Пример #1
0
int report(long rectify, int ok)
{
    int minutes, hours;
    long seconds;
    long ncells;

    G_message("%s", ok ? _("complete") : _("failed"));

    if (!ok)
	return 1;

    seconds = rectify;
    minutes = seconds / 60;
    hours = minutes / 60;
    minutes -= hours * 60;
    ncells = target_window.rows * target_window.cols;
    G_verbose_message(_("%d rows, %d cols (%ld cells) completed in"),
			target_window.rows, target_window.cols, ncells);
    if (hours)
	G_verbose_message(_("%d:%02d:%02ld hours"), hours, minutes, seconds % 60);
    else
	G_verbose_message(_("%d:%02ld minutes"), minutes, seconds % 60);
    if (seconds)
	G_verbose_message(_("%.1f cells per minute"),
			  (60.0 * ncells) / ((double)seconds));
		      
    G_message("-----------------------------------------------");

    return 1;
}
Пример #2
0
static int manage_memory(int srows, int scols, struct globals *globals)
{
    double reg_size_mb, segs_mb;
    int reg_size_count, nseg, nseg_total;

    /* minimum region size to store in search tree */
    reg_size_mb = 2 * globals->datasize +     /* mean, sum */
                  2 * sizeof(int) +           /* id, count */
		  sizeof(unsigned char) + 
		  2 * sizeof(struct REG_NODE *);
    reg_size_mb /= (1024. * 1024.);

    /* put aside some memory for segment structures */
    segs_mb = globals->mb * 0.1;
    if (segs_mb > 10)
	segs_mb = 10;

    /* calculate number of region stats that can be kept in memory */
    reg_size_count = (globals->mb - segs_mb) / reg_size_mb;
    globals->min_reg_size = 3;
    if (reg_size_count < (double) globals->notnullcells / globals->min_reg_size) {
	globals->min_reg_size = (double) globals->notnullcells / reg_size_count;
    }
    else {
	reg_size_count = (double) globals->notnullcells / globals->min_reg_size;
	/* recalculate segs_mb */
	segs_mb = globals->mb - reg_size_count * reg_size_mb;
    }

    G_verbose_message(_("Regions with at least %d cells are stored in memory"),
                      globals->min_reg_size);

    /* calculate number of segments in memory */
    if (globals->bounds_map != NULL) {
	/* input bands, segment ids, bounds map */
	nseg = (1024. * 1024. * segs_mb) /
	       (sizeof(DCELL) * globals->nbands * srows * scols + 
		sizeof(CELL) * 4 * srows * scols);
    }
    else {
	/* input bands, segment ids */
	nseg = (1024. * 1024. * segs_mb) /
	       (sizeof(DCELL) * globals->nbands * srows * scols + 
		sizeof(CELL) * 2 * srows * scols);
    }
    nseg_total = (globals->nrows / srows + (globals->nrows % srows > 0)) *
                 (globals->ncols / scols + (globals->ncols % scols > 0));

    if (nseg > nseg_total)
	nseg = nseg_total;
    
    G_debug(1, "current region:  %d rows, %d cols", globals->nrows, globals->ncols);
    G_debug(1, "segmented to tiles with size:  %d rows, %d cols", srows,
	    scols);
    G_verbose_message(_("Number of segments in memory: %d of %d total"),
                      nseg, nseg_total);
    
    return nseg;
}
Пример #3
0
/* check compatibility of map header and region header */
void check_header(char* cellname) {

  const char *mapset;
  mapset = G_find_raster(cellname, "");
  if (mapset == NULL) {
    G_fatal_error(_("Raster map <%s> not found"), cellname);
  }
  /* read cell header */
  struct Cell_head cell_hd;
  Rast_get_cellhd (cellname, mapset, &cell_hd);
  
  /* check compatibility with module region */
  if (!((region->ew_res == cell_hd.ew_res)
		&& (region->ns_res == cell_hd.ns_res))) {
    G_fatal_error(_("cell file %s resolution differs from current region"),
				  cellname);
  } else {
    if (opt->verbose) { 
      G_message(_("cell %s header compatible with region header"),
	      cellname);
      fflush(stderr);
    }
  }


  /* check type of input elevation raster and check if precision is lost */
    RASTER_MAP_TYPE data_type;
	data_type = Rast_map_type(opt->elev_grid, mapset);
#ifdef ELEV_SHORT
	G_verbose_message(_("Elevation stored as SHORT (%dB)"),
		sizeof(elevation_type));
	if (data_type == FCELL_TYPE) {
	  G_warning(_("raster %s is of type FCELL_TYPE "
			"--precision may be lost."), opt->elev_grid); 
	}
	if (data_type == DCELL_TYPE) {
	  G_warning(_("raster %s is of type DCELL_TYPE "
			"--precision may be lost."),  opt->elev_grid);
	}
#endif 
#ifdef ELEV_FLOAT
	G_verbose_message( _("Elevation stored as FLOAT (%dB)"), 
			sizeof(elevation_type));
	if (data_type == CELL_TYPE) {
	  G_warning(_("raster %s is of type CELL_TYPE "
		"--you should use r.terraflow.short"), opt->elev_grid); 
	}
	if (data_type == DCELL_TYPE) {
	  G_warning(_("raster %s is of type DCELL_TYPE "
		"--precision may be lost."),  opt->elev_grid);
	}
#endif
	



}
Пример #4
0
static void write_bil_hdr(
    const char *outfile, const struct Cell_head *region,
    int bytes, int order, int header, double null_val)
{
    char out_tmp[GPATH_MAX];
    FILE *fp;

    sprintf(out_tmp, "%s.hdr", outfile);
    G_verbose_message(_("Header File = %s"), out_tmp);

    /* Open Header File */
    fp = fopen(out_tmp, "w");
    if (!fp)
	G_fatal_error(_("Unable to create file <%s>"), out_tmp);

    fprintf(fp, "nrows %d\n", region->rows);
    fprintf(fp, "ncols %d\n", region->cols);
    fprintf(fp, "nbands 1\n");
    fprintf(fp, "nbits %d\n", bytes * 8);
    fprintf(fp, "byteorder %s\n", order == 0 ? "M" : "I");
    fprintf(fp, "layout bil\n");
    fprintf(fp, "skipbytes %d\n", header ? 892 : 0);
    fprintf(fp, "nodata %g\n", null_val);

    fclose(fp);
}
Пример #5
0
int get_conz_points(void)
{
    char msg[200];
    /* struct Ortho_Control_Points cpz; */

    if (!I_get_con_points(group.name, &group.control_points))
	exit(0);

    sprintf(msg, _("Control Z Point file for group [%s] in [%s] \n \n"),
	    group.name, G_mapset());

    G_verbose_message(_("Computing equations..."));

    Compute_ortho_equation();

    switch (group.con_equation_stat) {
    case -1:
	strcat(msg, _("Poorly placed Control Points!\n"));
	strcat(msg, _("Can not generate the transformation equation.\n"));
	strcat(msg, _("Run OPTION 7 of i.ortho.photo again!\n"));
	break;
    case 0:
	strcat(msg, _("No active Control Points!\n"));
	strcat(msg, _("Can not generate the transformation equation.\n"));
	strcat(msg, _("Run OPTION 7 of i.ortho.photo!\n"));
	break;
    default:
	return 1;
    }
    G_fatal_error("%s", msg);
}
Пример #6
0
/* Init all costs to/from given node */
int init_node_costs(struct Map_info *Map, int from)
{
    int to, ret, row, col;
    double cost;

    G_verbose_message(_("Init costs from node %d"), from);

    for (to = 1; to <= nnodes; to++) {
	if (from == to)
	    continue;
	ret = Vect_net_shortest_path(Map, from, to, NULL, &cost);
	if (ret == -1) {
	    G_debug(1, "Destination node %d is unreachable from node %d\n", to, from);
	    cost = -2;
	}

	if (from < to) {
	    row = from - 1;
	    col = to - from - 1;
	}
	else {
	    row = to - 1;
	    col = from - to - 1;
	}

	G_debug(3, "init costs %d - > %d = %f\n", from, to, cost);
	nodes_costs[row][col] = cost;
    }

    return 1;
}
Пример #7
0
static int profile(int coords, const char *map, const char *nulls, char **line)
{
    double e1, n1, e2, n2;
    char buf[1024], profile[1024];
    const char *argv[7];
    int argc = 0;
    int n;
    int projection;

    projection = G_projection();

    argv[argc++] = "r.profile";

    if (coords)
	argv[argc++] = "-g";

    sprintf(buf, "input=%s", map);
    argv[argc++] = G_store(buf);

    argv[argc++] = "output=-";

    sprintf(buf, "null_value=%s", nulls);
    argv[argc++] = G_store(buf);

    strcpy(profile, "coordinates=");
    for (n = 0; line[n]; n += 4) {
	int err = parse_line("line", &line[n], &e1, &n1, &e2, &n2, projection);

	if (err) {
	    G_usage();
	    exit(EXIT_FAILURE);
	}

	if (n > 0)
	    strcat(profile, ",");
	G_format_easting(e1, buf, projection);
	strcat(profile, buf);

	G_format_northing(n1, buf, projection);
	strcat(profile, ",");
	strcat(profile, buf);

	G_format_easting(e2, buf, projection);
	strcat(profile, ",");
	strcat(profile, buf);

	G_format_northing(n2, buf, projection);
	strcat(profile, ",");
	strcat(profile, buf);
    }

    argv[argc++] = profile;

    argv[argc++] = NULL;

    G_verbose_message(_("End coordinate: %.15g, %.15g"), e2, n2);

    return G_vspawn_ex(argv[0], argv);
}
Пример #8
0
int print_time(long *start)
{
    int hours, minutes, seconds;
    long done;

    time(&done);

    seconds = done - *start;
    *start = done;

    hours = seconds / 3600;
    minutes = (seconds - hours * 3600) / 60;
    seconds = seconds % 60;

    if (hours)
	G_verbose_message("%2d:%02d:%02d", hours, minutes, seconds);
    else if (minutes)
	G_verbose_message("%d:%02d", minutes, seconds);
    else
	G_verbose_message("%d seconds", seconds);

    return 0;
}
Пример #9
0
int rmdac(struct Map_info *Out, struct Map_info *Err)
{
    int i, type, area, ndupl, nlines;

    struct line_pnts *Points;
    struct line_cats *Cats;

    nlines = Vect_get_num_lines(Out);

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    G_debug(1, "nlines =  %d", nlines);

    ndupl = 0;

    for (i = 1; i <= nlines; i++) {
	G_percent(i, nlines, 2);
	if (!Vect_line_alive(Out, i))
	    continue;

	type = Vect_read_line(Out, Points, Cats, i);
	if (!(type & GV_CENTROID))
	    continue;

	area = Vect_get_centroid_area(Out, i);
	G_debug(3, "  area = %d", area);

	if (area < 0) {
	    Vect_delete_line(Out, i);
	    ndupl++;

	    if (Err) {
		Vect_write_line(Err, type, Points, Cats);
	    }
	}
    }

    G_verbose_message(_("Duplicate area centroids: %d"), ndupl);

