Пример #1
0
LispObj *
Lisp_DeleteFile(LispBuiltin *builtin)
/*
 delete-file filename
 */
{
    GC_ENTER();
    LispObj *filename;

    filename = ARGUMENT(0);

    if (STRINGP(filename)) {
	filename = APPLY1(Oparse_namestring, filename);
	GC_PROTECT(filename);
    }
    else if (STREAMP(filename)) {
	if (filename->data.stream.type != LispStreamFile)
	    LispDestroy("%s: %s is not a FILE-STREAM",
			STRFUN(builtin), STROBJ(filename));
	filename = filename->data.stream.pathname;
    }
    else {
	CHECK_PATHNAME(filename);
    }
    GC_LEAVE();

    return (LispUnlink(THESTR(CAR(filename->data.pathname))) ? NIL : T);
}
Пример #2
0
LispObj *
Lisp_RenameFile(LispBuiltin *builtin)
/*
 rename-file filename new-name
 */
{
    int code;
    GC_ENTER();
    char *from, *to;
    LispObj *old_truename, *new_truename;

    LispObj *filename, *new_name;

    new_name = ARGUMENT(1);
    filename = ARGUMENT(0);

    if (STRINGP(filename)) {
	filename = APPLY1(Oparse_namestring, filename);
	GC_PROTECT(filename);
    }
    else if (STREAMP(filename)) {
	if (filename->data.stream.type != LispStreamFile)
	    LispDestroy("%s: %s is not a FILE-STREAM",
			STRFUN(builtin), STROBJ(filename));
	filename = filename->data.stream.pathname;
    }
    else {
	CHECK_PATHNAME(filename);
    }
    old_truename = APPLY1(Otruename, filename);
    GC_PROTECT(old_truename);

    if (STRINGP(new_name)) {
	new_name = APPLY3(Oparse_namestring, new_name, NIL, filename);
	GC_PROTECT(new_name);
    }
    else {
	CHECK_PATHNAME(new_name);
    }

    from = THESTR(CAR(filename->data.pathname));
    to = THESTR(CAR(new_name->data.pathname));
    code = LispRename(from, to);
    if (code)
	LispDestroy("%s: rename(%s, %s): %s",
		    STRFUN(builtin), from, to, strerror(errno));
    GC_LEAVE();

    new_truename = APPLY1(Otruename, new_name);
    RETURN_COUNT = 2;
    RETURN(0) = old_truename;
    RETURN(1) = new_truename;

    return (new_name);
}
Пример #3
0
Файл: string.c Проект: 8l/xedit
/* XXX preserve-whitespace is being ignored */
LispObj *
Lisp_ReadFromString(LispBuiltin *builtin)
/*
 read-from-string string &optional eof-error-p eof-value &key start end preserve-whitespace
 */
{
    GC_ENTER();
    char *string;
    LispObj *stream, *result;
    long length, start, end, bytes_read;

    LispObj *ostring, *eof_error_p, *eof_value, *ostart, *oend;

    oend = ARGUMENT(4);
    ostart = ARGUMENT(3);
    eof_value = ARGUMENT(2);
    eof_error_p = ARGUMENT(1);
    ostring = ARGUMENT(0);

    CHECK_STRING(ostring);
    string = THESTR(ostring);
    LispCheckSequenceStartEnd(builtin, ostring, ostart, oend,
			      &start, &end, &length);

    if (start > 0 || end < length)
	length = end - start;
    stream = LSTRINGSTREAM(string + start, STREAM_READ, length);

    if (eof_value == UNSPEC)
	eof_value = NIL;

    LispPushInput(stream);
    result = LispRead();
    /* stream->data.stream.source.string->input is
     * the offset of the last byte read in string */
    bytes_read = stream->data.stream.source.string->input;
    LispPopInput(stream);

    if (result == NULL) {
	if (eof_error_p == NIL)
	    result = eof_value;
	else
	    LispDestroy("%s: unexpected end of input", STRFUN(builtin));
    }

