart; segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment // Calculate segment end position relative to the segment origin m_segmEnd.x = -2 * segstart.x; m_segmEnd.y = -2 * segstart.y; // Recalculate the equivalent segment angle in 0,1 degrees // to prepare a call to checkClearanceSegmToPad() m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x ); // move pad position relative to the segment origin m_padToTestPos = relativePadPos - segstart; // Use segment to pad check to test the second pad: diag = checkClearanceSegmToPad( aPad, segm_width, dist_min ); break; } default: wxLogDebug( wxT( "DRC::checkClearancePadToPad: unknown pad shape" ) ); break; } return diag; }
bool DRC::doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool testPads ) { TRACK* track; wxPoint delta; // length on X and Y axis of segments LSET layerMask; int net_code_ref; wxPoint shape_pos; NETCLASSPTR netclass = aRefSeg->GetNetClass(); BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings(); /* In order to make some calculations more easier or faster, * pads and tracks coordinates will be made relative to the reference segment origin */ wxPoint origin = aRefSeg->GetStart(); // origin will be the origin of other coordinates m_segmEnd = delta = aRefSeg->GetEnd() - origin; m_segmAngle = 0; layerMask = aRefSeg->GetLayerSet(); net_code_ref = aRefSeg->GetNetCode(); // Phase 0 : Test vias if( aRefSeg->Type() == PCB_VIA_T ) { const VIA *refvia = static_cast<const VIA*>( aRefSeg ); // test if the via size is smaller than minimum if( refvia->GetViaType() == VIA_MICROVIA ) { if( refvia->GetWidth() < dsnSettings.m_MicroViasMinSize ) { m_currentMarker = fillMarker( refvia, NULL, DRCE_TOO_SMALL_MICROVIA, m_currentMarker ); return false; } if( refvia->GetDrillValue() < dsnSettings.m_MicroViasMinDrill ) { m_currentMarker = fillMarker( refvia, NULL, DRCE_TOO_SMALL_MICROVIA_DRILL, m_currentMarker ); return false; } } else { if( refvia->GetWidth() < dsnSettings.m_ViasMinSize ) { m_currentMarker = fillMarker( refvia, NULL, DRCE_TOO_SMALL_VIA, m_currentMarker ); return false; } if( refvia->GetDrillValue() < dsnSettings.m_ViasMinDrill ) { m_currentMarker = fillMarker( refvia, NULL, DRCE_TOO_SMALL_VIA_DRILL, m_currentMarker ); return false; } } // test if via's hole is bigger than its diameter // This test is necessary since the via hole size and width can be modified // and a default via hole can be bigger than some vias sizes if( refvia->GetDrillValue() > refvia->GetWidth() ) { m_currentMarker = fillMarker( refvia, NULL, DRCE_VIA_HOLE_BIGGER, m_currentMarker ); return false; } // For microvias: test if they are blind vias and only between 2 layers // because they are used for very small drill size and are drill by laser // and **only one layer** can be drilled if( refvia->GetViaType() == VIA_MICROVIA ) { LAYER_ID layer1, layer2; bool err = true; refvia->LayerPair( &layer1, &layer2 ); if( layer1 > layer2 ) std::swap( layer1, layer2 ); if( layer2 == B_Cu && layer1 == m_pcb->GetDesignSettings().GetCopperLayerCount() - 2 ) err = false; else if( layer1 == F_Cu && layer2 == In1_Cu ) err = false; if( err ) { m_currentMarker = fillMarker( refvia, NULL, DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR, m_currentMarker ); return false; } } } else // This is a track segment { if( aRefSeg->GetWidth() < dsnSettings.m_TrackMinWidth ) { m_currentMarker = fillMarker( aRefSeg, NULL, DRCE_TOO_SMALL_TRACK_WIDTH, m_currentMarker ); return false; } } // for a non horizontal or vertical segment Compute the segment angle // in tenths of degrees and its length if( delta.x || delta.y ) { // Compute the segment angle in 0,1 degrees m_segmAngle = ArcTangente( delta.y, delta.x ); // Compute the segment length: we build an equivalent rotated segment, // this segment is horizontal, therefore dx = length RotatePoint( &delta, m_segmAngle ); // delta.x = length, delta.y = 0 } m_segmLength = delta.x; /******************************************/ /* Phase 1 : test DRC track to pads : */ /******************************************/ /* Use a dummy pad to test DRC tracks versus holes, for pads not on all copper layers * but having a hole * This dummy pad has the size and shape of the hole * to test tracks to pad hole DRC, using checkClearanceSegmToPad test function. * Therefore, this dummy pad is a circle or an oval. * A pad must have a parent because some functions expect a non null parent * to find the parent board, and some other data */ MODULE dummymodule( m_pcb ); // Creates a dummy parent D_PAD dummypad( &dummymodule ); dummypad.SetLayerSet( LSET::AllCuMask() ); // Ensure the hole is on all layers // Compute the min distance to pads if( testPads ) { unsigned pad_count = m_pcb->GetPadCount(); for( unsigned ii = 0; ii<pad_count; ++ii ) { D_PAD* pad = m_pcb->GetPad( ii ); /* No problem if pads are on an other layer, * But if a drill hole exists (a pad on a single layer can have a hole!) * we must test the hole */ if( !( pad->GetLayerSet() & layerMask ).any() ) { /* We must test the pad hole. In order to use the function * checkClearanceSegmToPad(),a pseudo pad is used, with a shape and a * size like the hole */ if( pad->GetDrillSize().x == 0 ) continue; dummypad.SetSize( pad->GetDrillSize() ); dummypad.SetPosition( pad->GetPosition() ); dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE ); dummypad.SetOrientation( pad->GetOrientation() ); m_padToTestPos = dummypad.GetPosition() - origin; if( !checkClearanceSegmToPad( &dummypad, aRefSeg->GetWidth(), netclass->GetClearance() ) ) { m_currentMarker = fillMarker( aRefSeg, pad, DRCE_TRACK_NEAR_THROUGH_HOLE, m_currentMarker ); return false; } continue; } // The pad must be in a net (i.e pt_pad->GetNet() != 0 ) // but no problem if the pad netcode is the current netcode (same net) if( pad->GetNetCode() // the pad must be connected && net_code_ref == pad->GetNetCode() ) // the pad net is the same as current net -> Ok continue; // DRC for the pad shape_pos = pad->ShapePos(); m_padToTestPos = shape_pos - origin; if( !checkClearanceSegmToPad( pad, aRefSeg->GetWidth(), aRefSeg->GetClearance( pad ) ) ) { m_currentMarker = fillMarker( aRefSeg, pad, DRCE_TRACK_NEAR_PAD, m_currentMarker ); return false; } } } /***********************************************/ /* Phase 2: test DRC with other track segments */ /***********************************************/ // At this point the reference segment is the X axis // Test the reference segment with other track segments wxPoint segStartPoint; wxPoint segEndPoint; for( track = aStart; track; track = track->Next() ) { // No problem if segments have the same net code: if( net_code_ref == track->GetNetCode() ) continue; // No problem if segment are on different layers : if( !