    Vect_destroy_line_struct(Points);
    Vect_destroy_cats_struct(Cats);

    return ndupl;
}
Пример #10
0
int get_cats(char *name, char *mapset)
{
    int fd;
    int row, nrows, ncols;
    CELL *cell;
    struct Cell_head cellhd;

    /* set the window to the cell header */
    if (G_get_cellhd(name, mapset, &cellhd) < 0)
	G_fatal_error(_("Cannot read header of raster map <%s> in <%s>"),
		      name, mapset);

    G_set_window(&cellhd);

    /* open the raster map */
    fd = G_open_cell_old(name, mapset);
    if (fd < 0)
	G_fatal_error(_("Cannot open cell file of raster map <%s> in <%s>"),
		      name, mapset);
    nrows = G_window_rows();
    ncols = G_window_cols();
    cell = G_allocate_cell_buf();
    G_init_cell_stats(&statf);

    /* read the raster map */
    G_verbose_message(_("Reading <%s> in <%s>"), name, mapset);
    for (row = 0; row < nrows; row++) {
	if (G_verbose() > G_verbose_std())
	    G_percent(row, nrows, 2);
	if (G_get_c_raster_row_nomask(fd, cell, row) < 0)
	    exit(EXIT_SUCCESS);
	G_update_cell_stats(cell, ncols, &statf);
    }
    /* done */
    if (G_verbose() > G_verbose_std())
	G_percent(row, nrows, 2);
    G_close_cell(fd);
    G_free(cell);
    G_rewind_cell_stats(&statf);

    return 0;
}
Пример #11
0
static void write_bil_wld(const char *outfile, const struct Cell_head *region)
{
    char out_tmp[GPATH_MAX];
    FILE *fp;

    sprintf(out_tmp, "%s.wld", outfile);
    G_verbose_message(_("World File = %s"), out_tmp);

    /* Open World File */
    fp = fopen(out_tmp, "w");
    if (!fp)
	G_fatal_error(_("Unable to create file <%s>"), out_tmp);

    fprintf(fp, "%f\n", region->ew_res);
    fprintf(fp, "0.0\n");
    fprintf(fp, "0.0\n");
    fprintf(fp, "-%f\n", region->ns_res);
    fprintf(fp, "%f\n", region->west + (region->ew_res / 2));
    fprintf(fp, "%f\n", region->north - (region->ns_res / 2));

    fclose(fp);
}
Пример #12
0
int get_cats(const char *name, const char *mapset)
{
    int fd;
    int row, nrows, ncols;
    CELL *cell;
    struct Cell_head cellhd;

    /* set the window to the cell header */
    Rast_get_cellhd(name, mapset, &cellhd);

    Rast_set_window(&cellhd);

    /* open the raster map */
    fd = Rast_open_old(name, mapset);
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    cell = Rast_allocate_c_buf();
    Rast_init_cell_stats(&statf);

    /* read the raster map */
    G_verbose_message(_("Reading <%s> in <%s>"), name, mapset);
    for (row = 0; row < nrows; row++) {
	if (G_verbose() > G_verbose_std())
	    G_percent(row, nrows, 2);
	Rast_get_c_row_nomask(fd, cell, row);
	Rast_update_cell_stats(cell, ncols, &statf);
    }
    /* done */
    if (G_verbose() > G_verbose_std())
	G_percent(row, nrows, 2);
    Rast_close(fd);
    G_free(cell);
    Rast_rewind_cell_stats(&statf);

    return 0;
}
Пример #13
0
int area_area(struct Map_info *In, int *field, struct Map_info *Tmp,
	      struct Map_info *Out, struct field_info *Fi,
	      dbDriver * driver, int operator, int *ofield,
	      ATTRIBUTES * attr, struct ilist *BList, double snap)
{
    int ret, input, line, nlines, area, nareas;
    int in_area, in_centr, out_cat;
    struct line_pnts *Points;
    struct line_cats *Cats;
    CENTR *Centr;
    char buf[1000];
    dbString stmt;
    int nmodif;
    int verbose;

    verbose = G_verbose();

    Points = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* optional snap */
    if (snap > 0) {
	int i, j, snapped_lines = 0;
	struct bound_box box;
	struct boxlist *boxlist = Vect_new_boxlist(0);
	struct ilist *reflist = Vect_new_list();
	
	G_message(_("Snapping boundaries with %g ..."), snap);

	/* snap boundaries in B to boundaries in A,
	 * not modifying boundaries in A */

	if (BList->n_values > 1)
	    qsort(BList->value, BList->n_values, sizeof(int), cmp_int);

	snapped_lines = 0;
	nlines = BList->n_values;
	for (i = 0; i < nlines; i++) {
	    line = BList->value[i];
	    Vect_read_line(Tmp, Points, Cats, line);
	    /* select lines by box */
	    Vect_get_line_box(Tmp, line, &box);
	    box.E += snap;
	    box.W -= snap;
	    box.N += snap;
	    box.S -= snap;
	    box.T = 0.0;
	    box.B = 0.0;
	    Vect_select_lines_by_box(Tmp, &box, GV_BOUNDARY, boxlist);
	    
	    if (boxlist->n_values > 0) {
		Vect_reset_list(reflist);
		for (j = 0; j < boxlist->n_values; j++) {
		    int aline = boxlist->id[j];

		    if (!bsearch(&aline, BList->value, BList->n_values,
			sizeof(int), cmp_int)) {
			G_ilist_add(reflist, aline);
		    }
		}
		
		/* snap bline to alines */
		if (Vect_snap_line(Tmp, reflist, Points, snap, 0, NULL, NULL)) {
		    /* rewrite bline*/
		    Vect_delete_line(Tmp, line);
		    ret = Vect_write_line(Tmp, GV_BOUNDARY, Points, Cats);
		    G_ilist_add(BList, ret);
		    snapped_lines++;
		    G_debug(3, "line %d snapped", line);
		}
	    }
	}
	Vect_destroy_boxlist(boxlist);
	Vect_destroy_list(reflist);

	G_verbose_message(n_("%d boundary snapped",
                             "%d boundaries snapped",
                             snapped_lines), snapped_lines);
    }

    /* same procedure like for v.in.ogr:
     * Vect_clean_small_angles_at_nodes() can change the geometry so that new intersections
     * are created. We must call Vect_break_lines(), Vect_remove_duplicates()
     * and Vect_clean_small_angles_at_nodes() until no more small dangles are found */
    do {
	G_message(_("Breaking lines..."));
	Vect_break_lines_list(Tmp, NULL, BList, GV_BOUNDARY, NULL);

	/* Probably not necessary for LINE x AREA */
	G_message(_("Removing duplicates..."));
	Vect_remove_duplicates(Tmp, GV_BOUNDARY, NULL);

	G_message(_("Cleaning boundaries at nodes..."));
	nmodif =
	    Vect_clean_small_angles_at_nodes(Tmp, GV_BOUNDARY, NULL);
    } while (nmodif > 0);

    /* ?: May be result of Vect_break_lines() + Vect_remove_duplicates() any dangle or bridge?
     * In that case, calls to Vect_remove_dangles() and Vect_remove_bridges() would be also necessary */

    G_set_verbose(0);
    /* should be fast, be silent */
    Vect_build_partial(Tmp, GV_BUILD_AREAS);
    G_set_verbose(verbose);
    nlines = Vect_get_num_lines(Tmp);
    ret = 0;
    for (line = 1; line <= nlines; line++) {
	if (!Vect_line_alive(Tmp, line))
	    continue;
	if (Vect_get_line_type(Tmp, line) == GV_BOUNDARY) {
	    int left, rite;
	    
	    Vect_get_line_areas(Tmp, line, &left, &rite);
	    
	    if (left == 0 || rite == 0) {
		/* invalid boundary */
		ret = 1;
		break;
	    }
	}
    }
    if (ret) {
	Vect_remove_dangles(Tmp, GV_BOUNDARY, -1, NULL);
	Vect_remove_bridges(Tmp, NULL, NULL, NULL);
    }

    G_set_verbose(0);
    Vect_build_partial(Tmp, GV_BUILD_NONE);
    Vect_build_partial(Tmp, GV_BUILD_BASE);
    G_set_verbose(verbose);
    G_message(_("Merging lines..."));
    Vect_merge_lines(Tmp, GV_BOUNDARY, NULL, NULL);

    /* Attach islands */
    G_message(_("Attaching islands..."));
    /* can take some time, show messages */
    Vect_build_partial(Tmp, GV_BUILD_ATTACH_ISLES);

    /* Calculate new centroids for all areas */
    nareas = Vect_get_num_areas(Tmp);

    Centr = (CENTR *) G_malloc((nareas + 1) * sizeof(CENTR));	/* index from 1 ! */
    for (area = 1; area <= nareas; area++) {
	ret =
	    Vect_get_point_in_area(Tmp, area, &(Centr[area].x),
				   &(Centr[area].y));
	if (ret < 0) {
	    G_warning(_("Cannot calculate area centroid"));
	    Centr[area].valid = 0;
	}
	else {
	    Centr[area].valid = 1;
	}
    }

    /* Query input maps */
    for (input = 0; input < 2; input++) {
	G_message(_("Querying vector map <%s>..."),
		  Vect_get_full_name(&(In[input])));

	for (area = 1; area <= nareas; area++) {
	    Centr[area].cat[input] = Vect_new_cats_struct();

	    G_percent(area, nareas, 1);

	    in_area =
		Vect_find_area(&(In[input]), Centr[area].x, Centr[area].y);
	    if (in_area > 0) {
		in_centr = Vect_get_area_centroid(&(In[input]), in_area);
		if (in_centr > 0) {
		    int i;

		    Vect_read_line(&(In[input]), NULL, Cats, in_centr);
		    /* Add all cats with original field number */
		    for (i = 0; i < Cats->n_cats; i++) {
			if (Cats->field[i] == field[input]) {
			    ATTR *at;

			    Vect_cat_set(Centr[area].cat[input], ofield[input + 1],
					 Cats->cat[i]);

			    /* Mark as used */
			    at = find_attr(&(attr[input]), Cats->cat[i]);
			    if (!at)
				G_fatal_error(_("Attribute not found"));

			    at->used = 1;
			}
		    }
		}
	    }
	}
    }

    G_message(_("Writing centroids..."));

    db_init_string(&stmt);
    out_cat = 1;
    for (area = 1; area <= nareas; area++) {
	int i;

	G_percent(area, nareas, 1);