    GC_PROTECT(result);
    RETURN(0) = FIXNUM(start + bytes_read);
    RETURN_COUNT = 1;
    GC_LEAVE();

    return (result);
}
Пример #4
0
size_t gc_nbytes(const void *ptr) {
    GC_ENTER();
    if (VERIFY_PTR(ptr)) {
        size_t block = BLOCK_FROM_PTR(ptr);
        if (ATB_GET_KIND(block) == AT_HEAD) {
            // work out number of consecutive blocks in the chain starting with this on
            size_t n_blocks = 0;
            do {
                n_blocks += 1;
            } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
            GC_EXIT();
            return n_blocks * BYTES_PER_BLOCK;
        }
    }

    // invalid pointer
    GC_EXIT();
    return 0;
}
Пример #5
0
void gc_collect_start(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)++;
    #if MICROPY_GC_ALLOC_THRESHOLD
    MP_STATE_MEM(gc_alloc_amount) = 0;
    #endif
    MP_STATE_MEM(gc_stack_overflow) = 0;

    // Trace root pointers.  This relies on the root pointers being organised
    // correctly in the mp_state_ctx structure.  We scan nlr_top, dict_locals,
    // dict_globals, then the root pointer section of mp_state_vm.
    void **ptrs = (void**)(void*)&mp_state_ctx;
    gc_collect_root(ptrs, offsetof(mp_state_ctx_t, vm.qstr_last_chunk) / sizeof(void*));

    #if MICROPY_ENABLE_PYSTACK
    // Trace root pointers from the Python stack.
    ptrs = (void**)(void*)MP_STATE_THREAD(pystack_start);
    gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void*));
    #endif
}
Пример #6
0
// force the freeing of a piece of memory
// TODO: freeing here does not call finaliser
void gc_free(void *ptr) {
    GC_ENTER();
    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        // TODO how to deal with this error?
        GC_EXIT();
        return;
    }

    DEBUG_printf("gc_free(%p)\n", ptr);

    if (ptr == NULL) {
        GC_EXIT();
    } else {
        // get the GC block number corresponding to this pointer
        assert(VERIFY_PTR(ptr));
        size_t block = BLOCK_FROM_PTR(ptr);
        assert(ATB_GET_KIND(block) == AT_HEAD);

        #if MICROPY_ENABLE_FINALISER
        FTB_CLEAR(block);
        #endif

        // set the last_free pointer to this block if it's earlier in the heap
        if (block / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) {
            MP_STATE_MEM(gc_last_free_atb_index) = block / BLOCKS_PER_ATB;
        }

        // free head and all of its tail blocks
        do {
            ATB_ANY_TO_FREE(block);
            block += 1;
        } while (ATB_GET_KIND(block) == AT_TAIL);

        GC_EXIT();