( layerMask & track->GetLayerSet() ).any() ) continue; // the minimum distance = clearance plus half the reference track // width plus half the other track's width int w_dist = aRefSeg->GetClearance( track ); w_dist += (aRefSeg->GetWidth() + track->GetWidth()) / 2; // Due to many double to int conversions during calculations, which // create rounding issues, // the exact clearance margin cannot be really known. // To avoid false bad DRC detection due to these rounding issues, // slightly decrease the w_dist (remove one nanometer is enough !) w_dist -= 1; // If the reference segment is a via, we test it here if( aRefSeg->Type() == PCB_VIA_T ) { delta = track->GetEnd() - track->GetStart(); segStartPoint = aRefSeg->GetStart() - track->GetStart(); if( track->Type() == PCB_VIA_T ) { // Test distance between two vias, i.e. two circles, trivial case if( EuclideanNorm( segStartPoint ) < w_dist ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_VIA_NEAR_VIA, m_currentMarker ); return false; } } else // test via to segment { // Compute l'angle du segment a tester; double angle = ArcTangente( delta.y, delta.x ); // Compute new coordinates ( the segment become horizontal) RotatePoint( &delta, angle ); RotatePoint( &segStartPoint, angle ); if( !checkMarginToCircle( segStartPoint, w_dist, delta.x ) ) { m_currentMarker = fillMarker( track, aRefSeg, DRCE_VIA_NEAR_TRACK, m_currentMarker ); return false; } } continue; } /* We compute segStartPoint, segEndPoint = starting and ending point coordinates for * the segment to test in the new axis : the new X axis is the * reference segment. We must translate and rotate the segment to test */ segStartPoint = track->GetStart() - origin; segEndPoint = track->GetEnd() - origin; RotatePoint( &segStartPoint, m_segmAngle ); RotatePoint( &segEndPoint, m_segmAngle ); if( track->Type() == PCB_VIA_T ) { if( checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) ) continue; m_currentMarker = fillMarker( aRefSeg, track, DRCE_TRACK_NEAR_VIA, m_currentMarker ); return false; } /* We have changed axis: * the reference segment is Horizontal. * 3 cases : the segment to test can be parallel, perpendicular or have an other direction */ if( segStartPoint.y == segEndPoint.y ) // parallel segments { if( abs( segStartPoint.y ) >= w_dist ) continue; // Ensure segStartPoint.x <= segEndPoint.x if( segStartPoint.x > segEndPoint.x ) std::swap( segStartPoint.x, segEndPoint.x ); if( segStartPoint.x > (-w_dist) && segStartPoint.x < (m_segmLength + w_dist) ) /* possible error drc */ { // the start point is inside the reference range // X........ // O--REF--+ // Fine test : we consider the rounded shape of each end of the track segment: if( segStartPoint.x >= 0 && segStartPoint.x <= m_segmLength ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_TRACK_ENDS1, m_currentMarker ); return false; } if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_TRACK_ENDS2, m_currentMarker ); return false; } } if( segEndPoint.x > (-w_dist) && segEndPoint.x < (m_segmLength + w_dist) ) { // the end point is inside the reference range // .....X // O--REF--+ // Fine test : we consider the rounded shape of the ends if( segEndPoint.x >= 0 && segEndPoint.x <= m_segmLength ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_TRACK_ENDS3, m_currentMarker ); return false; } if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_TRACK_ENDS4, m_currentMarker ); return false; } } if( segStartPoint.x <=0 && segEndPoint.x >= 0 ) { // the segment straddles the reference range (this actually only // checks if it straddles the origin, because the other cases where already // handled) // X.............X // O--REF--+ m_currentMarker = fillMarker( aRefSeg, track, DRCE_TRACK_SEGMENTS_TOO_CLOSE, m_currentMarker ); return false; } } else if( segStartPoint.x == segEndPoint.x ) // perpendicular segments { if( ( segStartPoint.x <= (-w_dist) ) || ( segStartPoint.x >= (m_segmLength + w_dist) ) ) continue; // Test if segments are crossing if( segStartPoint.y > segEndPoint.y ) std::swap( segStartPoint.y, segEndPoint.y ); if( (segStartPoint.y < 0) && (segEndPoint.y > 0) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_TRACKS_CROSSING, m_currentMarker ); return false; } // At this point the drc error is due to an end near a reference segm end if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_ENDS_PROBLEM1, m_currentMarker ); return false; } if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_ENDS_PROBLEM2, m_currentMarker ); return false; } } else // segments quelconques entre eux { // calcul de la "surface de securite du segment de reference // First rought 'and fast) test : the track segment is like a rectangle m_xcliplo = m_ycliplo = -w_dist; m_xcliphi = m_segmLength + w_dist; m_ycliphi = w_dist; // A fine test is needed because a serment is not exactly a // rectangle, it has rounded ends if( !checkLine( segStartPoint, segEndPoint ) ) { /* 2eme passe : the track has rounded ends. * we must a fine test for each rounded end and the * rectangular zone */ m_xcliplo = 0; m_xcliphi = m_segmLength; if( !checkLine( segStartPoint, segEndPoint ) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_ENDS_PROBLEM3, m_currentMarker ); return false; } else // The drc error is due to the starting or the ending point of the reference segment { // Test the starting and the ending point segStartPoint = track->GetStart(); segEndPoint = track->GetEnd(); delta = segEndPoint - segStartPoint; // Compute the segment orientation (angle) en 0,1 degre double angle = ArcTangente( delta.y, delta.x ); // Compute the segment length: delta.x = length after rotation RotatePoint( &delta, angle ); /* Comute the reference segment coordinates relatives to a * X axis = current tested segment */ wxPoint relStartPos = aRefSeg->GetStart() - segStartPoint; wxPoint relEndPos = aRefSeg->GetEnd() - segStartPoint; RotatePoint( &relStartPos, angle ); RotatePoint( &relEndPos, angle ); if( !checkMarginToCircle( relStartPos, w_dist, delta.x ) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_ENDS_PROBLEM4, m_currentMarker ); return false; } if( !checkMarginToCircle( relEndPos, w_dist, delta.x ) ) { m_currentMarker = fillMarker( aRefSeg, track, DRCE_ENDS_PROBLEM5, m_currentMarker ); return false; } } } } } return true; }
MODULE* PCB_EDIT_FRAME::Genere_Self( wxDC* DC ) { D_PAD* pad; int ll; wxString msg; m_canvas->CallMouseCapture( DC, wxDefaultPosition, false ); m_canvas->SetMouseCapture( NULL, NULL ); if( Self_On == 0 ) { DisplayError( this, wxT( "Starting point not init.." ) ); return NULL; } Self_On = 0; Mself.m_End = GetCrossHairPosition(); wxPoint pt = Mself.m_End - Mself.m_Start; int min_len = KiROUND( EuclideanNorm( pt ) ); Mself.lng = min_len; // Enter the desired length. msg = StringFromValue( g_UserUnit, Mself.lng ); wxTextEntryDialog dlg( this, _( "Length:" ), _( "Length" ), msg ); if( dlg.ShowModal() != wxID_OK ) return NULL; // canceled by user msg = dlg.GetValue(); Mself.lng = ValueFromString( g_UserUnit, msg ); // Control values (ii = minimum length) if( Mself.lng < min_len ) { DisplayError( this, _( "Requested length < minimum length" ) ); return NULL; } // Calculate the elements. Mself.m_Width = GetBoard()->GetCurrentTrackWidth(); std::vector <wxPoint> buffer; ll = BuildCornersList_S_Shape( buffer, Mself.m_Start, Mself.m_End, Mself.lng, Mself.m_Width ); if( !ll ) { DisplayError( this, _( "Requested length too large" ) ); return NULL; } // Generate module. MODULE* module; module = Create_1_Module( wxEmptyString ); if( module == NULL ) return NULL; // here the module is already in the BOARD, Create_1_Module() does that. module->SetFPID( FPID( std::string( "MuSelf" ) ) ); module->SetAttributes( MOD_VIRTUAL | MOD_CMS ); module->ClearFlags(); module->SetPosition( Mself.m_End ); // Generate segments for( unsigned jj = 1; jj < buffer.size(); jj++ ) { EDGE_MODULE* PtSegm; PtSegm = new EDGE_MODULE( module ); PtSegm->SetStart( buffer[jj - 1] ); PtSegm->SetEnd( buffer[jj] ); PtSegm->SetWidth( Mself.m_Width ); PtSegm->SetLayer( module->GetLayer() ); PtSegm->SetShape( S_SEGMENT ); PtSegm->SetStart0( PtSegm->GetStart() - module->GetPosition() ); PtSegm->SetEnd0( PtSegm->GetEnd() - module->GetPosition() ); module->GraphicalItems().PushBack( PtSegm ); } // Place a pad on each end of coil. pad = new D_PAD( module ); module->Pads().PushFront( pad ); pad->SetPadName( wxT( "1" ) ); pad->SetPosition( Mself.m_End ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); pad->SetSize( wxSize( Mself.m_Width, Mself.m_Width ) ); pad->SetLayerMask( GetLayerMask( module->GetLayer() ) ); pad->SetAttribute( PAD_SMD ); pad->SetShape( PAD_CIRCLE ); D_PAD* newpad = new D_PAD( *pad ); module->Pads().Insert( newpad, pad->Next() ); pad = newpad; pad->SetPadName( wxT( "2" ) ); pad->SetPosition( Mself.m_Start ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); // Modify text positions. SetMsgPanel( module ); wxPoint refPos( ( Mself.m_Start.x + Mself.m_End.x ) / 2, ( Mself.m_Start.y + Mself.m_End.y ) / 2 ); wxPoint valPos = refPos; refPos.y -= module->Reference().GetSize().y; module->Reference().SetTextPosition( refPos ); valPos.y += module->Value().GetSize().y; module->Value().SetTextPosition( valPos ); module->Reference().SetPos0( module->Reference().GetTextPosition() - module->GetPosition() ); module->Value().SetPos0( module->Value().GetTextPosition() - module->GetPosition() ); module->CalculateBoundingBox(); module->Draw( m_canvas, DC, GR_OR ); return module; }