	/* check the condition */
	switch (operator) {
	case OP_AND:
	    if (!
		(Centr[area].cat[0]->n_cats > 0 &&
		 Centr[area].cat[1]->n_cats > 0))
		continue;
	    break;
	case OP_OR:
	    if (!
		(Centr[area].cat[0]->n_cats > 0 ||
		 Centr[area].cat[1]->n_cats > 0))
		continue;
	    break;
	case OP_NOT:
	    if (!
		(Centr[area].cat[0]->n_cats > 0 &&
		 !(Centr[area].cat[1]->n_cats > 0)))
		continue;
	    break;
	case OP_XOR:
	    if ((Centr[area].cat[0]->n_cats > 0 &&
		 Centr[area].cat[1]->n_cats > 0) ||
		(!(Centr[area].cat[0]->n_cats > 0) &&
		 !(Centr[area].cat[1]->n_cats > 0)))
		continue;
	    break;
	}

	Vect_reset_line(Points);
	Vect_reset_cats(Cats);

	Vect_append_point(Points, Centr[area].x, Centr[area].y, 0.0);

	if (ofield[0] > 0) {
	    /* Add new cats for all combinations of input cats (-1 in cycle for null) */
	    for (i = -1; i < Centr[area].cat[0]->n_cats; i++) {
		int j;

		if (i == -1 && Centr[area].cat[0]->n_cats > 0)
		    continue;	/* no need to make null */

		for (j = -1; j < Centr[area].cat[1]->n_cats; j++) {
		    if (j == -1 && Centr[area].cat[1]->n_cats > 0)
			continue;	/* no need to make null */

		    if (ofield[0] > 0)
			Vect_cat_set(Cats, ofield[0], out_cat);

		    /* attributes */
		    if (driver) {
			ATTR *at;

			sprintf(buf, "insert into %s values ( %d", Fi->table,
				out_cat);
			db_set_string(&stmt, buf);

			/* cata */
			if (i >= 0) {
			    if (attr[0].columns) {
				at = find_attr(&(attr[0]),
					       Centr[area].cat[0]->cat[i]);
				if (!at)
				    G_fatal_error(_("Attribute not found"));

				if (at->values)
				    db_append_string(&stmt, at->values);
				else
				    db_append_string(&stmt, attr[0].null_values);
			    }
			    else {
				sprintf(buf, ", %d", Centr[area].cat[0]->cat[i]);
				db_append_string(&stmt, buf);
			    }
			}
			else {
			    if (attr[0].columns) {
				db_append_string(&stmt, attr[0].null_values);
			    }
			    else {
				sprintf(buf, ", null");
				db_append_string(&stmt, buf);
			    }
			}

			/* catb */
			if (j >= 0) {
			    if (attr[1].columns) {
				at = find_attr(&(attr[1]),
					       Centr[area].cat[1]->cat[j]);
				if (!at)
				    G_fatal_error(_("Attribute not found"));

				if (at->values)
				    db_append_string(&stmt, at->values);
				else
				    db_append_string(&stmt, attr[1].null_values);
			    }
			    else {
				sprintf(buf, ", %d", Centr[area].cat[1]->cat[j]);
				db_append_string(&stmt, buf);
			    }
			}
			else {
			    if (attr[1].columns) {
				db_append_string(&stmt, attr[1].null_values);
			    }
			    else {
				sprintf(buf, ", null");
				db_append_string(&stmt, buf);
			    }
			}

			db_append_string(&stmt, " )");

			G_debug(3, "%s", db_get_string(&stmt));

			if (db_execute_immediate(driver, &stmt) != DB_OK)
			    G_warning(_("Unable to insert new record: '%s'"),
				      db_get_string(&stmt));
		    }
		    out_cat++;
		}
	    }
	}

	/* Add all cats from input vectors */
	if (ofield[1] > 0 && field[0] > 0) {
	    for (i = 0; i < Centr[area].cat[0]->n_cats; i++) {
		if (Centr[area].cat[0]->field[i] == field[0])
		    Vect_cat_set(Cats, ofield[1], Centr[area].cat[0]->cat[i]);
	    }
	}

	if (ofield[2] > 0 && field[1] > 0 && ofield[1] != ofield[2]) {
	    for (i = 0; i < Centr[area].cat[1]->n_cats; i++) {
		if (Centr[area].cat[1]->field[i] == field[1])
		    Vect_cat_set(Cats, ofield[2], Centr[area].cat[1]->cat[i]);
	    }
	}

	Vect_write_line(Tmp, GV_CENTROID, Points, Cats);
	Vect_write_line(Out, GV_CENTROID, Points, Cats);
    }

    G_set_verbose(0);
    /* should be fast, be silent */
    Vect_build_partial(Tmp, GV_BUILD_CENTROIDS);
    G_set_verbose(verbose);
    /* Copy valid boundaries to final output */
    nlines = Vect_get_num_lines(Tmp);

    for (line = 1; line <= nlines; line++) {
	int i, ltype, side[2], centr[2];

	G_percent(line, nlines, 1);	/* must be before any continue */

	if (!Vect_line_alive(Tmp, line))
	    continue;

	ltype = Vect_read_line(Tmp, Points, Cats, line);
	if (!(ltype & GV_BOUNDARY))
	    continue;

	Vect_get_line_areas(Tmp, line, &side[0], &side[1]);

	for (i = 0; i < 2; i++) {
	    if (side[i] == 0) {	/* This should not happen ! */
		centr[i] = 0;
		continue;
	    }

	    if (side[i] > 0) {
		area = side[i];
	    }
	    else {		/* island */
		area = Vect_get_isle_area(Tmp, abs(side[i]));
	    }

	    if (area > 0)
		centr[i] = Vect_get_area_centroid(Tmp, area);
	    else
		centr[i] = 0;
	}

	if (centr[0] || centr[1])
	    Vect_write_line(Out, GV_BOUNDARY, Points, Cats);
    }

    return 0;
}
Пример #14
0
Файл: main.c Проект: caomw/grass
int main(int argc, char *argv[])
{
    char *p;
    int i, j, k;
    int method, half, use_catno;
    const char *mapset;
    struct GModule *module;
    struct Option *point_opt,	/* point vector */
     *area_opt,			/* area vector */
     *point_type_opt,		/* point type */
     *point_field_opt,		/* point layer */
     *area_field_opt,		/* area layer */
     *method_opt,		/* stats method */
     *point_column_opt,		/* point column for stats */
     *count_column_opt,		/* area column for point count */
     *stats_column_opt,		/* area column for stats result */
     *fs_opt;			/* field separator for printed output */
    struct Flag *print_flag;
    char *fs;
    struct Map_info PIn, AIn;
    int point_type, point_field, area_field;
    struct line_pnts *Points;
    struct line_cats *ACats, *PCats;
    AREA_CAT *Area_cat;
    int pline, ptype, count;
    int area, nareas, nacats, nacatsalloc;
    int ctype, nrec;
    struct field_info *PFi, *AFi;
    dbString stmt;
    dbDriver *Pdriver, *Adriver;
    char buf[2000];
    int update_ok, update_err;
    struct boxlist *List;
    struct bound_box box;
    dbCatValArray cvarr;
    dbColumn *column;
    struct pvalcat
    {
	double dval;
	int catno;
    } *pvalcats;
    int npvalcats, npvalcatsalloc;
    stat_func *statsvalue = NULL;
    double result;

    column = NULL;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("attribute table"));
    G_add_keyword(_("database"));
    G_add_keyword(_("univariate statistics"));
    G_add_keyword(_("zonal statistics"));
    module->description = _("Count points in areas, calculate statistics from point attributes.");

    point_opt = G_define_standard_option(G_OPT_V_INPUT);
    point_opt->key = "points";
    point_opt->description = _("Name of existing vector map with points");
    /* point_opt->guisection = _("Required"); */

    area_opt = G_define_standard_option(G_OPT_V_INPUT);
    area_opt->key = "areas";
    area_opt->description = _("Name of existing vector map with areas");
    /* area_opt->guisection = _("Required"); */

    point_type_opt = G_define_standard_option(G_OPT_V_TYPE);
    point_type_opt->key = "type";
    point_type_opt->options = "point,centroid";
    point_type_opt->answer = "point";
    point_type_opt->label = _("Feature type");
    point_type_opt->required = NO;

    point_field_opt = G_define_standard_option(G_OPT_V_FIELD);
    point_field_opt->key = "player";
    point_field_opt->label = _("Layer number for points map");

    area_field_opt = G_define_standard_option(G_OPT_V_FIELD);
    area_field_opt->key = "alayer";
    area_field_opt->label = _("Layer number for area map");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = NO;
    method_opt->multiple = NO;
    p = G_malloc(1024);
    for (i = 0; menu[i].name; i++) {
	if (i)
	    strcat(p, ",");
	else
	    *p = 0;
	strcat(p, menu[i].name);
    }
    method_opt->options = p;
    method_opt->description = _("Method for aggregate statistics");

    point_column_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    point_column_opt->key = "pcolumn";
    point_column_opt->required = NO;
    point_column_opt->multiple = NO;
    point_column_opt->label =
	_("Column name of points map to use for statistics");
    point_column_opt->description = _("Column of points map must be numeric");

    count_column_opt = G_define_option();
    count_column_opt->key = "ccolumn";
    count_column_opt->type = TYPE_STRING;
    count_column_opt->required = NO;
    count_column_opt->multiple = NO;
    count_column_opt->label = _("Column name to upload points count");
    count_column_opt->description =
	_("Column to hold points count, must be of type integer, will be created if not existing");

    stats_column_opt = G_define_option();
    stats_column_opt->key = "scolumn";
    stats_column_opt->type = TYPE_STRING;
    stats_column_opt->required = NO;
    stats_column_opt->multiple = NO;
    stats_column_opt->label = _("Column name to upload statistics");
    stats_column_opt->description =
	_("Column to hold statistics, must be of type double, will be created if not existing");

    fs_opt = G_define_standard_option(G_OPT_F_SEP);

    print_flag = G_define_flag();
    print_flag->key = 'p';
    print_flag->label =
	_("Print output to stdout, do not update attribute table");
    print_flag->description = _("First column is always area category");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    point_type = Vect_option_to_types(point_type_opt);

    point_field = atoi(point_field_opt->answer);
    area_field = atoi(area_field_opt->answer);

    if (print_flag->answer)
	/* get field separator */
	    fs = G_option_to_separator(fs_opt);
    else
	    fs = NULL;

    /* check for stats */
    if (method_opt->answer) {
	if (!point_column_opt->answer) {
	    G_fatal_error("Method but no point column selected");
	}
	if (!print_flag->answer && !stats_column_opt->answer)
	    G_fatal_error("Name for stats column is missing");
    }

    if (point_column_opt->answer) {
	if (!method_opt->answer)
	    G_fatal_error("No method for statistics selected");
	if (!print_flag->answer && !stats_column_opt->answer)
	    G_fatal_error("Name for stats column is missing");
    }
    
    /* Open points vector */
    if ((mapset = G_find_vector2(point_opt->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), point_opt->answer);