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif
    }
}
Пример #7
0
void gc_dump_alloc_table(void) {
    GC_ENTER();
    static const size_t DUMP_BYTES_PER_LINE = 64;
    #if !EXTENSIVE_HEAP_PROFILING
    // When comparing heap output we don't want to print the starting
    // pointer of the heap because it changes from run to run.
    mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start));
    #endif
    for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) {
        if (bl % DUMP_BYTES_PER_LINE == 0) {
            // a new line of blocks
            {
                // check if this line contains only free blocks
                size_t bl2 = bl;
                while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) {
                    bl2++;
                }
                if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) {
                    // there are at least 2 lines containing only free blocks, so abbreviate their printing
                    mp_printf(&mp_plat_print, "\n       (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE);
                    bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1));
                    if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) {
                        // got to end of heap
                        break;
                    }
                }
            }
            // print header for new line of blocks
            // (the cast to uint32_t is for 16-bit ports)
            //mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff));
            mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff));
        }
        int c = ' ';
        switch (ATB_GET_KIND(bl)) {
            case AT_FREE: c = '.'; break;
            /* this prints out if the object is reachable from BSS or STACK (for unix only)
            case AT_HEAD: {
                c = 'h';
                void **ptrs = (void**)(void*)&mp_state_ctx;
                mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t);
                for (mp_uint_t i = 0; i < len; i++) {
                    mp_uint_t ptr = (mp_uint_t)ptrs[i];
                    if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                        c = 'B';
                        break;
                    }
                }
                if (c == 'h') {
                    ptrs = (void**)&c;
                    len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t);
                    for (mp_uint_t i = 0; i < len; i++) {
                        mp_uint_t ptr = (mp_uint_t)ptrs[i];
                        if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                            c = 'S';
                            break;
                        }
                    }
                }
                break;
            }
            */
            /* this prints the uPy object type of the head block */
            case AT_HEAD: {
                void **ptr = (void**)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK);
                if (*ptr == &mp_type_tuple) { c = 'T'; }
                else if (*ptr == &mp_type_list) { c = 'L'; }
                else if (*ptr == &mp_type_dict) { c = 'D'; }
                else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { c = 'S'; }
                #if MICROPY_PY_BUILTINS_BYTEARRAY
                else if (*ptr == &mp_type_bytearray) { c = 'A'; }
                #endif
                #if MICROPY_PY_ARRAY
                else if (*ptr == &mp_type_array) { c = 'A'; }
                #endif
                #if MICROPY_PY_BUILTINS_FLOAT
                else if (*ptr == &mp_type_float) { c = 'F'; }
                #endif
                else if (*ptr == &mp_type_fun_bc) { c = 'B'; }
                else if (*ptr == &mp_type_module) { c = 'M'; }
                else {
                    c = 'h';
                    #if 0
                    // This code prints "Q" for qstr-pool data, and "q" for qstr-str
                    // data.  It can be useful to see how qstrs are being allocated,
                    // but is disabled by default because it is very slow.
                    for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) {
                        if ((qstr_pool_t*)ptr == pool) {
                            c = 'Q';
                            break;
                        }
                        for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) {
                            if ((const byte*)ptr == *q) {
                                c = 'q';
                                break;
                            }
                        }
                    }
                    #endif
                }
                break;
            }
            case AT_TAIL: c = '='; break;
            case AT_MARK: c = 'm'; break;
        }
        mp_printf(&mp_plat_print, "%c", c);
    }
    mp_print_str(&mp_plat_print, "\n");
    GC_EXIT();
}
Пример #8
0
void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
    // check for pure allocation
    if (ptr_in == NULL) {
        return gc_alloc(n_bytes, false);
    }

    // check for pure free
    if (n_bytes == 0) {
        gc_free(ptr_in);
        return NULL;
    }

    void *ptr = ptr_in;

    GC_ENTER();

    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        GC_EXIT();
        return NULL;
    }

    // get the GC block number corresponding to this pointer
    assert(VERIFY_PTR(ptr));
    size_t block = BLOCK_FROM_PTR(ptr);
    assert(ATB_GET_KIND(block) == AT_HEAD);

    // compute number of new blocks that are requested
    size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;

    // Get the total number of consecutive blocks that are already allocated to
    // this chunk of memory, and then count the number of free blocks following
    // it.  Stop if we reach the end of the heap, or if we find enough extra
    // free blocks to satisfy the realloc.  Note that we need to compute the
    // total size of the existing memory chunk so we can correctly and
    // efficiently shrink it (see below for shrinking code).
    size_t n_free   = 0;
    size_t n_blocks = 1; // counting HEAD block
    size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
    for (size_t bl = block + n_blocks; bl < max_block; bl++) {
        byte block_type = ATB_GET_KIND(bl);
        if (block_type == AT_TAIL) {
            n_blocks++;
            continue;
        }
        if (block_type == AT_FREE) {
            n_free++;
            if (n_blocks + n_free >= new_blocks) {
                // stop as soon as we find enough blocks for n_bytes
                break;
            }
            continue;
        }
        break;
    }

    // return original ptr if it already has the requested number of blocks
    if (new_blocks == n_blocks) {
        GC_EXIT();
        return ptr_in;
    }