/** * Function ConvertShapeToPolygon (virtual) * convert a shape to an equivalent polygon. * Arcs and circles are approximated by segments * Useful when a shape is not a graphic primitive (shape with hole, * rotated shape ... ) and cannot be easily drawn. * note for some schapes conbining circles and solid lines (rectangles), only rectangles are converted * because circles are very easy to draw (no rotation problem) so convert them in polygons, * and draw them as polygons is not a good idea. */ void AM_PRIMITIVE::ConvertShapeToPolygon( const GERBER_DRAW_ITEM* aParent, std::vector<wxPoint>& aBuffer ) { D_CODE* tool = aParent->GetDcodeDescr(); switch( primitive_id ) { case AMP_CIRCLE: { /* Generated by an aperture macro declaration like: * "1,1,0.3,0.5, 1.0*" * type (1), exposure, diameter, pos.x, pos.y, <rotation> * <rotation> is a optional parameter: rotation from origin. * type is not stored in parameters list, so the first parameter is exposure */ wxPoint center = mapPt( params[2].GetValue( tool ), params[3].GetValue( tool ), m_GerbMetric ); int radius = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ) / 2; wxPoint corner; const int delta = 3600 / seg_per_circle; // rot angle in 0.1 degree for( int angle = 0; angle < 3600; angle += delta ) { corner.x = radius; corner.y = 0; RotatePoint( &corner, angle ); corner += center; aBuffer.push_back( corner ); } } break; case AMP_LINE2: case AMP_LINE20: // Line with rectangle ends. (Width, start and end pos + rotation) { int width = scaletoIU( params[1].GetValue( tool ), m_GerbMetric ); wxPoint start = mapPt( params[2].GetValue( tool ), params[3].GetValue( tool ), m_GerbMetric ); wxPoint end = mapPt( params[4].GetValue( tool ), params[5].GetValue( tool ), m_GerbMetric ); wxPoint delta = end - start; int len = KiROUND( EuclideanNorm( delta ) ); // To build the polygon, we must create a horizontal polygon starting to "start" // and rotate it to have the end point to "end" wxPoint currpt; currpt.y += width / 2; // Upper left aBuffer.push_back( currpt ); currpt.x = len; // Upper right aBuffer.push_back( currpt ); currpt.y -= width; // lower right aBuffer.push_back( currpt ); currpt.x = 0; // lower left aBuffer.push_back( currpt ); // Rotate rectangle and move it to the actual start point double angle = ArcTangente( delta.y, delta.x ); for( unsigned ii = 0; ii < 4; ii++ ) { RotatePoint( &aBuffer[ii], -angle ); aBuffer[ii] += start; } } break; case AMP_LINE_CENTER: { wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric ); wxPoint pos = mapPt( params[3].GetValue( tool ), params[4].GetValue( tool ), m_GerbMetric ); // Build poly: pos.x -= size.x / 2; pos.y -= size.y / 2; // Lower left aBuffer.push_back( pos ); pos.y += size.y; // Upper left aBuffer.push_back( pos ); pos.x += size.x; // Upper right aBuffer.push_back( pos ); pos.y -= size.y; // lower right aBuffer.push_back( pos ); } break; case AMP_LINE_LOWER_LEFT: { wxPoint size = mapPt( params[1].GetValue( tool ), params[2].GetValue( tool ), m_GerbMetric ); wxPoint lowerLeft = mapPt( params[3].GetValue( tool ), params[4].GetValue( tool ), m_GerbMetric ); // Build poly: aBuffer.push_back( lowerLeft ); lowerLeft.y += size.y; // Upper left aBuffer.push_back( lowerLeft ); lowerLeft.x += size.x; // Upper right aBuffer.push_back( lowerLeft ); lowerLeft.y -= size.y; // lower right aBuffer.push_back( lowerLeft ); } break; case AMP_THERMAL: { // Only 1/4 of the full shape is built, because the other 3 shapes will be draw from this first // rotated by 90, 180 and 270 deg. // params = center.x (unused here), center.y (unused here), outside diam, inside diam, crosshair thickness int outerRadius = scaletoIU( params[2].GetValue( tool ), m_GerbMetric ) / 2; int innerRadius = scaletoIU( params[3].GetValue( tool ), m_GerbMetric ) / 2; int halfthickness = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2; double angle_start = RAD2DECIDEG( asin( (double) halfthickness / innerRadius ) ); // Draw shape in the first cadrant (X and Y > 0) wxPoint pos, startpos; // Inner arc startpos.x = innerRadius; double angle_end = 900 - angle_start; for( double angle = angle_start; angle < angle_end; angle += 100 ) { pos = startpos; RotatePoint( &pos, angle ); aBuffer.push_back( pos ); } // Last point pos = startpos; RotatePoint( &pos, angle_end ); aBuffer.push_back( pos ); // outer arc startpos.x = outerRadius; startpos.y = 0; angle_start = RAD2DECIDEG( asin( (double) halfthickness / outerRadius ) ); angle_end = 900 - angle_start; // First point, near Y axis, outer arc for( double angle = angle_end; angle > angle_start; angle -= 100 ) { pos = startpos; RotatePoint( &pos, angle ); aBuffer.push_back( pos ); } // last point pos = startpos; RotatePoint( &pos, angle_start ); aBuffer.push_back( pos ); aBuffer.push_back( aBuffer[0] ); // Close poly } break; case AMP_MOIRE: // A cross hair with n concentric circles. Only the cros is build as polygon // because circles can be drawn easily { int crossHairThickness = scaletoIU( params[6].GetValue( tool ), m_GerbMetric ); int crossHairLength = scaletoIU( params[7].GetValue( tool ), m_GerbMetric ); // Create cross. First create 1/4 of the shape. // Others point are the same, totated by 90, 180 and 270 deg wxPoint pos( crossHairThickness / 2, crossHairLength / 2 ); aBuffer.push_back( pos ); pos.y = crossHairThickness / 2; aBuffer.push_back( pos ); pos.x = -crossHairLength / 2; aBuffer.push_back( pos ); pos.y = -crossHairThickness / 2; aBuffer.push_back( pos ); // Copy the 4 shape, rotated by 90, 180 and 270 deg for( int jj = 1; jj <= 3; jj ++ ) { for( int ii = 0; ii < 4; ii++ ) { pos = aBuffer[ii]; RotatePoint( &pos, jj*900 ); aBuffer.push_back( pos ); } } } break; case AMP_OUTLINE: // already is a polygon. Do nothing break; case AMP_POLYGON: // Creates a regular polygon { int vertexcount = KiROUND( params[1].GetValue( tool ) ); int radius = scaletoIU( params[4].GetValue( tool ), m_GerbMetric ) / 2; // rs274x said: vertex count = 3 ... 10, and the first corner is on the X axis if( vertexcount < 3 ) vertexcount = 3; if( vertexcount > 10 ) vertexcount = 10; for( int ii = 0; ii <= vertexcount; ii++ ) { wxPoint pos( radius, 0); RotatePoint( &pos, ii * 3600 / vertexcount ); aBuffer.push_back( pos ); } } break; case AMP_COMMENT: case AMP_UNKNOWN: case AMP_EOF: break; } }