    Vect_set_open_level(2);
    if (Vect_open_old(&PIn, point_opt->answer, mapset) < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), point_opt->answer);

    /* Open areas vector */
    if ((mapset = G_find_vector2(area_opt->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), area_opt->answer);
    if (!print_flag->answer && strcmp(mapset, G_mapset()) != 0)
	G_fatal_error(_("Vector map <%s> is not in user mapset and cannot be updated"),
		      area_opt->answer);

    Vect_set_open_level(2);
    if (Vect_open_old(&AIn, area_opt->answer, mapset) < 0)
	G_fatal_error(_("Unable to open vector map <%s>"), area_opt->answer);

    method = -1;
    use_catno = 0;
    half = 0;
    if (method_opt->answer) {
	/* get the method */
	for (method = 0; (p = menu[method].name); method++)
	    if ((strcmp(p, method_opt->answer) == 0))
		break;
	if (!p) {
	    G_warning(_("<%s=%s> unknown %s"),
		      method_opt->key, method_opt->answer,
		      method_opt->answer);
	    G_usage();
	    exit(EXIT_FAILURE);
	}

	/* establish the statsvalue routine */
	statsvalue = menu[method].method;

	/* category number of lowest/highest value */
	if ((strcmp(menu[method].name, menu[5].name) == 0) ||
	    (strcmp(menu[method].name, menu[7].name) == 0))
	    use_catno = 1;

	G_debug(1, "method: %s, use cat value: %s", menu[method].name,
		(use_catno == 1 ? "yes" : "no"));
    }

    /* Open database driver */
    db_init_string(&stmt);
    Adriver = NULL;

    if (!print_flag->answer) {

	AFi = Vect_get_field(&AIn, area_field);
	if (AFi == NULL)
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  area_field);

	Adriver = db_start_driver_open_database(AFi->driver, AFi->database);
	if (Adriver == NULL)
	    G_fatal_error(_("Unable to open database <%s> with driver <%s>"),
			  AFi->database, AFi->driver);

	if (!count_column_opt->answer)
	    G_fatal_error(_("ccolumn is required to upload point counts"));

	/* check if count column exists */
	G_debug(1, "check if count column exists");
	db_get_column(Adriver, AFi->table, count_column_opt->answer, &column);
	if (column) {
	    /* check count column type */
	    if (db_column_Ctype(Adriver, AFi->table, count_column_opt->answer)
		!= DB_C_TYPE_INT)
		G_fatal_error(_("ccolumn must be of type integer"));

	    db_free_column(column);
	    column = NULL;
	}
	else {
	    /* create count column */
	    /* db_add_column() exists but is not implemented,
	     * see lib/db/stubs/add_col.c */
	    sprintf(buf, "alter table %s add column %s integer",
	                    AFi->table, count_column_opt->answer);
	    db_set_string(&stmt, buf);
	    if (db_execute_immediate(Adriver, &stmt) != DB_OK)
		G_fatal_error(_("Unable to add column <%s>"),
			      count_column_opt->answer);
	}

	if (method_opt->answer) {
	    if (!stats_column_opt->answer)
		G_fatal_error(_("scolumn is required to upload point stats"));

	    /* check if stats column exists */
	    G_debug(1, "check if stats column exists");
	    db_get_column(Adriver, AFi->table, stats_column_opt->answer,
			  &column);
	    if (column) {
		/* check stats column type */
		if (db_column_Ctype
		    (Adriver, AFi->table,
		     stats_column_opt->answer) != DB_C_TYPE_DOUBLE)
		    G_fatal_error(_("scolumn must be of type double"));

		db_free_column(column);
		column = NULL;
	    }
	    else {
		/* create stats column */
		/* db_add_column() exists but is not implemented,
		 * see lib/db/stubs/add_col.c */
		sprintf(buf, "alter table %s add column %s double",
				AFi->table, stats_column_opt->answer);
		db_set_string(&stmt, buf);
		if (db_execute_immediate(Adriver, &stmt) != DB_OK)
		    G_fatal_error(_("Unable to add column <%s>"),
				  stats_column_opt->answer);
	    }
	}
    }
    else
	AFi = NULL;

    Pdriver = NULL;
    if (method_opt->answer) {

	G_verbose_message(_("collecting attributes from points vector..."));

	PFi = Vect_get_field(&PIn, point_field);
	if (PFi == NULL)
	    G_fatal_error(_("Database connection not defined for layer %d"),
			  point_field);

	Pdriver = db_start_driver_open_database(PFi->driver, PFi->database);
	if (Pdriver == NULL)
	    G_fatal_error(_("Unable to open database <%s> with driver <%s>"),
			  PFi->database, PFi->driver);

	/* check if point column exists */
	db_get_column(Pdriver, PFi->table, point_column_opt->answer, &column);
	if (column) {
	    db_free_column(column);
	    column = NULL;
	}
	else {
	    G_fatal_error(_("Column <%s> not found in table <%s>"),
			  point_column_opt->answer, PFi->table);
	}

	/* Check column type */
	ctype =
	    db_column_Ctype(Pdriver, PFi->table, point_column_opt->answer);

	if (ctype == DB_C_TYPE_INT)
	    half = menu[method].half;
	else if (ctype == DB_C_TYPE_DOUBLE)
	    half = 0;
	else
	    G_fatal_error(_("column for points vector must be numeric"));

	db_CatValArray_init(&cvarr);
	nrec = db_select_CatValArray(Pdriver, PFi->table, PFi->key,
				     point_column_opt->answer, NULL, &cvarr);
	G_debug(1, "selected values = %d", nrec);
	db_close_database_shutdown_driver(Pdriver);
    }

    Points = Vect_new_line_struct();
    ACats = Vect_new_cats_struct();
    PCats = Vect_new_cats_struct();
    List = Vect_new_boxlist(0);

    /* Allocate space ( may be more than needed (duplicate cats and elements without cats) ) */
    if ((nareas = Vect_get_num_areas(&AIn)) <= 0)
	G_fatal_error("No areas in area input vector");

    nacatsalloc = nareas;
    Area_cat = (AREA_CAT *) G_calloc(nacatsalloc, sizeof(AREA_CAT));

    /* Read all cats from 'area' */
    nacats = 0;
    for (area = 1; area <= nareas; area++) {

	Vect_get_area_cats(&AIn, area, ACats);

	if (ACats->n_cats <= 0)
	    continue;
	for (i = 0; i < ACats->n_cats; i++) {

	    if (ACats->field[i] == area_field) {
		Area_cat[nacats].area_cat = ACats->cat[i];
		Area_cat[nacats].count = 0;
		Area_cat[nacats].nvalues = 0;
		Area_cat[nacats].nalloc = 0;
		nacats++;
		if (nacats >= nacatsalloc) {
		    nacatsalloc += 100;
		    Area_cat =
			(AREA_CAT *) G_realloc(Area_cat,
					       nacatsalloc *
					       sizeof(AREA_CAT));
		}
	    }

	}
    }

    G_debug(1, "%d cats loaded from vector (including duplicates)", nacats);

    /* Sort by category */
    qsort((void *)Area_cat, nacats, sizeof(AREA_CAT), cmp_area);

    /* remove duplicate categories */
    for (i = 1; i < nacats; i++) {
	if (Area_cat[i].area_cat == Area_cat[i - 1].area_cat) {
	    for (j = i; j < nacats - 1; j++) {
		Area_cat[j].area_cat = Area_cat[j + 1].area_cat;
	    }
	    nacats--;
	}
    }

    G_debug(1, "%d cats loaded from vector (unique)", nacats);

    /* Go through all areas in area vector and find points in points vector
     * falling into the area */
    npvalcatsalloc = 10;
    npvalcats = 0;
    pvalcats =
	(struct pvalcat *)G_calloc(npvalcatsalloc, sizeof(struct pvalcat));

    G_message(_("Selecting points for each area..."));
    count = 0;
    for (area = 1; area <= nareas; area++) {
	dbCatVal *catval;

	G_debug(3, "area = %d", area);
	G_percent(area, nareas, 2);

	Vect_get_area_cats(&AIn, area, ACats);

	if (ACats->n_cats <= 0)
	    continue;

	/* select points by box */
	Vect_get_area_box(&AIn, area, &box);
	box.T = PORT_DOUBLE_MAX;
	box.B = -PORT_DOUBLE_MAX;

	Vect_select_lines_by_box(&PIn, &box, point_type, List);
	G_debug(4, "%d points selected by box", List->n_values);

	/* For each point in box check if it is in the area */
	for (i = 0; i < List->n_values; i++) {

	    pline = List->id[i];
	    G_debug(4, "%d: point %d", i, pline);

	    ptype = Vect_read_line(&PIn, Points, PCats, pline);
	    if (!(ptype & point_type))
		continue;

	    /* point in area */
	    if (Vect_point_in_area(Points->x[0], Points->y[0], &AIn, area, &box)) {
		AREA_CAT *area_info, search_ai;

		int tmp_cat;

		/* stats on point column */
		if (method_opt->answer) {
		    npvalcats = 0;
		    tmp_cat = -1;
		    for (j = 0; j < PCats->n_cats; j++) {
			if (PCats->field[j] == point_field) {
			    if (tmp_cat >= 0)
				G_debug(3,
					"More cats found in point layer (point=%d)",
					pline);
			    tmp_cat = PCats->cat[j];

			    /* find cat in array */
			    db_CatValArray_get_value(&cvarr, tmp_cat,
						     &catval);

			    if (catval) {
				pvalcats[npvalcats].catno = tmp_cat;
				switch (cvarr.ctype) {
				case DB_C_TYPE_INT:
				    pvalcats[npvalcats].dval = catval->val.i;
				    npvalcats++;
				    break;

				case DB_C_TYPE_DOUBLE:
				    pvalcats[npvalcats].dval = catval->val.d;
				    npvalcats++;
				    break;
				}
				if (npvalcats >= npvalcatsalloc) {
				    npvalcatsalloc += 10;
				    pvalcats =
					(struct pvalcat *)G_realloc(pvalcats,
								    npvalcatsalloc
								    *
								    sizeof
								    (struct
								     pvalcat));
				}
			    }
			}
		    }
		}

		/* update count for all area cats of given field */
		search_ai.area_cat = -1;
		for (j = 0; j < ACats->n_cats; j++) {
		    if (ACats->field[j] == area_field) {
			if (search_ai.area_cat >= 0)
			    G_debug(3,
				    "More cats found in area layer (area=%d)",
				    area);
			search_ai.area_cat = ACats->cat[j];

			/* find cat in array */
			area_info =
			    (AREA_CAT *) bsearch((void *)&search_ai, Area_cat,
						 nacats, sizeof(AREA_CAT),
						 cmp_area);
			if (area_info->area_cat != search_ai.area_cat)
			    G_fatal_error(_("could not find area category %d"),
					  search_ai.area_cat);