    // check if we can shrink the allocated area
    if (new_blocks < n_blocks) {
        // free unneeded tail blocks
        for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) {
            ATB_ANY_TO_FREE(bl);
        }

        // set the last_free pointer to end of this block if it's earlier in the heap
        if ((block + new_blocks) / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) {
            MP_STATE_MEM(gc_last_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB;
        }

        GC_EXIT();

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif

        return ptr_in;
    }

    // check if we can expand in place
    if (new_blocks <= n_blocks + n_free) {
        // mark few more blocks as used tail
        for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
            assert(ATB_GET_KIND(bl) == AT_FREE);
            ATB_FREE_TO_TAIL(bl);
        }

        GC_EXIT();

        #if MICROPY_GC_CONSERVATIVE_CLEAR
        // be conservative and zero out all the newly allocated blocks
        memset((byte*)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
        #else
        // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
        memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
        #endif

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif

        return ptr_in;
    }

    #if MICROPY_ENABLE_FINALISER
    bool ftb_state = FTB_GET(block);
    #else
    bool ftb_state = false;
    #endif

    GC_EXIT();

    if (!allow_move) {
        // not allowed to move memory block so return failure
        return NULL;
    }

    // can't resize inplace; try to find a new contiguous chain
    void *ptr_out = gc_alloc(n_bytes, ftb_state);

    // check that the alloc succeeded
    if (ptr_out == NULL) {
        return NULL;
    }

    DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
    memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
    gc_free(ptr_in);
    return ptr_out;
}
Пример #9
0
void *gc_alloc(size_t n_bytes, bool has_finaliser) {
    size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
    DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);

    // check for 0 allocation
    if (n_blocks == 0) {
        return NULL;
    }

    GC_ENTER();

    // check if GC is locked
    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        GC_EXIT();
        return NULL;
    }

    size_t i;
    size_t end_block;
    size_t start_block;
    size_t n_free = 0;
    int collected = !MP_STATE_MEM(gc_auto_collect_enabled);

    #if MICROPY_GC_ALLOC_THRESHOLD
    if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
        GC_EXIT();
        gc_collect();
        GC_ENTER();
    }
    #endif

    for (;;) {

        // look for a run of n_blocks available blocks
        for (i = MP_STATE_MEM(gc_last_free_atb_index); i < MP_STATE_MEM(gc_alloc_table_byte_len); i++) {
            byte a = MP_STATE_MEM(gc_alloc_table_start)[i];
            if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; }
            if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; }
            if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; }
            if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; }
        }

        GC_EXIT();
        // nothing found!
        if (collected) {
            return NULL;
        }
        DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
        gc_collect();
        collected = 1;
        GC_ENTER();
    }

    // found, ending at block i inclusive
found:
    // get starting and end blocks, both inclusive
    end_block = i;
    start_block = i - n_free + 1;

    // Set last free ATB index to block after last block we found, for start of
    // next scan.  To reduce fragmentation, we only do this if we were looking
    // for a single free block, which guarantees that there are no free blocks
    // before this one.  Also, whenever we free or shink a block we must check
    // if this index needs adjusting (see gc_realloc and gc_free).
    if (n_free == 1) {
        MP_STATE_MEM(gc_last_free_atb_index) = (i + 1) / BLOCKS_PER_ATB;
    }

    // mark first block as used head
    ATB_FREE_TO_HEAD(start_block);

    // mark rest of blocks as used tail
    // TODO for a run of many blocks can make this more efficient
    for (size_t bl = start_block + 1; bl <= end_block; bl++) {
        ATB_FREE_TO_TAIL(bl);
    }

    // get pointer to first block
    // we must create this pointer before unlocking the GC so a collection can find it
    void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
    DEBUG_printf("gc_alloc(%p)\n", ret_ptr);

    #if MICROPY_GC_ALLOC_THRESHOLD
    MP_STATE_MEM(gc_alloc_amount) += n_blocks;
    #endif

    GC_EXIT();