MODULE* CreateMicrowaveInductor( PCB_EDIT_FRAME* aPcbFrame, wxString& aErrorMessage ) { /* Build a microwave inductor footprint. * - Length Mself.lng * - Extremities Mself.m_Start and Mself.m_End * We must determine: * Mself.nbrin = number of segments perpendicular to the direction * (The coil nbrin will demicercles + 1 + 2 1 / 4 circle) * Mself.lbrin = length of a strand * Mself.radius = radius of rounded parts of the coil * Mself.delta = segments extremities connection between him and the coil even * * The equations are * Mself.m_Size.x = 2 * Mself.radius + Mself.lbrin * Mself.m_Size.y * Mself.delta = 2 + 2 * Mself.nbrin * Mself.radius * Mself.lng = 2 * Mself.delta / / connections to the coil + (Mself.nbrin-2) * Mself.lbrin / / length of the strands except 1st and last + (Mself.nbrin 1) * (PI * Mself.radius) / / length of rounded * Mself.lbrin + / 2 - Melf.radius * 2) / / length of 1st and last bit * * The constraints are: * Nbrin >= 2 * Mself.radius < Mself.m_Size.x * Mself.m_Size.y = Mself.radius * 4 + 2 * Mself.raccord * Mself.lbrin> Mself.radius * 2 * * The calculation is conducted in the following way: * Initially: * Nbrin = 2 * Radius = 4 * m_Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (Radius decreases if necessary) */ D_PAD* pad; int ll; wxString msg; wxASSERT( s_inductor_pattern.m_Flag ); s_inductor_pattern.m_Flag = false; wxPoint pt = s_inductor_pattern.m_End - s_inductor_pattern.m_Start; int min_len = KiROUND( EuclideanNorm( pt ) ); s_inductor_pattern.m_length = min_len; // Enter the desired length. msg = StringFromValue( g_UserUnit, s_inductor_pattern.m_length ); wxTextEntryDialog dlg( NULL, wxEmptyString, _( "Length of Trace:" ), msg ); if( dlg.ShowModal() != wxID_OK ) return NULL; // canceled by user msg = dlg.GetValue(); s_inductor_pattern.m_length = ValueFromString( g_UserUnit, msg ); // Control values (ii = minimum length) if( s_inductor_pattern.m_length < min_len ) { aErrorMessage = _( "Requested length < minimum length" ); return NULL; } // Calculate the elements. std::vector <wxPoint> buffer; ll = BuildCornersList_S_Shape( buffer, s_inductor_pattern.m_Start, s_inductor_pattern.m_End, s_inductor_pattern.m_length, s_inductor_pattern.m_Width ); if( !ll ) { aErrorMessage = _( "Requested length too large" ); return NULL; } // Generate footprint. the value is also used as footprint name. msg.Empty(); wxTextEntryDialog cmpdlg( NULL, wxEmptyString, _( "Component Value:" ), msg ); cmpdlg.SetTextValidator( FILE_NAME_CHAR_VALIDATOR( &msg ) ); if( ( cmpdlg.ShowModal() != wxID_OK ) || msg.IsEmpty() ) return NULL; // Aborted by user MODULE* module = aPcbFrame->CreateNewModule( msg ); // here the module is already in the BOARD, CreateNewModule() does that. module->SetFPID( LIB_ID( std::string( "mw_inductor" ) ) ); module->SetAttributes( MOD_VIRTUAL | MOD_CMS ); module->ClearFlags(); module->SetPosition( s_inductor_pattern.m_End ); // Generate segments for( unsigned jj = 1; jj < buffer.size(); jj++ ) { EDGE_MODULE* PtSegm; PtSegm = new EDGE_MODULE( module ); PtSegm->SetStart( buffer[jj - 1] ); PtSegm->SetEnd( buffer[jj] ); PtSegm->SetWidth( s_inductor_pattern.m_Width ); PtSegm->SetLayer( module->GetLayer() ); PtSegm->SetShape( S_SEGMENT ); PtSegm->SetStart0( PtSegm->GetStart() - module->GetPosition() ); PtSegm->SetEnd0( PtSegm->GetEnd() - module->GetPosition() ); module->GraphicalItems().PushBack( PtSegm ); } // Place a pad on each end of coil. pad = new D_PAD( module ); module->Pads().PushFront( pad ); pad->SetPadName( wxT( "1" ) ); pad->SetPosition( s_inductor_pattern.m_End ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); pad->SetSize( wxSize( s_inductor_pattern.m_Width, s_inductor_pattern.m_Width ) ); pad->SetLayerSet( LSET( module->GetLayer() ) ); pad->SetAttribute( PAD_ATTRIB_SMD ); pad->SetShape( PAD_SHAPE_CIRCLE ); D_PAD* newpad = new D_PAD( *pad ); module->Pads().Insert( newpad, pad->Next() ); pad = newpad; pad->SetPadName( wxT( "2" ) ); pad->SetPosition( s_inductor_pattern.m_Start ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); // Modify text positions. wxPoint refPos( ( s_inductor_pattern.m_Start.x + s_inductor_pattern.m_End.x ) / 2, ( s_inductor_pattern.m_Start.y + s_inductor_pattern.m_End.y ) / 2 ); wxPoint valPos = refPos; refPos.y -= module->Reference().GetSize().y; module->Reference().SetPosition( refPos ); valPos.y += module->Value().GetSize().y; module->Value().SetPosition( valPos ); module->CalculateBoundingBox(); return module; }
MODULE* PCB_EDIT_FRAME::Genere_Self( wxDC* DC ) { D_PAD* pad; int ll; wxString msg; m_canvas->CallMouseCapture( DC, wxDefaultPosition, false ); m_canvas->SetMouseCapture( NULL, NULL ); if( s_inductor_pattern.m_Flag == false ) { DisplayError( this, wxT( "Starting point not init.." ) ); return NULL; } s_inductor_pattern.m_Flag = false; s_inductor_pattern.m_End = GetCrossHairPosition(); wxPoint pt = s_inductor_pattern.m_End - s_inductor_pattern.m_Start; int min_len = KiROUND( EuclideanNorm( pt ) ); s_inductor_pattern.m_lenght = min_len; // Enter the desired length. msg = StringFromValue( g_UserUnit, s_inductor_pattern.m_lenght ); wxTextEntryDialog dlg( this, wxEmptyString, _( "Length of Trace:" ), msg ); if( dlg.ShowModal() != wxID_OK ) return NULL; // canceled by user msg = dlg.GetValue(); s_inductor_pattern.m_lenght = ValueFromString( g_UserUnit, msg ); // Control values (ii = minimum length) if( s_inductor_pattern.m_lenght < min_len ) { DisplayError( this, _( "Requested length < minimum length" ) ); return NULL; } // Calculate the elements. s_inductor_pattern.m_Width = GetDesignSettings().GetCurrentTrackWidth(); std::vector <wxPoint> buffer; ll = BuildCornersList_S_Shape( buffer, s_inductor_pattern.m_Start, s_inductor_pattern.m_End, s_inductor_pattern.m_lenght, s_inductor_pattern.m_Width ); if( !ll ) { DisplayError( this, _( "Requested length too large" ) ); return NULL; } // Generate footprint. the value is also used as footprint name. msg.Empty(); wxTextEntryDialog cmpdlg( this, wxEmptyString, _( "Component Value:" ), msg ); cmpdlg.SetTextValidator( FILE_NAME_CHAR_VALIDATOR( &msg ) ); if( ( cmpdlg.ShowModal() != wxID_OK ) || msg.IsEmpty() ) return NULL; // Aborted by user MODULE* module = CreateNewModule( msg ); // here the module is already in the BOARD, CreateNewModule() does that. module->SetFPID( FPID( std::string( "mw_inductor" ) ) ); module->SetAttributes( MOD_VIRTUAL | MOD_CMS ); module->ClearFlags(); module->SetPosition( s_inductor_pattern.m_End ); // Generate segments for( unsigned jj = 1; jj < buffer.size(); jj++ ) { EDGE_MODULE* PtSegm; PtSegm = new EDGE_MODULE( module ); PtSegm->SetStart( buffer[jj - 1] ); PtSegm->SetEnd( buffer[jj] ); PtSegm->SetWidth( s_inductor_pattern.m_Width ); PtSegm->SetLayer( module->GetLayer() ); PtSegm->SetShape( S_SEGMENT ); PtSegm->SetStart0( PtSegm->GetStart() - module->GetPosition() ); PtSegm->SetEnd0( PtSegm->GetEnd() - module->GetPosition() ); module->GraphicalItems().PushBack( PtSegm ); } // Place a pad on each end of coil. pad = new D_PAD( module ); module->Pads().PushFront( pad ); pad->SetPadName( wxT( "1" ) ); pad->SetPosition( s_inductor_pattern.m_End ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); pad->SetSize( wxSize( s_inductor_pattern.m_Width, s_inductor_pattern.m_Width ) ); pad->SetLayerSet( LSET( module->GetLayer() ) ); pad->SetAttribute( PAD_ATTRIB_SMD ); pad->SetShape( PAD_SHAPE_CIRCLE ); D_PAD* newpad = new D_PAD( *pad ); module->Pads().Insert( newpad, pad->Next() ); pad = newpad; pad->SetPadName( wxT( "2" ) ); pad->SetPosition( s_inductor_pattern.m_Start ); pad->SetPos0( pad->GetPosition() - module->GetPosition() ); // Modify text positions. SetMsgPanel( module ); wxPoint refPos( ( s_inductor_pattern.m_Start.x + s_inductor_pattern.m_End.x ) / 2, ( s_inductor_pattern.m_Start.y + s_inductor_pattern.m_End.y ) / 2 ); wxPoint valPos = refPos; refPos.y -= module->Reference().GetSize().y; module->Reference().SetPosition( refPos ); valPos.y += module->Value().GetSize().y; module->Value().SetPosition( valPos ); module->CalculateBoundingBox(); module->Draw( m_canvas, DC, GR_OR ); return module; }
void TransformOvalClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer, wxPoint aStart, wxPoint aEnd, int aWidth, int aCircleToSegmentsCount, double aCorrectionFactor ) { // To build the polygonal shape outside the actual shape, we use a bigger // radius to build rounded ends. // However, the width of the segment is too big. // so, later, we will clamp the polygonal shape with the bounding box // of the segment. int radius = aWidth / 2; // Note if we want to compensate the radius reduction of a circle due to // the segment approx, aCorrectionFactor must be calculated like this: // For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2) // aCorrectionFactor is 1 /cos( PI/s_CircleToSegmentsCount ) radius = radius * aCorrectionFactor; // make segments outside the circles // end point is the coordinate relative to aStart wxPoint endp = aEnd - aStart; wxPoint startp = aStart; wxPoint corner; SHAPE_POLY_SET polyshape; polyshape.NewOutline(); // normalize the position in order to have endp.x >= 0 // it makes calculations more easy to understand if( endp.x < 0 ) { endp = aStart - aEnd; startp = aEnd; } // delta_angle is in radian double delta_angle = atan2( (double)endp.y, (double)endp.x ); int seg_len = KiROUND( EuclideanNorm( endp ) ); double delta = 3600.0 / aCircleToSegmentsCount; // rot angle in 0.1 degree // Compute the outlines of the segment, and creates a polygon // Note: the polygonal shape is built from the equivalent horizontal // segment starting ar 0,0, and ending at seg_len,0 // add right rounded end: for( int ii = 0; ii < aCircleToSegmentsCount/2; ii++ ) { corner = wxPoint( 0, radius ); RotatePoint( &corner, delta*ii ); corner.x += seg_len; polyshape.Append( corner.x, corner.y ); } // Finish arc: corner = wxPoint( seg_len, -radius ); polyshape.Append( corner.x, corner.y ); // add left rounded end: for( int ii = 0; ii < aCircleToSegmentsCount/2; ii++ ) { corner = wxPoint( 0, -radius ); RotatePoint( &corner, delta*ii ); polyshape.Append( corner.x, corner.y ); } // Finish arc: corner = wxPoint( 0, radius ); polyshape.Append( corner.x, corner.y ); // Now, clamp the polygonal shape (too big) with the segment bounding box // the polygonal shape bbox equivalent to the segment has a too big height, // and the right width if( aCorrectionFactor > 1.0 ) { SHAPE_POLY_SET bbox; bbox.NewOutline(); // Build the bbox (a horizontal rectangle). int halfwidth = aWidth / 2; // Use the exact segment width for the bbox height corner.x = -radius - 2; // use a bbox width slightly bigger to avoid // creating useless corner at segment ends corner.y = halfwidth; bbox.Append( corner.x, corner.y ); corner.y = -halfwidth; bbox.Append( corner.x, corner.y ); corner.x = radius + seg_len + 2; bbox.Append( corner.x, corner.y ); corner.y = halfwidth; bbox.Append( corner.x, corner.y ); // Now, clamp the shape polyshape.BooleanIntersection( bbox, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); // Note the final polygon is a simple, convex polygon with no hole // due to the shape of initial polygons } // Rotate and move the polygon to its right location polyshape.Rotate( delta_angle, VECTOR2I( 0, 0 ) ); polyshape.Move( startp ); aCornerBuffer.Append( polyshape); }
/* test DRC between 2 pads. * this function can be also used to test DRC between a pas and a hole, * because a hole is like a round pad. */ bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad ) { int dist; double pad_angle; // Get the clerance between the 2 pads. this is the min distance between aRefPad and aPad int dist_min = aRefPad->GetClearance( aPad ); // relativePadPos is the aPad shape position relative to the aRefPad shape position wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos(); dist = KiROUND( EuclideanNorm( relativePadPos ) ); // Quick test: Clearance is OK if the bounding circles are further away than "dist_min" if( (dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius()) >= dist_min ) return true; /* Here, pads are near and DRC depend on the pad shapes * We must compare distance using a fine shape analysis * Because a circle or oval shape is the easier shape to test, try to have * aRefPad shape type = PAD_CIRCLE or PAD_OVAL. * if aRefPad = TRAP. and aPad = RECT, also swap pads * Swap aRefPad and aPad if needed */ bool swap_pads; swap_pads = false; // swap pads to make comparisons easier // priority is aRefPad = ROUND then OVAL then RECT then other if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_CIRCLE ) { // pad ref shape is here oval, rect or trapezoid switch( aPad->GetShape() ) { case PAD_CIRCLE: swap_pads = true; break; case PAD_OVAL: swap_pads = true; break; case PAD_RECT: if( aRefPad->GetShape() != PAD_OVAL ) swap_pads = true; break; default: break; } } if( swap_pads ) { EXCHG( aRefPad, aPad ); relativePadPos = -relativePadPos; } /* Because pad exchange, aRefPad shape is PAD_CIRCLE or PAD_OVAL, * if one of the 2 pads was a PAD_CIRCLE or PAD_OVAL. * Therefore, if aRefPad is a PAD_RECT or a PAD_TRAPEZOID, * aPad is also a PAD_RECT or a PAD_TRAPEZOID */ bool diag = true; switch( aRefPad->GetShape() ) { case PAD_CIRCLE: /* One can use checkClearanceSegmToPad to test clearance * aRefPad is like a track segment with a null length and a witdth = GetSize().x */ m_segmLength = 0; m_segmAngle = 0; m_segmEnd.x = m_segmEnd.y = 0; m_padToTestPos = relativePadPos; diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min ); break; case PAD_RECT: // pad_angle = pad orient relative to the aRefPad orient pad_angle = aRefPad->GetOrientation() + aPad->GetOrientation(); NORMALIZE_ANGLE_POS( pad_angle ); if( aPad->GetShape() == PAD_RECT ) { wxSize size = aPad->GetSize(); // The trivial case is if both rects are rotated by multiple of 90 deg // Most of time this is the case, and the test is fast if( ( (aRefPad->GetOrientation() == 0) || (aRefPad->GetOrientation() == 900) || (aRefPad->GetOrientation() == 1800) || (aRefPad->GetOrientation() == 2700) ) && ( (aPad->GetOrientation() == 0) || (aPad->GetOrientation() == 900) || (aPad->GetOrientation() == 1800) || (aPad->GetOrientation() == 2700) ) ) { if( (pad_angle == 900) || (pad_angle == 2700) ) { EXCHG( size.x, size.y ); } // Test DRC: diag = false; RotatePoint( &relativePadPos, aRefPad->GetOrientation() ); relativePadPos.x = std::abs( relativePadPos.x ); relativePadPos.y = std::abs( relativePadPos.y ); if( ( relativePadPos.x - ( (size.x + aRefPad->GetSize().x) / 2 ) ) >= dist_min ) diag = true; if( ( relativePadPos.y - ( (size.y + aRefPad->GetSize().y) / 2 ) ) >= dist_min ) diag = true; } else // at least one pad has any other orient. Test is more tricky { // Use the trapezoid2trapezoidDRC which also compare 2 rectangles with any orientation wxPoint polyref[4]; // Shape of aRefPad wxPoint polycompare[4]; // Shape of aPad aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; // And now test polygons: if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) ) diag = false; } } else if( aPad->GetShape() == PAD_TRAPEZOID ) { wxPoint polyref[4]; // Shape of aRefPad wxPoint polycompare[4]; // Shape of aPad aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; // And now test polygons: if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) ) diag = false; } else { // Should not occur, because aPad and aRefPad are swapped // to have only aPad shape RECT or TRAP and aRefPad shape TRAP or RECT. wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad ref RECT @ %d, %d to pad shape %d @ %d, %d"), aRefPad->GetPosition().x, aRefPad->GetPosition().y, aPad->GetShape(), aPad->GetPosition().x, aPad->GetPosition().y ); } break; case PAD_OVAL: /* an oval pad is like a track segment */ { /* Create a track segment with same dimensions as the oval aRefPad * and use checkClearanceSegmToPad function to test aPad to aRefPad clearance */ int segm_width; m_segmAngle = aRefPad->GetOrientation(); // Segment orient. if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment { segm_width = aRefPad->GetSize().y; m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y; } else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg { segm_width = aRefPad->GetSize().x; m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x; m_segmAngle += 900; } /* the start point must be 0,0 and currently relativePadPos * is relative the center of pad coordinate */ wxPoint segstart; segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment // Calculate segment end position relative to the segment origin m_segmEnd.x = -2 * segstart.x; m_segmEnd.y = -2 * segstart.y; // Recalculate the equivalent segment angle in 0,1 degrees // to prepare a call to checkClearanceSegmToPad() m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x ); // move pad position relative to the segment origin m_padToTestPos = relativePadPos - segstart; // Use segment to pad check to test the second pad: diag = checkClearanceSegmToPad( aPad, segm_width, dist_min ); break; } case PAD_TRAPEZOID: // at this point, aPad is also a trapezoid, because all other shapes // have priority, and are already tested wxASSERT( aPad->GetShape() == PAD_TRAPEZOID ); { wxPoint polyref[4]; // Shape of aRefPad wxPoint polycompare[4]; // Shape of aPad aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() ); aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() ); // Move aPad shape to relativePadPos for( int ii = 0; ii < 4; ii++ ) polycompare[ii] += relativePadPos; // And now test polygons: if( !trapezoid2trapezoidDRC( polyref, polycompare, dist_min ) ) diag = false; } break; default: wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape" ) ); break; } return diag; }