			/* each point is counted once, also if it has
			 * more than one category or no category
			 * OK? */
			area_info->count++;

			if (method_opt->answer) {
			    /* ensure enough space */
			    if (area_info->nvalues + npvalcats >=
				area_info->nalloc) {
				if (area_info->nalloc == 0) {
				    area_info->nalloc = npvalcats + 10;
				    area_info->values =
					(double *)G_calloc(area_info->nalloc,
							   sizeof(double));
				    area_info->cats =
					(int *)G_calloc(area_info->nalloc,
							sizeof(int));
				}
				else
				    area_info->nalloc +=
					area_info->nvalues + npvalcats + 10;
				area_info->values =
				    (double *)G_realloc(area_info->values,
							area_info->nalloc *
							sizeof(double));
				area_info->cats =
				    (int *)G_realloc(area_info->cats,
						     area_info->nalloc *
						     sizeof(int));
			    }
			    for (k = 0; k < npvalcats; k++) {
				area_info->cats[area_info->nvalues] =
				    pvalcats[k].catno;
				area_info->values[area_info->nvalues] =
				    pvalcats[k].dval;
				area_info->nvalues++;
			    }
			}
		    }
		}
		count++;
	    }
	}			/* next point in box */
    }				/* next area */

    G_debug(1, "count = %d", count);

    /* release catval array */
    if (method_opt->answer)
	db_CatValArray_free(&cvarr);

    Vect_close(&PIn);

    /* Update table or print to stdout */
    if (print_flag->answer) {	/* print header */
	fprintf(stdout, "area_cat%scount", fs);
	if (method_opt->answer)
	    fprintf(stdout, "%s%s", fs, menu[method].name);
	fprintf(stdout, "\n");
    }
    else {
	G_message("Updating attributes for area vector...");
	update_err = update_ok = 0;
    }
    if (Adriver)
	db_begin_transaction(Adriver);

    for (i = 0; i < nacats; i++) {
	if (!print_flag->answer)
	    G_percent(i, nacats, 2);

	result = 0;

	if (Area_cat[i].count > 0 && method_opt->answer) {
	    /* get stats */
	    statsvalue(&result, Area_cat[i].values, Area_cat[i].nvalues,
			NULL);

	    if (half)
		result += 0.5;
	    else if (use_catno)
		result = Area_cat[i].cats[(int)result];
	}
	if (print_flag->answer) {
	    fprintf(stdout, "%d%s%d", Area_cat[i].area_cat, fs,
		    Area_cat[i].count);
	    if (method_opt->answer) {
		if (Area_cat[i].count > 0)
		    fprintf(stdout, "%s%.15g", fs, result);
		else
		    fprintf(stdout, "%snull", fs);
	    }
	    fprintf(stdout, "\n");
	}
	else {
	    sprintf(buf, "update %s set %s = %d", AFi->table,
		    count_column_opt->answer, Area_cat[i].count);
	    db_set_string(&stmt, buf);
	    if (method_opt->answer) {
		if (Area_cat[i].count > 0)
		    sprintf(buf, " , %s = %.15g", stats_column_opt->answer,
			    result);
		else
		    sprintf(buf, " , %s = null", stats_column_opt->answer);
		db_append_string(&stmt, buf);
	    }
	    sprintf(buf, " where %s = %d", AFi->key, Area_cat[i].area_cat);
	    db_append_string(&stmt, buf);
	    G_debug(2, "SQL: %s", db_get_string(&stmt));
	    if (db_execute_immediate(Adriver, &stmt) == DB_OK) {
		update_ok++;
	    }
	    else {
		update_err++;
	    }

	}
    }
    if (Adriver)
	db_commit_transaction(Adriver);

    if (!print_flag->answer) {
	G_percent(nacats, nacats, 2);
	db_close_database_shutdown_driver(Adriver);
	db_free_string(&stmt);
	G_message(_("%d records updated"), update_ok);
	if (update_err > 0)
	    G_message(_("%d update errors"), update_err);

	Vect_set_db_updated(&AIn);
    }

    Vect_close(&AIn);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Пример #15
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct _param {
        struct Option *dsn, *out, *layer, *spat, *where,
                   *min_area;
        struct Option *snap, *type, *outloc, *cnames;
    } param;
    struct _flag {
        struct Flag *list, *tlist, *no_clean, *z, *notab,
                   *region;
        struct Flag *over, *extend, *formats, *tolower, *no_import;
    } flag;

    int i, j, layer, arg_s_num, nogeom, ncnames;
    float xmin, ymin, xmax, ymax;
    int ncols = 0, type;
    double min_area, snap;
    char buf[2000], namebuf[2000], tempvect[GNAME_MAX];
    char *separator;

    struct Key_Value *loc_proj_info, *loc_proj_units;
    struct Key_Value *proj_info, *proj_units;
    struct Cell_head cellhd, loc_wind, cur_wind;
    char error_msg[8192];

    /* Vector */
    struct Map_info Map, Tmp, *Out;
    int cat;

    /* Attributes */
    struct field_info *Fi;
    dbDriver *driver;
    dbString sql, strval;
    int dim, with_z;

    /* OGR */
    OGRDataSourceH Ogr_ds;
    OGRLayerH Ogr_layer;
    OGRFieldDefnH Ogr_field;
    char *Ogr_fieldname;
    OGRFieldType Ogr_ftype;
    OGRFeatureH Ogr_feature;
    OGRFeatureDefnH Ogr_featuredefn;
    OGRGeometryH Ogr_geometry, Ogr_oRing, poSpatialFilter;
    OGRSpatialReferenceH Ogr_projection;
    OGREnvelope oExt;
    OGRwkbGeometryType Ogr_geom_type;

    int OFTIntegerListlength;

    char *output;
    char **layer_names;		/* names of layers to be imported */
    int *layers;		/* layer indexes */
    int nlayers;		/* number of layers to import */
    char **available_layer_names;	/* names of layers to be imported */
    int navailable_layers;
    int layer_id;
    unsigned int n_features, feature_count;
    int overwrite;
    double area_size;
    int use_tmp_vect;

    xmin = ymin = xmax = ymax = 0.0;
    loc_proj_info = loc_proj_units = NULL;
    Ogr_ds = Ogr_oRing = poSpatialFilter = NULL;
    OFTIntegerListlength = 40;	/* hack due to limitation in OGR */
    area_size = 0.0;
    use_tmp_vect = FALSE;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("import"));
    module->description = _("Converts vector data into a GRASS vector map using OGR library.");

    param.dsn = G_define_option();
    param.dsn->key = "dsn";
    param.dsn->type = TYPE_STRING;
    param.dsn->required =YES;
    param.dsn->label = _("OGR datasource name");
    param.dsn->description = _("Examples:\n"
                               "\t\tESRI Shapefile: directory containing shapefiles\n"
                               "\t\tMapInfo File: directory containing mapinfo files");

    param.layer = G_define_option();
    param.layer->key = "layer";
    param.layer->type = TYPE_STRING;
    param.layer->required = NO;
    param.layer->multiple = YES;
    param.layer->label =
        _("OGR layer name. If not given, all available layers are imported");
    param.layer->description =
        _("Examples:\n" "\t\tESRI Shapefile: shapefile name\n"
          "\t\tMapInfo File: mapinfo file name");
    param.layer->guisection = _("Selection");

    param.out = G_define_standard_option(G_OPT_V_OUTPUT);
    param.out->required = NO;
    param.out->guisection = _("Output");

    param.spat = G_define_option();
    param.spat->key = "spatial";
    param.spat->type = TYPE_DOUBLE;
    param.spat->multiple = YES;
    param.spat->required = NO;
    param.spat->key_desc = "xmin,ymin,xmax,ymax";
    param.spat->label = _("Import subregion only");
    param.spat->guisection = _("Selection");
    param.spat->description =
        _("Format: xmin,ymin,xmax,ymax - usually W,S,E,N");

    param.where = G_define_standard_option(G_OPT_DB_WHERE);
    param.where->guisection = _("Selection");

    param.min_area = G_define_option();
    param.min_area->key = "min_area";
    param.min_area->type = TYPE_DOUBLE;
    param.min_area->required = NO;
    param.min_area->answer = "0.0001";
    param.min_area->label =
        _("Minimum size of area to be imported (square units)");
    param.min_area->guisection = _("Selection");
    param.min_area->description = _("Smaller areas and "
                                    "islands are ignored. Should be greater than snap^2");

    param.type = G_define_standard_option(G_OPT_V_TYPE);
    param.type->options = "point,line,boundary,centroid";
    param.type->answer = "";
    param.type->description = _("Optionally change default input type");
    param.type->descriptions =
        _("point;import area centroids as points;"
          "line;import area boundaries as lines;"
          "boundary;import lines as area boundaries;"
          "centroid;import points as centroids");
    param.type->guisection = _("Selection");

    param.snap = G_define_option();
    param.snap->key = "snap";
    param.snap->type = TYPE_DOUBLE;
    param.snap->required = NO;
    param.snap->answer = "-1";
    param.snap->label = _("Snapping threshold for boundaries");
    param.snap->description = _("'-1' for no snap");

    param.outloc = G_define_option();
    param.outloc->key = "location";
    param.outloc->type = TYPE_STRING;
    param.outloc->required = NO;
    param.outloc->description = _("Name for new location to create");
    param.outloc->key_desc = "name";

    param.cnames = G_define_option();
    param.cnames->key = "cnames";
    param.cnames->type = TYPE_STRING;
    param.cnames->required = NO;
    param.cnames->multiple = YES;
    param.cnames->description =
        _("List of column names to be used instead of original names, "
          "first is used for category column");
    param.cnames->guisection = _("Attributes");

    flag.list = G_define_flag();
    flag.list->key = 'l';
    flag.list->description = _("List available OGR layers in data source and exit");
    flag.list->suppress_required = YES;
    flag.list->guisection = _("Print");

    flag.tlist = G_define_flag();
    flag.tlist->key = 'a';
    flag.tlist->description = _("List available OGR layers including feature types "
                                "in data source and exit");
    flag.tlist->suppress_required = YES;
    flag.tlist->guisection = _("Print");

    flag.formats = G_define_flag();
    flag.formats->key = 'f';
    flag.formats->description = _("List supported formats and exit");
    flag.formats->suppress_required = YES;
    flag.formats->guisection = _("Print");

