Пример #1
0
/* GFp_rsa_public_decrypt decrypts the RSA signature |in| using the public key
 * with modulus |n| and exponent |e|, leaving the decrypted signature in |out|.
 * |out_len| and |in_len| must both be equal to the size of |n|. The public key
 * must have been validated prior.
 *
 * When |rsa_public_decrypt| succeeds, the caller must then check the
 * signature value (and padding) left in |out|. */
int GFp_rsa_public_decrypt(uint8_t *out, size_t out_len,
                           const BN_MONT_CTX *mont_n, const BIGNUM *e,
                           const uint8_t *in, size_t in_len) {
  assert(GFp_BN_is_odd(e));
  assert(!GFp_BN_is_zero(e));
  assert(!GFp_BN_is_one(e));

  const BIGNUM *n = &mont_n->N;

  BIGNUM f;
  GFp_BN_init(&f);

  BIGNUM result;
  GFp_BN_init(&result);

  int ret = 0;
  unsigned rsa_size = GFp_BN_num_bytes(n); /* RSA_size((n, e)); */

  if (out_len != rsa_size) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
    goto err;
  }

  if (in_len != rsa_size) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
    goto err;
  }

  if (GFp_BN_bin2bn(in, in_len, &f) == NULL) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    goto err;
  }

  if (GFp_BN_ucmp(&f, n) >= 0) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
    goto err;
  }

  if (!GFp_BN_mod_exp_mont_vartime(&result, &f, e, mont_n) ||
      !GFp_BN_bn2bin_padded(out, out_len, &result)) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    goto err;
  }

  ret = 1;

err:
  GFp_BN_free(&f);
  GFp_BN_free(&result);
  return ret;
}
Пример #2
0
Файл: gcd.c Проект: ctz/ring
int GFp_BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
                           const BIGNUM *n) {
  *out_no_inverse = 0;

  if (!GFp_BN_is_odd(n)) {
    OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
    return 0;
  }

  if (GFp_BN_is_negative(a) || GFp_BN_cmp(a, n) >= 0) {
    OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
    return 0;
  }

  BIGNUM A;
  GFp_BN_init(&A);

  BIGNUM B;
  GFp_BN_init(&B);

  BIGNUM X;
  GFp_BN_init(&X);

  BIGNUM Y;
  GFp_BN_init(&Y);

  int ret = 0;
  int sign;

  BIGNUM *R = out;

  GFp_BN_zero(&Y);
  if (!GFp_BN_one(&X) ||
      !GFp_BN_copy(&B, a) ||
      !GFp_BN_copy(&A, n)) {
    goto err;
  }
  A.neg = 0;
  sign = -1;
  /* From  B = a mod |n|,  A = |n|  it follows that
   *
   *      0 <= B < A,
   *     -sign*X*a  ==  B   (mod |n|),
   *      sign*Y*a  ==  A   (mod |n|).
   */

  /* Binary inversion algorithm; requires odd modulus. This is faster than the
   * general algorithm if the modulus is sufficiently small (about 400 .. 500
   * bits on 32-bit systems, but much more on 64-bit systems) */
  int shift;

  while (!GFp_BN_is_zero(&B)) {
    /*      0 < B < |n|,
     *      0 < A <= |n|,
     * (1) -sign*X*a  ==  B   (mod |n|),
     * (2)  sign*Y*a  ==  A   (mod |n|) */

    /* Now divide  B  by the maximum possible power of two in the integers,
     * and divide  X  by the same value mod |n|.
     * When we're done, (1) still holds. */
    shift = 0;
    while (!GFp_BN_is_bit_set(&B, shift)) {
      /* note that 0 < B */
      shift++;

      if (GFp_BN_is_odd(&X)) {
        if (!GFp_BN_uadd(&X, &X, n)) {
          goto err;
        }
      }
      /* now X is even, so we can easily divide it by two */
      if (!GFp_BN_rshift1(&X, &X)) {
        goto err;
      }
    }
    if (shift > 0) {
      if (!GFp_BN_rshift(&B, &B, shift)) {
        goto err;
      }
    }

    /* Same for A and Y. Afterwards, (2) still holds. */
    shift = 0;
    while (!GFp_BN_is_bit_set(&A, shift)) {
      /* note that 0 < A */
      shift++;

      if (GFp_BN_is_odd(&Y)) {
        if (!GFp_BN_uadd(&Y, &Y, n)) {
          goto err;
        }
      }
      /* now Y is even */
      if (!GFp_BN_rshift1(&Y, &Y)) {
        goto err;
      }
    }
    if (shift > 0) {
      if (!GFp_BN_rshift(&A, &A, shift)) {
        goto err;
      }
    }

    /* We still have (1) and (2).
     * Both  A  and  B  are odd.
     * The following computations ensure that
     *
     *     0 <= B < |n|,
     *      0 < A < |n|,
     * (1) -sign*X*a  ==  B   (mod |n|),
     * (2)  sign*Y*a  ==  A   (mod |n|),
     *
     * and that either  A  or  B  is even in the next iteration. */
    if (GFp_BN_ucmp(&B, &A) >= 0) {
      /* -sign*(X + Y)*a == B - A  (mod |n|) */
      if (!GFp_BN_uadd(&X, &X, &Y)) {
        goto err;
      }
      /* NB: we could use GFp_BN_mod_add_quick(X, X, Y, n), but that
       * actually makes the algorithm slower */
      if (!GFp_BN_usub(&B, &B, &A)) {
        goto err;
      }
    } else {
      /*  sign*(X + Y)*a == A - B  (mod |n|) */
      if (!GFp_BN_uadd(&Y, &Y, &X)) {
        goto err;
      }
      /* as above, GFp_BN_mod_add_quick(Y, Y, X, n) would slow things down */
      if (!GFp_BN_usub(&A, &A, &B)) {
        goto err;
      }
    }
  }

  if (!GFp_BN_is_one(&A)) {
    *out_no_inverse = 1;
    OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
    goto err;
  }

  /* The while loop (Euclid's algorithm) ends when
   *      A == gcd(a,n);
   * we have
   *       sign*Y*a  ==  A  (mod |n|),
   * where  Y  is non-negative. */

  if (sign < 0) {
    if (!GFp_BN_sub(&Y, n, &Y)) {
      goto err;
    }
  }
  /* Now  Y*a  ==  A  (mod |n|).  */

  /* Y*a == 1  (mod |n|) */
  if (!Y.neg && GFp_BN_ucmp(&Y, n) < 0) {
    if (!GFp_BN_copy(R, &Y)) {
      goto err;
    }
  } else {
    if (!GFp_BN_nnmod(R, &Y, n)) {
      goto err;
    }
  }

  ret = 1;

err:
  GFp_BN_free(&A);
  GFp_BN_free(&B);
  GFp_BN_free(&X);
  GFp_BN_free(&Y);

  return ret;
}