    #if MICROPY_GC_CONSERVATIVE_CLEAR
    // be conservative and zero out all the newly allocated blocks
    memset((byte*)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
    #else
    // zero out the additional bytes of the newly allocated blocks
    // This is needed because the blocks may have previously held pointers
    // to the heap and will not be set to something else if the caller
    // doesn't actually use the entire block.  As such they will continue
    // to point to the heap and may prevent other blocks from being reclaimed.
    memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
    #endif

    #if MICROPY_ENABLE_FINALISER
    if (has_finaliser) {
        // clear type pointer in case it is never set
        ((mp_obj_base_t*)ret_ptr)->type = NULL;
        // set mp_obj flag only if it has a finaliser
        GC_ENTER();
        FTB_SET(start_block);
        GC_EXIT();
    }
    #else
    (void)has_finaliser;
    #endif

    #if EXTENSIVE_HEAP_PROFILING
    gc_dump_alloc_table();
    #endif

    return ret_ptr;
}
Пример #10
0
void gc_info(gc_info_t *info) {
    GC_ENTER();
    info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start);
    info->used = 0;
    info->free = 0;
    info->max_free = 0;
    info->num_1block = 0;
    info->num_2block = 0;
    info->max_block = 0;
    bool finish = false;
    for (size_t block = 0, len = 0, len_free = 0; !finish;) {
        size_t kind = ATB_GET_KIND(block);
        switch (kind) {
            case AT_FREE:
                info->free += 1;
                len_free += 1;
                len = 0;
                break;

            case AT_HEAD:
                info->used += 1;
                len = 1;
                break;

            case AT_TAIL:
                info->used += 1;
                len += 1;
                break;

            case AT_MARK:
                // shouldn't happen
                break;
        }

        block++;
        finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
        // Get next block type if possible
        if (!finish) {
            kind = ATB_GET_KIND(block);
        }

        if (finish || kind == AT_FREE || kind == AT_HEAD) {
            if (len == 1) {
                info->num_1block += 1;
            } else if (len == 2) {
                info->num_2block += 1;
            }
            if (len > info->max_block) {
                info->max_block = len;
            }
            if (finish || kind == AT_HEAD) {
                if (len_free > info->max_free) {
                    info->max_free = len_free;
                }
                len_free = 0;
            }
        }
    }

    info->used *= BYTES_PER_BLOCK;
    info->free *= BYTES_PER_BLOCK;
    GC_EXIT();
}
Пример #11
0
void gc_unlock(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)--;
    GC_EXIT();
}
Пример #12
0
LispObj *
Lisp_Open(LispBuiltin *builtin)
/*
 open filename &key direction element-type if-exists if-does-not-exist external-format
 */
{
    GC_ENTER();
    char *string;
    LispObj *stream = NIL;
    int mode, flags, direction, exist, noexist, file_exist;
    LispFile *file;

    LispObj *filename, *odirection, *element_type, *if_exists,
	    *if_does_not_exist, *external_format;

    external_format = ARGUMENT(5);
    if_does_not_exist = ARGUMENT(4);
    if_exists = ARGUMENT(3);
    element_type = ARGUMENT(2);
    odirection = ARGUMENT(1);
    filename = ARGUMENT(0);

    if (STRINGP(filename)) {
	filename = APPLY1(Oparse_namestring, filename);
	GC_PROTECT(filename);
    }
    else if (STREAMP(filename)) {
	if (filename->data.stream.type != LispStreamFile)
	    LispDestroy("%s: %s is not a FILE-STREAM",
			STRFUN(builtin), STROBJ(filename));
	filename = filename->data.stream.pathname;
    }
    else {
	CHECK_PATHNAME(filename);
    }

    if (odirection != UNSPEC) {
	direction = -1;
	if (KEYWORDP(odirection)) {
	    if (odirection == Kprobe)
		direction = DIR_PROBE;
	    else if (odirection == Kinput)
		direction = DIR_INPUT;
	    else if (odirection == Koutput)
		direction = DIR_OUTPUT;
	    else if (odirection == Kio)
		direction = DIR_IO;
	}
	if (direction == -1)
	    LispDestroy("%s: bad :DIRECTION %s",
			STRFUN(builtin), STROBJ(odirection));
    }
    else
	direction = DIR_INPUT;