    /* if using -c, you lose topological information ! */
    flag.no_clean = G_define_flag();
    flag.no_clean->key = 'c';
    flag.no_clean->description = _("Do not clean polygons (not recommended)");
    flag.no_clean->guisection = _("Output");

    flag.z = G_define_flag();
    flag.z->key = 'z';
    flag.z->description = _("Create 3D output");
    flag.z->guisection = _("Output");

    flag.notab = G_define_flag();
    flag.notab->key = 't';
    flag.notab->description = _("Do not create attribute table");
    flag.notab->guisection = _("Attributes");

    flag.over = G_define_flag();
    flag.over->key = 'o';
    flag.over->description =
        _("Override dataset projection (use location's projection)");

    flag.region = G_define_flag();
    flag.region->key = 'r';
    flag.region->guisection = _("Selection");
    flag.region->description = _("Limit import to the current region");

    flag.extend = G_define_flag();
    flag.extend->key = 'e';
    flag.extend->description =
        _("Extend location extents based on new dataset");

    flag.tolower = G_define_flag();
    flag.tolower->key = 'w';
    flag.tolower->description =
        _("Change column names to lowercase characters");
    flag.tolower->guisection = _("Attributes");

    flag.no_import = G_define_flag();
    flag.no_import->key = 'i';
    flag.no_import->description =
        _("Create the location specified by the \"location\" parameter and exit."
          " Do not import the vector data.");

    /* The parser checks if the map already exists in current mapset, this is
     * wrong if location options is used, so we switch out the check and do it
     * in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    G_begin_polygon_area_calculations();	/* Used in geom() */

    OGRRegisterAll();

    /* list supported formats */
    if (flag.formats->answer) {
        int iDriver;

        G_message(_("Available OGR Drivers:"));

        for (iDriver = 0; iDriver < OGRGetDriverCount(); iDriver++) {
            OGRSFDriverH poDriver = OGRGetDriver(iDriver);
            const char *pszRWFlag;

            if (OGR_Dr_TestCapability(poDriver, ODrCCreateDataSource))
                pszRWFlag = "rw";
            else
                pszRWFlag = "ro";

            fprintf(stdout, " %s (%s): %s\n",
                    OGR_Dr_GetName(poDriver),
                    pszRWFlag, OGR_Dr_GetName(poDriver));
        }
        exit(EXIT_SUCCESS);
    }

    if (param.dsn->answer == NULL) {
        G_fatal_error(_("Required parameter <%s> not set"), param.dsn->key);
    }

    min_area = atof(param.min_area->answer);
    snap = atof(param.snap->answer);
    type = Vect_option_to_types(param.type);

    ncnames = 0;
    if (param.cnames->answers) {
        i = 0;
        while (param.cnames->answers[i++]) {
            ncnames++;
        }
    }

    /* Open OGR DSN */
    Ogr_ds = NULL;
    if (strlen(param.dsn->answer) > 0)
        Ogr_ds = OGROpen(param.dsn->answer, FALSE, NULL);

    if (Ogr_ds == NULL)
        G_fatal_error(_("Unable to open data source <%s>"), param.dsn->answer);

    /* Make a list of available layers */
    navailable_layers = OGR_DS_GetLayerCount(Ogr_ds);
    available_layer_names =
        (char **)G_malloc(navailable_layers * sizeof(char *));

    if (flag.list->answer || flag.tlist->answer)
        G_message(_("Data source <%s> (format '%s') contains %d layers:"),
                  param.dsn->answer,
                  OGR_Dr_GetName(OGR_DS_GetDriver(Ogr_ds)), navailable_layers);
    for (i = 0; i < navailable_layers; i++) {
        Ogr_layer = OGR_DS_GetLayer(Ogr_ds, i);
        Ogr_featuredefn = OGR_L_GetLayerDefn(Ogr_layer);
        Ogr_geom_type = OGR_FD_GetGeomType(Ogr_featuredefn);

        available_layer_names[i] =
            G_store((char *)OGR_FD_GetName(Ogr_featuredefn));

        if (flag.tlist->answer)
            fprintf(stdout, "%s (%s)\n", available_layer_names[i],
                    OGRGeometryTypeToName(Ogr_geom_type));
        else if (flag.list->answer)
            fprintf(stdout, "%s\n", available_layer_names[i]);
    }
    if (flag.list->answer || flag.tlist->answer) {
        fflush(stdout);
        exit(EXIT_SUCCESS);
    }

    /* Make a list of layers to be imported */
    if (param.layer->answer) {	/* From option */
        nlayers = 0;
        while (param.layer->answers[nlayers])
            nlayers++;

        layer_names = (char **)G_malloc(nlayers * sizeof(char *));
        layers = (int *)G_malloc(nlayers * sizeof(int));

        for (i = 0; i < nlayers; i++) {
            layer_names[i] = G_store(param.layer->answers[i]);
            /* Find it in the source */
            layers[i] = -1;
            for (j = 0; j < navailable_layers; j++) {
                if (strcmp(available_layer_names[j], layer_names[i]) == 0) {
                    layers[i] = j;
                    break;
                }
            }
            if (layers[i] == -1)
                G_fatal_error(_("Layer <%s> not available"), layer_names[i]);
        }
    }
    else {			/* use list of all layers */
        nlayers = navailable_layers;
        layer_names = available_layer_names;
        layers = (int *)G_malloc(nlayers * sizeof(int));
        for (i = 0; i < nlayers; i++)
            layers[i] = i;
    }

    if (param.out->answer) {
        output = G_store(param.out->answer);
    }
    else {
        if (nlayers < 1)
            G_fatal_error(_("No OGR layers available"));
        output = G_store(layer_names[0]);
        G_message(_("All available OGR layers will be imported into vector map <%s>"), output);
    }

    if (!param.outloc->answer) {	/* Check if the map exists */
        if (G_find_vector2(output, G_mapset()) && !overwrite)
            G_fatal_error(_("Vector map <%s> already exists"),
                          output);
    }

    /* Get first imported layer to use for extents and projection check */
    Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layers[0]);

    if (flag.region->answer) {
        if (param.spat->answer)
            G_fatal_error(_("Select either the current region flag or the spatial option, not both"));

        G_get_window(&cur_wind);
        xmin = cur_wind.west;
        xmax = cur_wind.east;
        ymin = cur_wind.south;
        ymax = cur_wind.north;
    }
    if (param.spat->answer) {
        /* See as reference: gdal/ogr/ogr_capi_test.c */

        /* cut out a piece of the map */
        /* order: xmin,ymin,xmax,ymax */
        arg_s_num = 0;
        i = 0;
        while (param.spat->answers[i]) {
            if (i == 0)
                xmin = atof(param.spat->answers[i]);
            if (i == 1)
                ymin = atof(param.spat->answers[i]);
            if (i == 2)
                xmax = atof(param.spat->answers[i]);
            if (i == 3)
                ymax = atof(param.spat->answers[i]);
            arg_s_num++;
            i++;
        }
        if (arg_s_num != 4)
            G_fatal_error(_("4 parameters required for 'spatial' parameter"));
    }
    if (param.spat->answer || flag.region->answer) {
        G_debug(2, "cut out with boundaries: xmin:%f ymin:%f xmax:%f ymax:%f",
                xmin, ymin, xmax, ymax);

        /* in theory this could be an irregular polygon */
        poSpatialFilter = OGR_G_CreateGeometry(wkbPolygon);
        Ogr_oRing = OGR_G_CreateGeometry(wkbLinearRing);
        OGR_G_AddPoint(Ogr_oRing, xmin, ymin, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmin, ymax, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmax, ymax, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmax, ymin, 0.0);
        OGR_G_AddPoint(Ogr_oRing, xmin, ymin, 0.0);
        OGR_G_AddGeometryDirectly(poSpatialFilter, Ogr_oRing);

        OGR_L_SetSpatialFilter(Ogr_layer, poSpatialFilter);
    }

    if (param.where->answer) {
        /* select by attribute */
        OGR_L_SetAttributeFilter(Ogr_layer, param.where->answer);
    }

    /* fetch boundaries */
    if ((OGR_L_GetExtent(Ogr_layer, &oExt, 1)) == OGRERR_NONE) {
        G_get_window(&cellhd);
        cellhd.north = oExt.MaxY;
        cellhd.south = oExt.MinY;
        cellhd.west = oExt.MinX;
        cellhd.east = oExt.MaxX;
        cellhd.rows = 20;	/* TODO - calculate useful values */
        cellhd.cols = 20;
        cellhd.ns_res = (cellhd.north - cellhd.south) / cellhd.rows;
        cellhd.ew_res = (cellhd.east - cellhd.west) / cellhd.cols;
    }
    else {
        cellhd.north = 1.;
        cellhd.south = 0.;
        cellhd.west = 0.;
        cellhd.east = 1.;
        cellhd.top = 1.;
        cellhd.bottom = 1.;
        cellhd.rows = 1;
        cellhd.rows3 = 1;
        cellhd.cols = 1;
        cellhd.cols3 = 1;
        cellhd.depths = 1;
        cellhd.ns_res = 1.;
        cellhd.ns_res3 = 1.;
        cellhd.ew_res = 1.;
        cellhd.ew_res3 = 1.;
        cellhd.tb_res = 1.;
    }

    /* suppress boundary splitting ? */
    if (flag.no_clean->answer) {
        split_distance = -1.;
    }
    else {
        split_distance = 0.;
        area_size =
            sqrt((cellhd.east - cellhd.west) * (cellhd.north - cellhd.south));
    }

    /* Fetch input map projection in GRASS form. */
    proj_info = NULL;
    proj_units = NULL;
    Ogr_projection = OGR_L_GetSpatialRef(Ogr_layer);	/* should not be freed later */

    /* Do we need to create a new location? */
    if (param.outloc->answer != NULL) {
        /* Convert projection information non-interactively as we can't
         * assume the user has a terminal open */
        if (GPJ_osr_to_grass(&cellhd, &proj_info,
                             &proj_units, Ogr_projection, 0) < 0) {
            G_fatal_error(_("Unable to convert input map projection to GRASS "
                            "format; cannot create new location."));
        }
        else {
            G_make_location(param.outloc->answer, &cellhd,
                            proj_info, proj_units, NULL);
            G_message(_("Location <%s> created"), param.outloc->answer);
        }

        /* If the i flag is set, clean up? and exit here */
        if(flag.no_import->answer)
        {
            exit(EXIT_SUCCESS);
        }
    }
    else {
        int err = 0;

        /* Projection only required for checking so convert non-interactively */
        if (GPJ_osr_to_grass(&cellhd, &proj_info,
                             &proj_units, Ogr_projection, 0) < 0)
            G_warning(_("Unable to convert input map projection information to "
                        "GRASS format for checking"));

        /* Does the projection of the current location match the dataset? */
        /* G_get_window seems to be unreliable if the location has been changed */
        G__get_window(&loc_wind, "", "DEFAULT_WIND", "PERMANENT");
        /* fetch LOCATION PROJ info */
        if (loc_wind.proj != PROJECTION_XY) {
            loc_proj_info = G_get_projinfo();
            loc_proj_units = G_get_projunits();
        }

        if (flag.over->answer) {
            cellhd.proj = loc_wind.proj;
            cellhd.zone = loc_wind.zone;
            G_message(_("Over-riding projection check"));
        }
        else if (loc_wind.proj != cellhd.proj
                 || (err =
                         G_compare_projections(loc_proj_info, loc_proj_units,
                                               proj_info, proj_units)) != TRUE) {
            int i_value;

            strcpy(error_msg,
                   _("Projection of dataset does not"
                     " appear to match current location.\n\n"));