/** * Function BuildCornersList_S_Shape * Create a path like a S-shaped coil * @param aBuffer = a buffer where to store points (ends of segments) * @param aStartPoint = starting point of the path * @param aEndPoint = ending point of the path * @param aLength = full lenght of the path * @param aWidth = segment width */ int BuildCornersList_S_Shape( std::vector <wxPoint>& aBuffer, wxPoint aStartPoint, wxPoint aEndPoint, int aLength, int aWidth ) { /* We must determine: * segm_count = number of segments perpendicular to the direction * segm_len = length of a strand * radius = radius of rounded parts of the coil * stubs_len = length of the 2 stubs( segments parallel to the direction) * connecting the start point to the start point of the S shape * and the ending point to the end point of the S shape * The equations are (assuming the area size of the entire shape is Size: * Size.x = 2 * radius + segm_len * Size.y = (segm_count + 2 ) * 2 * radius + 2 * stubs_len * s_inductor_pattern.m_lenght = 2 * delta // connections to the coil * + (segm_count-2) * segm_len // length of the strands except 1st and last * + (segm_count) * (PI * radius) // length of rounded * segm_len + / 2 - radius * 2) // length of 1st and last bit * * The constraints are: * segm_count >= 2 * radius < m_Size.x * Size.y = (radius * 4) + (2 * stubs_len) * segm_len > radius * 2 * * The calculation is conducted in the following way: * first: * segm_count = 2 * radius = 4 * Size.x (arbitrarily fixed value) * Then: * Increasing the number of segments to the desired length * (radius decreases if necessary) */ wxSize size; // This scale factor adjusts the arc length to handle // the arc to segment approximation. // because we use SEGM_COUNT_PER_360DEG segment to approximate a circle, // the trace len must be corrected when calculated using arcs // this factor adjust calculations and must be changed if SEGM_COUNT_PER_360DEG is modified // because trace using segment is shorter the corresponding arc // ADJUST_SIZE is the ratio between tline len and the arc len for an arc // of 360/ADJUST_SIZE angle #define ADJUST_SIZE 0.988 wxPoint pt = aEndPoint - aStartPoint; double angle = -ArcTangente( pt.y, pt.x ); int min_len = KiROUND( EuclideanNorm( pt ) ); int segm_len = 0; // length of segments int full_len; // full len of shape (sum of lenght of all segments + arcs) /* Note: calculations are made for a vertical coil (more easy calculations) * and after points are rotated to their actual position * So the main direction is the Y axis. * the 2 stubs are on the Y axis * the others segments are parallel to the X axis. */ // Calculate the size of area (for a vertical shape) size.x = min_len / 2; size.y = min_len; // Choose a reasonable starting value for the radius of the arcs. int radius = std::min( aWidth * 5, size.x / 4 ); int segm_count; // number of full len segments // the half size segments (first and last segment) are not counted here int stubs_len = 0; // lenght of first or last segment (half size of others segments) for( segm_count = 0; ; segm_count++ ) { stubs_len = ( size.y - ( radius * 2 * (segm_count + 2 ) ) ) / 2; if( stubs_len < size.y / 10 ) // Reduce radius. { stubs_len = size.y / 10; radius = ( size.y - (2 * stubs_len) ) / ( 2 * (segm_count + 2) ); if( radius < aWidth ) // Radius too small. { // Unable to create line: Requested length value is too large for room return 0; } } segm_len = size.x - ( radius * 2 ); full_len = 2 * stubs_len; // Length of coil connections. full_len += segm_len * segm_count; // Length of full length segments. full_len += KiROUND( ( segm_count + 2 ) * M_PI * ADJUST_SIZE * radius ); // Ard arcs len full_len += segm_len - (2 * radius); // Length of first and last segments // (half size segments len = segm_len/2 - radius). if( full_len >= aLength ) break; } // Adjust len by adjusting segm_len: int delta_size = full_len - aLength; // reduce len of the segm_count segments + 2 half size segments (= 1 full size segment) segm_len -= delta_size / (segm_count + 1); // Generate first line (the first stub) and first arc (90 deg arc) pt = aStartPoint; aBuffer.push_back( pt ); pt.y += stubs_len; aBuffer.push_back( pt ); wxPoint centre = pt; centre.x -= radius; gen_arc( aBuffer, pt, centre, -900 ); pt = aBuffer.back(); int half_size_seg_len = segm_len / 2 - radius; if( half_size_seg_len ) { pt.x -= half_size_seg_len; aBuffer.push_back( pt ); } // Create shape. int ii; int sign = 1; segm_count += 1; // increase segm_count to create the last half_size segment for( ii = 0; ii < segm_count; ii++ ) { int arc_angle; if( ii & 1 ) // odd order arcs are greater than 0 sign = -1; else sign = 1; arc_angle = 1800 * sign; centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, arc_angle ); pt = aBuffer.back(); pt.x += segm_len * sign; aBuffer.push_back( pt ); } // The last point is false: // it is the end of a full size segment, but must be // the end of the second half_size segment. Change it. sign *= -1; aBuffer.back().x = aStartPoint.x + radius * sign; // create last arc pt = aBuffer.back(); centre = pt; centre.y += radius; gen_arc( aBuffer, pt, centre, 900 * sign ); pt = aBuffer.back(); // Rotate point angle += 900; for( unsigned jj = 0; jj < aBuffer.size(); jj++ ) { RotatePoint( &aBuffer[jj].x, &aBuffer[jj].y, aStartPoint.x, aStartPoint.y, angle ); } // push last point (end point) aBuffer.push_back( aEndPoint ); return 1; }
bool D_PAD::HitTest( const wxPoint& aPosition ) const { int dx, dy; wxPoint shape_pos = ShapePos(); wxPoint delta = aPosition - shape_pos; // first test: a test point must be inside a minimum sized bounding circle. int radius = GetBoundingRadius(); if( ( abs( delta.x ) > radius ) || ( abs( delta.y ) > radius ) ) return false; dx = m_Size.x >> 1; // dx also is the radius for rounded pads dy = m_Size.y >> 1; switch( GetShape() ) { case PAD_SHAPE_CIRCLE: if( KiROUND( EuclideanNorm( delta ) ) <= dx ) return true; break; case PAD_SHAPE_TRAPEZOID: { wxPoint poly[4]; BuildPadPolygon( poly, wxSize(0,0), 0 ); RotatePoint( &delta, -m_Orient ); return TestPointInsidePolygon( poly, 4, delta ); } case PAD_SHAPE_OVAL: { RotatePoint( &delta, -m_Orient ); // An oval pad has the same shape as a segment with rounded ends // After rotation, the test point is relative to an horizontal pad int dist; wxPoint offset; if( dy > dx ) // shape is a vertical oval { offset.y = dy - dx; dist = dx; } else //if( dy <= dx ) shape is an horizontal oval { offset.x = dy - dx; dist = dy; } return TestSegmentHit( delta, - offset, offset, dist ); } break; case PAD_SHAPE_RECT: RotatePoint( &delta, -m_Orient ); if( (abs( delta.x ) <= dx ) && (abs( delta.y ) <= dy) ) return true; break; case PAD_SHAPE_ROUNDRECT: { // Check for hit in polygon SHAPE_POLY_SET outline; const int segmentToCircleCount = 32; TransformRoundRectToPolygon( outline, wxPoint(0,0), GetSize(), m_Orient, GetRoundRectCornerRadius(), segmentToCircleCount ); const SHAPE_LINE_CHAIN &poly = outline.COutline( 0 ); return TestPointInsidePolygon( (const wxPoint*)&poly.CPoint(0), poly.PointCount(), delta ); } break; case PAD_SHAPE_CUSTOM: // Check for hit in polygon RotatePoint( &delta, -m_Orient ); if( m_customShapeAsPolygon.OutlineCount() ) { const SHAPE_LINE_CHAIN& poly = m_customShapeAsPolygon.COutline( 0 ); return TestPointInsidePolygon( (const wxPoint*)&poly.CPoint(0), poly.PointCount(), delta ); } break; } return false; }