    if (element_type != UNSPEC) {
	/* just check argument... */
	if (SYMBOLP(element_type) &&
	    ATOMID(element_type) == Scharacter)
	    ;	/* do nothing */
	else if (KEYWORDP(element_type) &&
	    ATOMID(element_type) == Sdefault)
	    ;	/* do nothing */
	else
	    LispDestroy("%s: only :%s and %s supported for :ELEMENT-TYPE, not %s",
			STRFUN(builtin), Sdefault, Scharacter, STROBJ(element_type));
    }

    if (if_exists != UNSPEC) {
	exist = -1;
	if (if_exists == NIL)
	    exist = EXT_NIL;
	else if (KEYWORDP(if_exists)) {
	    if (if_exists == Kerror)
		exist = EXT_ERROR;
	    else if (if_exists == Knew_version)
		exist = EXT_NEW_VERSION;
	    else if (if_exists == Krename)
		exist = EXT_RENAME;
	    else if (if_exists == Krename_and_delete)
		exist = EXT_RENAME_DELETE;
	    else if (if_exists == Koverwrite)
		exist = EXT_OVERWRITE;
	    else if (if_exists == Kappend)
		exist = EXT_APPEND;
	    else if (if_exists == Ksupersede)
		exist = EXT_SUPERSEDE;
	}
	if (exist == -1)
	    LispDestroy("%s: bad :IF-EXISTS %s",
			STRFUN(builtin), STROBJ(if_exists));
    }
    else
	exist = EXT_ERROR;

    if (if_does_not_exist != UNSPEC) {
	noexist = -1;
	if (if_does_not_exist == NIL)
	    noexist = NOEXT_NIL;
	if (KEYWORDP(if_does_not_exist)) {
	    if (if_does_not_exist == Kerror)
		noexist = NOEXT_ERROR;
	    else if (if_does_not_exist == Kcreate)
		noexist = NOEXT_CREATE;
	}
	if (noexist == -1)
	    LispDestroy("%s: bad :IF-DOES-NO-EXISTS %s",
			STRFUN(builtin), STROBJ(if_does_not_exist));
    }
    else
	noexist = direction != DIR_INPUT ? NOEXT_NOTHING : NOEXT_ERROR;

    if (external_format != UNSPEC) {
	/* just check argument... */
	if (SYMBOLP(external_format) &&
	    ATOMID(external_format) == Scharacter)
	    ;	/* do nothing */
	else if (KEYWORDP(external_format) &&
	    ATOMID(external_format) == Sdefault)
	    ;	/* do nothing */
	else
	    LispDestroy("%s: only :%s and %s supported for :EXTERNAL-FORMAT, not %s",
			STRFUN(builtin), Sdefault, Scharacter, STROBJ(external_format));
    }

    /* string representation of pathname */
    string = THESTR(CAR(filename->data.pathname));
    mode = 0;

    file_exist = access(string, F_OK) == 0;
    if (file_exist) {
	if (exist == EXT_NIL) {
	    GC_LEAVE();
	    return (NIL);
	}
    }
    else {
	if (noexist == NOEXT_NIL) {
	    GC_LEAVE();
	    return (NIL);
	}
	if (noexist == NOEXT_ERROR)
	    LispDestroy("%s: file %s does not exist",
			STRFUN(builtin), STROBJ(CAR(filename->data.quote)));
	else if (noexist == NOEXT_CREATE) {
	    LispFile *tmp = LispFopen(string, FILE_WRITE);

	    if (tmp)
		LispFclose(tmp);
	    else
		LispDestroy("%s: cannot create file %s",
			    STRFUN(builtin),
			    STROBJ(CAR(filename->data.quote)));
	}
    }