            /* TODO: output this info sorted by key: */
            if (loc_wind.proj != cellhd.proj || err != -2) {
                if (loc_proj_info != NULL) {
                    strcat(error_msg, _("GRASS LOCATION PROJ_INFO is:\n"));
                    for (i_value = 0; i_value < loc_proj_info->nitems;
                            i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                loc_proj_info->key[i_value],
                                loc_proj_info->value[i_value]);
                    strcat(error_msg, "\n");
                }

                if (proj_info != NULL) {
                    strcat(error_msg, _("Import dataset PROJ_INFO is:\n"));
                    for (i_value = 0; i_value < proj_info->nitems; i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                proj_info->key[i_value],
                                proj_info->value[i_value]);
                }
                else {
                    strcat(error_msg, _("Import dataset PROJ_INFO is:\n"));
                    if (cellhd.proj == PROJECTION_XY)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (unreferenced/unknown)\n",
                                cellhd.proj);
                    else if (cellhd.proj == PROJECTION_LL)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (lat/long)\n",
                                cellhd.proj);
                    else if (cellhd.proj == PROJECTION_UTM)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (UTM), zone = %d\n",
                                cellhd.proj, cellhd.zone);
                    else if (cellhd.proj == PROJECTION_SP)
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (State Plane), zone = %d\n",
                                cellhd.proj, cellhd.zone);
                    else
                        sprintf(error_msg + strlen(error_msg),
                                "Dataset proj = %d (unknown), zone = %d\n",
                                cellhd.proj, cellhd.zone);
                }
            }
            else {
                if (loc_proj_units != NULL) {
                    strcat(error_msg, "GRASS LOCATION PROJ_UNITS is:\n");
                    for (i_value = 0; i_value < loc_proj_units->nitems;
                            i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                loc_proj_units->key[i_value],
                                loc_proj_units->value[i_value]);
                    strcat(error_msg, "\n");
                }

                if (proj_units != NULL) {
                    strcat(error_msg, "Import dataset PROJ_UNITS is:\n");
                    for (i_value = 0; i_value < proj_units->nitems; i_value++)
                        sprintf(error_msg + strlen(error_msg), "%s: %s\n",
                                proj_units->key[i_value],
                                proj_units->value[i_value]);
                }
            }
            sprintf(error_msg + strlen(error_msg),
                    _("\nYou can use the -o flag to %s to override this projection check.\n"),
                    G_program_name());
            strcat(error_msg,
                   _("Consider generating a new location with 'location' parameter"
                     " from input data set.\n"));
            G_fatal_error(error_msg);
        }
        else {
            G_message(_("Projection of input dataset and current location "
                        "appear to match"));
        }
    }

    db_init_string(&sql);
    db_init_string(&strval);

    /* open output vector */
    /* strip any @mapset from vector output name */
    G_find_vector(output, G_mapset());
    Vect_open_new(&Map, output, flag.z->answer != 0);
    Out = &Map;

    n_polygon_boundaries = 0;
    if (!flag.no_clean->answer) {
        /* check if we need a tmp vector */

        /* estimate distance for boundary splitting --> */
        for (layer = 0; layer < nlayers; layer++) {
            layer_id = layers[layer];

            Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layer_id);
            Ogr_featuredefn = OGR_L_GetLayerDefn(Ogr_layer);

            n_features = feature_count = 0;

            n_features = OGR_L_GetFeatureCount(Ogr_layer, 1);
            OGR_L_ResetReading(Ogr_layer);

            /* count polygons and isles */
            G_message(_("Counting polygons for %d features (OGR layer <%s>)..."),
                      n_features, layer_names[layer]);
            while ((Ogr_feature = OGR_L_GetNextFeature(Ogr_layer)) != NULL) {
                G_percent(feature_count++, n_features, 1);	/* show something happens */
                /* Geometry */
                Ogr_geometry = OGR_F_GetGeometryRef(Ogr_feature);
                if (Ogr_geometry != NULL) {
                    poly_count(Ogr_geometry, (type & GV_BOUNDARY));
                }
                OGR_F_Destroy(Ogr_feature);
            }
        }

        G_debug(1, "n polygon boundaries: %d", n_polygon_boundaries);
        if (n_polygon_boundaries > 50) {
            split_distance =
                area_size / log(n_polygon_boundaries);
            /* divisor is the handle: increase divisor to decrease split_distance */
            split_distance = split_distance / 5.;
            G_debug(1, "root of area size: %f", area_size);
            G_verbose_message(_("Boundary splitting distance in map units: %G"),
                              split_distance);
        }
        /* <-- estimate distance for boundary splitting */

        use_tmp_vect = n_polygon_boundaries > 0;

        if (use_tmp_vect) {
            /* open temporary vector, do the work in the temporary vector
             * at the end copy alive lines to output vector
             * in case of polygons this reduces the coor file size by a factor of 2 to 5
             * only needed when cleaning polygons */
            sprintf(tempvect, "%s_tmp", output);
            G_verbose_message(_("Using temporary vector <%s>"), tempvect);
            Vect_open_new(&Tmp, tempvect, flag.z->answer != 0);
            Out = &Tmp;
        }
    }

    Vect_hist_command(&Map);

    /* Points and lines are written immediately with categories. Boundaries of polygons are
     * written to the vector then cleaned and centroids are calculated for all areas in cleaan vector.
     * Then second pass through finds all centroids in each polygon feature and adds its category
     * to the centroid. The result is that one centroids may have 0, 1 ore more categories
     * of one ore more (more input layers) fields. */
    with_z = 0;
    for (layer = 0; layer < nlayers; layer++) {
        layer_id = layers[layer];

        Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layer_id);
        Ogr_featuredefn = OGR_L_GetLayerDefn(Ogr_layer);

        /* Add DB link */
        if (!flag.notab->answer) {
            char *cat_col_name = GV_KEY_COLUMN;

            if (nlayers == 1) {	/* one layer only */
                Fi = Vect_default_field_info(&Map, layer + 1, NULL,
                                             GV_1TABLE);
            }
            else {
                Fi = Vect_default_field_info(&Map, layer + 1, NULL,
                                             GV_MTABLE);
            }

            if (ncnames > 0) {
                cat_col_name = param.cnames->answers[0];
            }
            Vect_map_add_dblink(&Map, layer + 1, layer_names[layer], Fi->table,
                                cat_col_name, Fi->database, Fi->driver);

            ncols = OGR_FD_GetFieldCount(Ogr_featuredefn);
            G_debug(2, "%d columns", ncols);

            /* Create table */
            sprintf(buf, "create table %s (%s integer", Fi->table,
                    cat_col_name);
            db_set_string(&sql, buf);
            for (i = 0; i < ncols; i++) {

                Ogr_field = OGR_FD_GetFieldDefn(Ogr_featuredefn, i);
                Ogr_ftype = OGR_Fld_GetType(Ogr_field);

                G_debug(3, "Ogr_ftype: %i", Ogr_ftype);	/* look up below */

                if (i < ncnames - 1) {
                    Ogr_fieldname = G_store(param.cnames->answers[i + 1]);
                }
                else {
                    /* Change column names to [A-Za-z][A-Za-z0-9_]* */
                    Ogr_fieldname = G_store(OGR_Fld_GetNameRef(Ogr_field));
                    G_debug(3, "Ogr_fieldname: '%s'", Ogr_fieldname);

                    G_str_to_sql(Ogr_fieldname);

                    G_debug(3, "Ogr_fieldname: '%s'", Ogr_fieldname);

                }

                /* avoid that we get the 'cat' column twice */
                if (strcmp(Ogr_fieldname, GV_KEY_COLUMN) == 0) {
                    sprintf(namebuf, "%s_", Ogr_fieldname);
                    Ogr_fieldname = G_store(namebuf);
                }

                /* captial column names are a pain in SQL */
                if (flag.tolower->answer)
                    G_str_to_lower(Ogr_fieldname);

                if (strcmp(OGR_Fld_GetNameRef(Ogr_field), Ogr_fieldname) != 0) {
                    G_warning(_("Column name changed: '%s' -> '%s'"),
                              OGR_Fld_GetNameRef(Ogr_field), Ogr_fieldname);
                }

                /** Simple 32bit integer                     OFTInteger = 0        **/

                /** List of 32bit integers                   OFTIntegerList = 1    **/

                /** Double Precision floating point          OFTReal = 2           **/

                /** List of doubles                          OFTRealList = 3       **/

                /** String of ASCII chars                    OFTString = 4         **/

                /** Array of strings                         OFTStringList = 5     **/

                /** Double byte string (unsupported)         OFTWideString = 6     **/

                /** List of wide strings (unsupported)       OFTWideStringList = 7 **/

                /** Raw Binary data (unsupported)            OFTBinary = 8         **/

                /**                                          OFTDate = 9           **/

                /**                                          OFTTime = 10          **/

                /**                                          OFTDateTime = 11      **/


                if (Ogr_ftype == OFTInteger) {
                    sprintf(buf, ", %s integer", Ogr_fieldname);
                }
                else if (Ogr_ftype == OFTIntegerList) {
                    /* hack: treat as string */
                    sprintf(buf, ", %s varchar ( %d )", Ogr_fieldname,
                            OFTIntegerListlength);
                    G_warning(_("Writing column <%s> with fixed length %d chars (may be truncated)"),
                              Ogr_fieldname, OFTIntegerListlength);
                }
                else if (Ogr_ftype == OFTReal) {
                    sprintf(buf, ", %s double precision", Ogr_fieldname);
#if GDAL_VERSION_NUM >= 1320
                }
                else if (Ogr_ftype == OFTDate) {
                    sprintf(buf, ", %s date", Ogr_fieldname);
                }
                else if (Ogr_ftype == OFTTime) {
                    sprintf(buf, ", %s time", Ogr_fieldname);
                }
                else if (Ogr_ftype == OFTDateTime) {
                    sprintf(buf, ", %s datetime", Ogr_fieldname);
#endif
                }
                else if (Ogr_ftype == OFTString) {
                    int fwidth;

                    fwidth = OGR_Fld_GetWidth(Ogr_field);
                    /* TODO: read all records first and find the longest string length */
                    if (fwidth == 0) {
                        G_warning(_("Width for column %s set to 255 (was not specified by OGR), "
                                    "some strings may be truncated!"),
                                  Ogr_fieldname);
                        fwidth = 255;
                    }
                    sprintf(buf, ", %s varchar ( %d )", Ogr_fieldname,
                            fwidth);
                }
                else if (Ogr_ftype == OFTStringList) {
                    /* hack: treat as string */
                    sprintf(buf, ", %s varchar ( %d )", Ogr_fieldname,
                            OFTIntegerListlength);
                    G_warning(_("Writing column %s with fixed length %d chars (may be truncated)"),
                              Ogr_fieldname, OFTIntegerListlength);
                }
                else {
                    G_warning(_("Column type not supported (%s)"),
                              Ogr_fieldname);
                    buf[0] = 0;
                }
                db_append_string(&sql, buf);
                G_free(Ogr_fieldname);
            }
            db_append_string(&sql, ")");
            G_debug(3, db_get_string(&sql));