bool DRAWSEGMENT::HitTest( const wxPoint& aPosition ) { switch( m_Shape ) { case S_CIRCLE: case S_ARC: { wxPoint relPos = aPosition - GetCenter(); int radius = GetRadius(); int dist = KiROUND( EuclideanNorm( relPos ) ); if( abs( radius - dist ) <= ( m_Width / 2 ) ) { if( m_Shape == S_CIRCLE ) return true; // For arcs, the test point angle must be >= arc angle start // and <= arc angle end // However angle values > 360 deg are not easy to handle // so we calculate the relative angle between arc start point and teast point // this relative arc should be < arc angle if arc angle > 0 (CW arc) // and > arc angle if arc angle < 0 (CCW arc) double arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg, in 0.1 deg double arc_hittest = ArcTangente( relPos.y, relPos.x ); // Calculate relative angle between the starting point of the arc, and the test point arc_hittest -= arc_angle_start; // Normalise arc_hittest between 0 ... 360 deg NORMALIZE_ANGLE_POS( arc_hittest ); // Check angle: inside the arc angle when it is > 0 // and outside the not drawn arc when it is < 0 if( GetAngle() >= 0.0 ) { if( arc_hittest <= GetAngle() ) return true; } else { if( arc_hittest >= (3600.0 + GetAngle()) ) return true; } } } break; case S_CURVE: for( unsigned int i= 1; i < m_BezierPoints.size(); i++) { if( TestSegmentHit( aPosition, m_BezierPoints[i-1], m_BezierPoints[i-1], m_Width / 2 ) ) return true; } break; case S_SEGMENT: if( TestSegmentHit( aPosition, m_Start, m_End, m_Width / 2 ) ) return true; break; default: wxASSERT( 0 ); break; } return false; }
bool D_PAD::HitTest( const wxPoint& aPosition ) const { int dx, dy; wxPoint shape_pos = ShapePos(); wxPoint delta = aPosition - shape_pos; // first test: a test point must be inside a minimum sized bounding circle. int radius = GetBoundingRadius(); if( ( abs( delta.x ) > radius ) || ( abs( delta.y ) > radius ) ) return false; dx = m_Size.x >> 1; // dx also is the radius for rounded pads dy = m_Size.y >> 1; switch( GetShape() ) { case PAD_SHAPE_CIRCLE: if( KiROUND( EuclideanNorm( delta ) ) <= dx ) return true; break; case PAD_SHAPE_TRAPEZOID: { wxPoint poly[4]; BuildPadPolygon( poly, wxSize(0,0), 0 ); RotatePoint( &delta, -m_Orient ); return TestPointInsidePolygon( poly, 4, delta ); } case PAD_SHAPE_OVAL: { RotatePoint( &delta, -m_Orient ); // An oval pad has the same shape as a segment with rounded ends // After rotation, the test point is relative to an horizontal pad int dist; wxPoint offset; if( dy > dx ) // shape is a vertical oval { offset.y = dy - dx; dist = dx; } else //if( dy <= dx ) shape is an horizontal oval { offset.x = dy - dx; dist = dy; } return TestSegmentHit( delta, - offset, offset, dist ); } break; case PAD_SHAPE_RECT: RotatePoint( &delta, -m_Orient ); if( (abs( delta.x ) <= dx ) && (abs( delta.y ) <= dy) ) return true; break; } return false; }
MODULE* GPCB_FPL_CACHE::parseMODULE( LINE_READER* aLineReader ) throw( IO_ERROR, PARSE_ERROR ) { #define TEXT_DEFAULT_SIZE ( 40*IU_PER_MILS ) #define OLD_GPCB_UNIT_CONV IU_PER_MILS // Old version unit = 1 mil, so conv_unit is 10 or 0.1 #define NEW_GPCB_UNIT_CONV ( 0.01*IU_PER_MILS ) int paramCnt; double conv_unit = NEW_GPCB_UNIT_CONV; // GPCB unit = 0.01 mils and Pcbnew 0.1 wxPoint textPos; wxString msg; wxArrayString parameters; std::auto_ptr<MODULE> module( new MODULE( NULL ) ); if( aLineReader->ReadLine() == NULL ) THROW_IO_ERROR( "unexpected end of file" ); parameters.Clear(); parseParameters( parameters, aLineReader ); paramCnt = parameters.GetCount(); /* From the Geda PCB documentation, valid Element definitions: * Element [SFlags "Desc" "Name" "Value" MX MY TX TY TDir TScale TSFlags] * Element (NFlags "Desc" "Name" "Value" MX MY TX TY TDir TScale TNFlags) * Element (NFlags "Desc" "Name" "Value" TX TY TDir TScale TNFlags) * Element (NFlags "Desc" "Name" TX TY TDir TScale TNFlags) * Element ("Desc" "Name" TX TY TDir TScale TNFlags) */ if( parameters[0].CmpNoCase( wxT( "Element" ) ) != 0 ) { msg.Printf( _( "unknown token \"%s\"" ), GetChars( parameters[0] ) ); THROW_PARSE_ERROR( msg, aLineReader->GetSource(), (const char *)aLineReader, aLineReader->LineNumber(), 0 ); } if( paramCnt < 10 || paramCnt > 14 ) { msg.Printf( _( "Element token contains %d parameters." ), paramCnt ); THROW_PARSE_ERROR( msg, aLineReader->GetSource(), (const char *)aLineReader, aLineReader->LineNumber(), 0 ); } // Test symbol after "Element": if [ units = 0.01 mils, and if ( units = 1 mil if( parameters[1] == wxT( "(" ) ) conv_unit = OLD_GPCB_UNIT_CONV; if( paramCnt > 10 ) { module->SetDescription( parameters[3] ); module->SetReference( parameters[4] ); } else { module->SetDescription( parameters[2] ); module->SetReference( parameters[3] ); } // Read value if( paramCnt > 10 ) module->SetValue( parameters[5] ); // With gEDA/pcb, value is meaningful after instantiation, only, so it's // often empty in bare footprints. if( module->Value().GetText().IsEmpty() ) module->Value().SetText( wxT( "Val**" ) ); if( paramCnt == 14 ) { textPos = wxPoint( parseInt( parameters[8], conv_unit ), parseInt( parameters[9], conv_unit ) ); } else { textPos = wxPoint( parseInt( parameters[6], conv_unit ), parseInt( parameters[7], conv_unit ) ); } int orientation = parseInt( parameters[paramCnt-4], 1.0 ); module->Reference().SetOrientation( (orientation % 2) ? 900 : 0 ); // Calculate size: default height is 40 mils, width 30 mil. // real size is: default * ibuf[idx+3] / 100 (size in gpcb is given in percent of default size int thsize = parseInt( parameters[paramCnt-3], TEXT_DEFAULT_SIZE ) / 100; thsize = std::max( (int)( 5 * IU_PER_MILS ), thsize ); // Ensure a minimal size = 5 mils int twsize = thsize * 30 / 40; int thickness = thsize / 8; // gEDA/pcb aligns top/left, not pcbnew's default, center/center. // Compensate for this by shifting the insertion point instead of the // aligment, because alignment isn't changeable in the GUI. textPos.x = textPos.x + twsize * module->GetReference().Len() / 2; textPos.y += thsize / 2; // gEDA/pcb draws a bit too low/left, while pcbnew draws a bit too // high/right. Compensate for similar appearance. textPos.x -= thsize / 10; textPos.y += thsize / 2; module->Reference().SetTextPosition( textPos ); module->Reference().SetPos0( textPos ); module->Reference().SetSize( wxSize( twsize, thsize ) ); module->Reference().SetThickness( thickness ); // gEDA/pcb shows only one of value/reference/description at a time. Which // one is selectable by a global menu setting. pcbnew needs reference as // well as value visible, so place the value right below the reference. module->Value().SetOrientation( module->Reference().GetOrientation() ); module->Value().SetSize( module->Reference().GetSize() ); module->Value().SetThickness( module->Reference().GetThickness() ); textPos.y += thsize * 13 / 10; // 130% line height module->Value().SetTextPosition( textPos ); module->Value().SetPos0( textPos ); while( aLineReader->ReadLine() ) { parameters.Clear(); parseParameters( parameters, aLineReader ); if( parameters.IsEmpty() || parameters[0] == wxT( "(" ) ) continue; if( parameters[0] == wxT( ")" ) ) break; paramCnt = parameters.GetCount(); // Test units value for a string line param (more than 3 parameters : ident [ xx ] ) if( paramCnt > 3 ) { if( parameters[1] == wxT( "(" ) ) conv_unit = OLD_GPCB_UNIT_CONV; else conv_unit = NEW_GPCB_UNIT_CONV; } wxLogTrace( traceFootprintLibrary, wxT( "%s parameter count = %d." ), GetChars( parameters[0] ), paramCnt ); // Parse a line with format: ElementLine [X1 Y1 X2 Y2 Thickness] if( parameters[0].CmpNoCase( wxT( "ElementLine" ) ) == 0 ) { if( paramCnt != 8 ) { msg.Printf( wxT( "ElementLine token contains %d parameters." ), paramCnt ); THROW_PARSE_ERROR( msg, aLineReader->GetSource(), (const char *)aLineReader, aLineReader->LineNumber(), 0 ); } EDGE_MODULE* drawSeg = new EDGE_MODULE( module.get() ); drawSeg->SetLayer( F_SilkS ); drawSeg->SetShape( S_SEGMENT ); drawSeg->SetStart0( wxPoint( parseInt( parameters[2], conv_unit ), parseInt( parameters[3], conv_unit ) ) ); drawSeg->SetEnd0( wxPoint( parseInt( parameters[4], conv_unit ), parseInt( parameters[5], conv_unit ) ) ); drawSeg->SetWidth( parseInt( parameters[6], conv_unit ) ); drawSeg->SetDrawCoord(); module->GraphicalItems().PushBack( drawSeg ); continue; } // Parse an arc with format: ElementArc [X Y Width Height StartAngle DeltaAngle Thickness] if( parameters[0].CmpNoCase( wxT( "ElementArc" ) ) == 0 ) { if( paramCnt != 10 ) { msg.Printf( wxT( "ElementArc token contains %d parameters." ), paramCnt ); THROW_PARSE_ERROR( msg, aLineReader->GetSource(), (const char *)aLineReader, aLineReader->LineNumber(), 0 ); } // Pcbnew does know ellipse so we must have Width = Height EDGE_MODULE* drawSeg = new EDGE_MODULE( module.get() ); drawSeg->SetLayer( F_SilkS ); drawSeg->SetShape( S_ARC ); module->GraphicalItems().PushBack( drawSeg ); // for and arc: ibuf[3] = ibuf[4]. Pcbnew does not know ellipses int radius = ( parseInt( parameters[4], conv_unit ) + parseInt( parameters[5], conv_unit ) ) / 2; wxPoint centre( parseInt( parameters[2], conv_unit ), parseInt( parameters[3], conv_unit ) ); drawSeg->SetStart0( centre ); // Pcbnew start angles are inverted and 180 degrees from Geda PCB angles. double start_angle = parseInt( parameters[6], -10.0 ) + 1800.0; // Pcbnew delta angle direction is the opposite of Geda PCB delta angles. double sweep_angle = parseInt( parameters[7], -10.0 ); // Geda PCB does not support circles. if( sweep_angle == -3600.0 ) drawSeg->SetShape( S_CIRCLE ); // Angle value is clockwise in gpcb and Pcbnew. drawSeg->SetAngle( sweep_angle ); drawSeg->SetEnd0( wxPoint( radius, 0 ) ); // Calculate start point coordinate of arc wxPoint arcStart( drawSeg->GetEnd0() ); RotatePoint( &arcStart, -start_angle ); drawSeg->SetEnd0( centre + arcStart ); drawSeg->SetWidth( parseInt( parameters[8], conv_unit ) ); drawSeg->SetDrawCoord(); continue; } // Parse a Pad with no hole with format: // Pad [rX1 rY1 rX2 rY2 Thickness Clearance Mask "Name" "Number" SFlags] // Pad (rX1 rY1 rX2 rY2 Thickness Clearance Mask "Name" "Number" NFlags) // Pad (aX1 aY1 aX2 aY2 Thickness "Name" "Number" NFlags) // Pad (aX1 aY1 aX2 aY2 Thickness "Name" NFlags) if( parameters[0].CmpNoCase( wxT( "Pad" ) ) == 0 ) { if( paramCnt < 10 || paramCnt > 13 ) { msg.Printf( wxT( "Pad token contains %d parameters." ), paramCnt ); THROW_PARSE_ERROR( msg, aLineReader->GetSource(), (const char *)aLineReader, aLineReader->LineNumber(), 0 ); } D_PAD* pad = new D_PAD( module.get() ); static const LSET pad_front( 3, F_Cu, F_Mask, F_Paste ); static const LSET pad_back( 3, B_Cu, B_Mask, B_Paste ); pad->SetShape( PAD_SHAPE_RECT ); pad->SetAttribute( PAD_ATTRIB_SMD ); pad->SetLayerSet( pad_front ); if( testFlags( parameters[paramCnt-2], 0x0080, wxT( "onsolder" ) ) ) pad->SetLayerSet( pad_back ); // Set the pad name: // Pcbnew pad name is used for electrical connection calculations. // Accordingly it should be mapped to gEDA's pin/pad number, // which is used for the same purpose. // gEDA also features a pin/pad "name", which is an arbitrary string // and set to the pin name of the netlist on instantiation. Many gEDA // bare footprints use identical strings for name and number, so this // can be a bit confusing. pad->SetPadName( parameters[paramCnt-3] ); int x1 = parseInt( parameters[2], conv_unit ); int x2 = parseInt( parameters[4], conv_unit ); int y1 = parseInt( parameters[3], conv_unit ); int y2 = parseInt( parameters[5], conv_unit ); int width = parseInt( parameters[6], conv_unit ); wxPoint delta( x2 - x1, y2 - y1 ); double angle = atan2( (double)delta.y, (double)delta.x ); // Get the pad clearance and the solder mask clearance. if( paramCnt == 13 ) { int clearance = parseInt( parameters[7], conv_unit ); // One of gEDA's oddities is that clearance between pad and polygon // is given as the gap on both sides of the pad together, so for // KiCad it has to halfed. pad->SetLocalClearance( clearance / 2 ); // In GEDA, the mask value is the size of the hole in this // solder mask. In Pcbnew, it is a margin, therefore the distance // between the copper and the mask int maskMargin = parseInt( parameters[8], conv_unit ); maskMargin = ( maskMargin - width ) / 2; pad->SetLocalSolderMaskMargin( maskMargin ); } // Negate angle (due to Y reversed axis) and convert it to internal units angle = - RAD2DECIDEG( angle ); pad->SetOrientation( KiROUND( angle ) ); wxPoint padPos( (x1 + x2) / 2, (y1 + y2) / 2 ); pad->SetSize( wxSize( KiROUND( EuclideanNorm( delta ) ) + width, width ) ); padPos += module->GetPosition(); pad->SetPos0( padPos ); pad->SetPosition( padPos ); if( !testFlags( parameters[paramCnt-2], 0x0100, wxT( "square" ) ) ) { if( pad->GetSize().x == pad->GetSize().y ) pad->SetShape( PAD_SHAPE_CIRCLE ); else pad->SetShape( PAD_SHAPE_OVAL ); } module->Add( pad ); continue; } // Parse a Pin with through hole with format: // Pin [rX rY Thickness Clearance Mask Drill "Name" "Number" SFlags] // Pin (rX rY Thickness Clearance Mask Drill "Name" "Number" NFlags) // Pin (aX aY Thickness Drill "Name" "Number" NFlags) // Pin (aX aY Thickness Drill "Name" NFlags) // Pin (aX aY Thickness "Name" NFlags) if( parameters[0].CmpNoCase( wxT( "Pin" ) ) == 0 ) { if( paramCnt < 8 || paramCnt > 12 ) { msg.Printf( wxT( "Pin token contains %d parameters." ), paramCnt ); THROW_PARSE_ERROR( msg, aLineReader->GetSource(), (const char *)aLineReader, aLineReader->LineNumber(), 0 ); } D_PAD* pad = new D_PAD( module.get() ); pad->SetShape( PAD_SHAPE_CIRCLE ); static const LSET pad_set = LSET::AllCuMask() | LSET( 3, F_SilkS, F_Mask, B_Mask ); pad->SetLayerSet( pad_set ); if( testFlags( parameters[paramCnt-2], 0x0100, wxT( "square" ) ) ) pad->SetShape( PAD_SHAPE_RECT ); // Set the pad name: // Pcbnew pad name is used for electrical connection calculations. // Accordingly it should be mapped to gEDA's pin/pad number, // which is used for the same purpose. pad->SetPadName( parameters[paramCnt-3] ); wxPoint padPos( parseInt( parameters[2], conv_unit ), parseInt( parameters[3], conv_unit ) ); int padSize = parseInt( parameters[4], conv_unit ); pad->SetSize( wxSize( padSize, padSize ) ); int drillSize = 0; // Get the pad clearance, solder mask clearance, and drill size. if( paramCnt == 12 ) { int clearance = parseInt( parameters[5], conv_unit ); // One of gEDA's oddities is that clearance between pad and polygon // is given as the gap on both sides of the pad together, so for // KiCad it has to halfed. pad->SetLocalClearance( clearance / 2 ); // In GEDA, the mask value is the size of the hole in this // solder mask. In Pcbnew, it is a margin, therefore the distance // between the copper and the mask int maskMargin = parseInt( parameters[6], conv_unit ); maskMargin = ( maskMargin - padSize ) / 2; pad->SetLocalSolderMaskMargin( maskMargin ); drillSize = parseInt( parameters[7], conv_unit ); } else { drillSize = parseInt( parameters[5], conv_unit ); } pad->SetDrillSize( wxSize( drillSize, drillSize ) ); padPos += module->GetPosition(); pad->SetPos0( padPos ); pad->SetPosition( padPos ); if( pad->GetShape() == PAD_SHAPE_CIRCLE && pad->GetSize().x != pad->GetSize().y ) pad->SetShape( PAD_SHAPE_OVAL ); module->Add( pad ); continue; } } // Recalculate the bounding box module->CalculateBoundingBox(); return module.release(); }