    if (direction == DIR_OUTPUT || direction == DIR_IO) {
	if (file_exist) {
	    if (exist == EXT_ERROR)
		LispDestroy("%s: file %s already exists",
			    STRFUN(builtin), STROBJ(CAR(filename->data.quote)));
	    if (exist == EXT_RENAME) {
		/* Add an ending '~' at the end of the backup file */
		char tmp[PATH_MAX + 1];

		strcpy(tmp, string);
		if (strlen(tmp) + 1 > PATH_MAX)
		    LispDestroy("%s: backup name for %s too long",
				STRFUN(builtin),
				STROBJ(CAR(filename->data.quote)));
		strcat(tmp, "~");
		if (rename(string, tmp))
		    LispDestroy("%s: rename: %s",
				STRFUN(builtin), strerror(errno));
		mode |= FILE_WRITE;
	    }
	    else if (exist == EXT_OVERWRITE)
		mode |= FILE_WRITE;
	    else if (exist == EXT_APPEND)
		mode |= FILE_APPEND;
	}
	else
	    mode |= FILE_WRITE;
	if (direction == DIR_IO)
	    mode |= FILE_IO;
    }
    else
	mode |= FILE_READ;

    file = LispFopen(string, mode);
    if (file == NULL)
	LispDestroy("%s: open: %s", STRFUN(builtin), strerror(errno));

    flags = 0;
    if (direction == DIR_PROBE) {
	LispFclose(file);
	file = NULL;
    }
    else {
	if (direction == DIR_INPUT || direction == DIR_IO)
	    flags |= STREAM_READ;
	if (direction == DIR_OUTPUT || direction == DIR_IO)
	    flags |= STREAM_WRITE;
    }
    stream = FILESTREAM(file, filename, flags);
    GC_LEAVE();

    return (stream);
}
Пример #13
0
Файл: regex.c Проект: 8l/xedit
LispObj *
Lisp_Reexec(LispBuiltin *builtin)
/*
 re-exec regex string &key count start end notbol noteol
 */
{
    size_t nmatch;
    re_mat match[10];
    long start, end, length;
    int code, cflags, eflags;
    char *string;
    LispObj *result;
    re_cod *regexp;

    LispObj *regex, *ostring, *count, *ostart, *oend, *notbol, *noteol;

    noteol = ARGUMENT(6);
    notbol = ARGUMENT(5);
    oend = ARGUMENT(4);
    ostart = ARGUMENT(3);
    count = ARGUMENT(2);
    ostring = ARGUMENT(1);
    regex = ARGUMENT(0);

    if (STRINGP(regex))
	regexp = LispRecomp(builtin, THESTR(regex), cflags = 0);
    else {
	CHECK_REGEX(regex);
	regexp = regex->data.regex.regex;
	cflags = regex->data.regex.options;
    }

    CHECK_STRING(ostring);

    if (count == UNSPEC)
	nmatch = 1;
    else {
	CHECK_INDEX(count);
	nmatch = FIXNUM_VALUE(count);
	if (nmatch > 10)
	    LispDestroy("%s: COUNT cannot be larger than 10", STRFUN(builtin));
    }
    if (nmatch && (cflags & RE_NOSUB))
	nmatch = 1;

    eflags = RE_STARTEND;
    if (notbol != UNSPEC && notbol != NIL)
	eflags |= RE_NOTBOL;
    if (noteol != UNSPEC && noteol != NIL)
	eflags |= RE_NOTEOL;

    string = THESTR(ostring);
    LispCheckSequenceStartEnd(builtin, ostring, ostart, oend,
			      &start, &end, &length);

    match[0].rm_so = start;
    match[0].rm_eo = end;
    code = reexec(regexp, string, nmatch, &match[0], eflags);

    if (code == 0) {
	if (nmatch && match[0].rm_eo >= match[0].rm_so) {
	    result = CONS(CONS(FIXNUM(match[0].rm_so),
			       FIXNUM(match[0].rm_eo)), NIL);
	    if (nmatch > 1 && match[1].rm_eo >= match[1].rm_so) {
		int i;
		GC_ENTER();
		LispObj *cons = result;

		GC_PROTECT(result);
		for (i = 1;
		     i < nmatch && match[i].rm_eo >= match[i].rm_so;
		     i++) {
		    RPLACD(cons, CONS(CONS(FIXNUM(match[i].rm_so),
					   FIXNUM(match[i].rm_eo)), NIL));
		    cons = CDR(cons);
		}
		GC_LEAVE();
	    }
	}
	else
	    result = NIL;
    }
    else
	result = Knomatch;

    /* Maybe shoud cache compiled regex, but better the caller do it */
    if (!XREGEXP(regex)) {
	refree(regexp);
	LispFree(regexp);
    }

    return (result);
}
Пример #14
0
Файл: string.c Проект: 8l/xedit
LispObj *
Lisp_ParseInteger(LispBuiltin *builtin)
/*
 parse-integer string &key start end radix junk-allowed
 */
{
    GC_ENTER();
    char *ptr, *string;
    int character, junk, sign, overflow;
    long i, start, end, radix, length, integer, check;
    LispObj *result;

    LispObj *ostring, *ostart, *oend, *oradix, *junk_allowed;

    junk_allowed = ARGUMENT(4);
    oradix = ARGUMENT(3);
    oend = ARGUMENT(2);
    ostart = ARGUMENT(1);
    ostring = ARGUMENT(0);

    start = end = radix = 0;
    result = NIL;

    CHECK_STRING(ostring);
    LispCheckSequenceStartEnd(builtin, ostring, ostart, oend,
			      &start, &end, &length);
    string = THESTR(ostring);
    if (oradix == UNSPEC)
	radix = 10;
    else {
	CHECK_INDEX(oradix);
	radix = FIXNUM_VALUE(oradix);
    }
    if (radix < 2 || radix > 36)
	LispDestroy("%s: :RADIX %ld must be in the range 2 to 36",
		    STRFUN(builtin), radix);

    integer = check = 0;
    ptr = string + start;
    sign = overflow = 0;

    /* Skip leading white spaces */
    for (i = start; i < end && *ptr && isspace(*ptr); ptr++, i++)
	;

    /* Check for sign specification */
    if (i < end && (*ptr == '-' || *ptr == '+')) {
	sign = *ptr == '-';
	++ptr;
	++i;
    }

    for (junk = 0; i < end; i++, ptr++) {
	character = *ptr;
	if (islower(character))
	    character = toupper(character);
	if (character >= '0' && character <= '9') {
	    if (character - '0' >= radix)
		junk = 1;
	    else {
		check = integer;
		integer = integer * radix + character - '0';
	    }
	}
	else if (character >= 'A' && character <= 'Z') {
	    if (character - 'A' + 10 >= radix)
		junk = 1;
	    else {
		check = integer;
		integer = integer * radix + character - 'A' + 10;
	    }
	}
	else {
	    if (isspace(character))
		break;
	    junk = 1;
	}

	if (junk)
	    break;

	if (!overflow && check > integer)
	    overflow = 1;
	/* keep looping just to count read bytes */
    }

    if (!junk)
	/* Skip white spaces */
	for (; i < end && *ptr && isspace(*ptr); ptr++, i++)
	    ;

    if ((junk || ptr == string) &&
	(junk_allowed == UNSPEC || junk_allowed == NIL))
	LispDestroy("%s: %s has a bad integer representation",
		    STRFUN(builtin), STROBJ(ostring));
    else if (ptr == string)
	result = NIL;
    else if (overflow) {
	mpi *bigi = LispMalloc(sizeof(mpi));
	char *str;

	length = end - start + sign;
	str = LispMalloc(length + 1);

	strncpy(str, string - sign, length + sign);
	str[length + sign] = '\0';
	mpi_init(bigi);
	mpi_setstr(bigi, str, radix);
	LispFree(str);
	result = BIGNUM(bigi);
    }
    else
	result = INTEGER(sign ? -integer : integer);

    GC_PROTECT(result);
    RETURN(0) = FIXNUM(i);
    RETURN_COUNT = 1;
    GC_LEAVE();

    return (result);
}