            driver =
                db_start_driver_open_database(Fi->driver,
                                              Vect_subst_var(Fi->database,
                                                      &Map));
            if (driver == NULL) {
                G_fatal_error(_("Unable open database <%s> by driver <%s>"),
                              Vect_subst_var(Fi->database, &Map), Fi->driver);
            }

            if (db_execute_immediate(driver, &sql) != DB_OK) {
                db_close_database(driver);
                db_shutdown_driver(driver);
                G_fatal_error(_("Unable to create table: '%s'"),
                              db_get_string(&sql));
            }

            if (db_create_index2(driver, Fi->table, cat_col_name) != DB_OK)
                G_warning(_("Unable to create index for table <%s>, key <%s>"),
                          Fi->table, cat_col_name);

            if (db_grant_on_table
                    (driver, Fi->table, DB_PRIV_SELECT,
                     DB_GROUP | DB_PUBLIC) != DB_OK)
                G_fatal_error(_("Unable to grant privileges on table <%s>"),
                              Fi->table);

            db_begin_transaction(driver);
        }

        /* Import feature */
        cat = 1;
        nogeom = 0;
        OGR_L_ResetReading(Ogr_layer);
        n_features = feature_count = 0;

        n_features = OGR_L_GetFeatureCount(Ogr_layer, 1);

        G_important_message(_("Importing %d features (OGR layer <%s>)..."),
                            n_features, layer_names[layer]);
        while ((Ogr_feature = OGR_L_GetNextFeature(Ogr_layer)) != NULL) {
            G_percent(feature_count++, n_features, 1);	/* show something happens */
            /* Geometry */
            Ogr_geometry = OGR_F_GetGeometryRef(Ogr_feature);
            if (Ogr_geometry == NULL) {
                nogeom++;
            }
            else {
                dim = OGR_G_GetCoordinateDimension(Ogr_geometry);
                if (dim > 2)
                    with_z = 1;

                geom(Ogr_geometry, Out, layer + 1, cat, min_area, type,
                     flag.no_clean->answer);
            }

            /* Attributes */
            if (!flag.notab->answer) {
                sprintf(buf, "insert into %s values ( %d", Fi->table, cat);
                db_set_string(&sql, buf);
                for (i = 0; i < ncols; i++) {
                    Ogr_field = OGR_FD_GetFieldDefn(Ogr_featuredefn, i);
                    Ogr_ftype = OGR_Fld_GetType(Ogr_field);
                    if (OGR_F_IsFieldSet(Ogr_feature, i)) {
                        if (Ogr_ftype == OFTInteger || Ogr_ftype == OFTReal) {
                            sprintf(buf, ", %s",
                                    OGR_F_GetFieldAsString(Ogr_feature, i));
#if GDAL_VERSION_NUM >= 1320
                            /* should we use OGR_F_GetFieldAsDateTime() here ? */
                        }
                        else if (Ogr_ftype == OFTDate || Ogr_ftype == OFTTime
                                 || Ogr_ftype == OFTDateTime) {
                            char *newbuf;

                            db_set_string(&strval, (char *)
                                          OGR_F_GetFieldAsString(Ogr_feature,
                                                                 i));
                            db_double_quote_string(&strval);
                            sprintf(buf, ", '%s'", db_get_string(&strval));
                            newbuf = G_str_replace(buf, "/", "-");	/* fix 2001/10/21 to 2001-10-21 */
                            sprintf(buf, "%s", newbuf);
#endif
                        }
                        else if (Ogr_ftype == OFTString ||
                                 Ogr_ftype == OFTIntegerList) {
                            db_set_string(&strval, (char *)
                                          OGR_F_GetFieldAsString(Ogr_feature,
                                                                 i));
                            db_double_quote_string(&strval);
                            sprintf(buf, ", '%s'", db_get_string(&strval));
                        }

                    }
                    else {
                        /* G_warning (_("Column value not set" )); */
                        if (Ogr_ftype == OFTInteger || Ogr_ftype == OFTReal) {
                            sprintf(buf, ", NULL");
#if GDAL_VERSION_NUM >= 1320
                        }
                        else if (Ogr_ftype == OFTString ||
                                 Ogr_ftype == OFTIntegerList ||
                                 Ogr_ftype == OFTDate) {
#else
                        }
                        else if (Ogr_ftype == OFTString ||
                                 Ogr_ftype == OFTIntegerList) {
#endif
                            sprintf(buf, ", ''");
                        }
                    }
                    db_append_string(&sql, buf);
                }
                db_append_string(&sql, " )");
                G_debug(3, db_get_string(&sql));

                if (db_execute_immediate(driver, &sql) != DB_OK) {
                    db_close_database(driver);
                    db_shutdown_driver(driver);
                    G_fatal_error(_("Cannot insert new row: %s"),
                                  db_get_string(&sql));
                }
            }

            OGR_F_Destroy(Ogr_feature);
            cat++;
        }
        G_percent(1, 1, 1);	/* finish it */

        if (!flag.notab->answer) {
            db_commit_transaction(driver);
            db_close_database_shutdown_driver(driver);
        }

        if (nogeom > 0)
            G_warning(_("%d %s without geometry"), nogeom,
                      nogeom == 1 ? "feature" : "features");
    }


    separator = "-----------------------------------------------------";
    G_message("%s", separator);

    if (use_tmp_vect) {
        /* TODO: is it necessary to build here? probably not, consumes time */
        /* GV_BUILD_BASE is sufficient to toggle boundary cleaning */
        Vect_build_partial(&Tmp, GV_BUILD_BASE);
    }

    if (use_tmp_vect && !flag.no_clean->answer &&
            Vect_get_num_primitives(Out, GV_BOUNDARY) > 0) {
        int ret, centr, ncentr, otype, n_overlaps, n_nocat;
        CENTR *Centr;
        struct spatial_index si;
        double x, y, total_area, overlap_area, nocat_area;
        struct bound_box box;
        struct line_pnts *Points;
        int nmodif;

        Points = Vect_new_line_struct();

        G_message("%s", separator);

        G_warning(_("Cleaning polygons, result is not guaranteed!"));

        if (snap >= 0) {
            G_message("%s", separator);
            G_message(_("Snapping boundaries (threshold = %.3e)..."), snap);
            Vect_snap_lines(&Tmp, GV_BOUNDARY, snap, NULL);
        }

        /* It is not to clean to snap centroids, but I have seen data with 2 duplicate polygons
         * (as far as decimal places were printed) and centroids were not identical */
        /* Disabled, because overlapping polygons result in many duplicate centroids anyway */
        /*
           fprintf ( stderr, separator );
           fprintf ( stderr, "Snap centroids (threshold 0.000001):\n" );
           Vect_snap_lines ( &Map, GV_CENTROID, 0.000001, NULL, stderr );
         */

        G_message("%s", separator);
        G_message(_("Breaking polygons..."));
        Vect_break_polygons(&Tmp, GV_BOUNDARY, NULL);

        /* It is important to remove also duplicate centroids in case of duplicate input polygons */
        G_message("%s", separator);
        G_message(_("Removing duplicates..."));
        Vect_remove_duplicates(&Tmp, GV_BOUNDARY | GV_CENTROID, NULL);

        /* in non-pathological cases, the bulk of the cleaning is now done */

        /* Vect_clean_small_angles_at_nodes() can change the geometry so that new intersections
         * are created. We must call Vect_break_lines(), Vect_remove_duplicates()
         * and Vect_clean_small_angles_at_nodes() until no more small angles are found */
        do {
            G_message("%s", separator);
            G_message(_("Breaking boundaries..."));
            Vect_break_lines(&Tmp, GV_BOUNDARY, NULL);

            G_message("%s", separator);
            G_message(_("Removing duplicates..."));
            Vect_remove_duplicates(&Tmp, GV_BOUNDARY, NULL);

            G_message("%s", separator);
            G_message(_("Cleaning boundaries at nodes..."));
            nmodif =
                Vect_clean_small_angles_at_nodes(&Tmp, GV_BOUNDARY, NULL);
        } while (nmodif > 0);

        /* merge boundaries */
        G_message("%s", separator);
        G_message(_("Merging boundaries..."));
        Vect_merge_lines(&Tmp, GV_BOUNDARY, NULL, NULL);

        G_message("%s", separator);
        if (type & GV_BOUNDARY) {	/* that means lines were converted to boundaries */
            G_message(_("Changing boundary dangles to lines..."));
            Vect_chtype_dangles(&Tmp, -1.0, NULL);
        }
        else {
            G_message(_("Removing dangles..."));
            Vect_remove_dangles(&Tmp, GV_BOUNDARY, -1.0, NULL);
        }

        G_message("%s", separator);
        if (type & GV_BOUNDARY) {
            G_message(_("Changing boundary bridges to lines..."));
            Vect_chtype_bridges(&Tmp, NULL);
        }
        else {
            G_message(_("Removing bridges..."));
            Vect_remove_bridges(&Tmp, NULL);
        }

        /* Boundaries are hopefully clean, build areas */
        G_message("%s", separator);
        Vect_build_partial(&Tmp, GV_BUILD_ATTACH_ISLES);

        /* Calculate new centroids for all areas, centroids have the same id as area */
        ncentr = Vect_get_num_areas(&Tmp);
        G_debug(3, "%d centroids/areas", ncentr);

        Centr = (CENTR *) G_calloc(ncentr + 1, sizeof(CENTR));
        Vect_spatial_index_init(&si, 0);
        for (centr = 1; centr <= ncentr; centr++) {
            Centr[centr].valid = 0;
            Centr[centr].cats = Vect_new_cats_struct();
            ret = Vect_get_point_in_area(&Tmp, centr, &x, &y);
            if (ret < 0) {
                G_warning(_("Unable to calculate area centroid"));
                continue;
            }

            Centr[centr].x = x;
            Centr[centr].y = y;
            Centr[centr].valid = 1;
            box.N = box.S = y;
            box.E = box.W = x;
            box.T = box.B = 0;
            Vect_spatial_index_add_item(&si, centr, &box);
        }

        /* Go through all layers and find centroids for each polygon */
        for (layer = 0; layer < nlayers; layer++) {
            G_message("%s", separator);
            G_message(_("Finding centroids for OGR layer <%s>..."), layer_names[layer]);
            layer_id = layers[layer];
            Ogr_layer = OGR_DS_GetLayer(Ogr_ds, layer_id);
            n_features = OGR_L_GetFeatureCount(Ogr_layer, 1);
            OGR_L_ResetReading(Ogr_layer);

            cat = 0;		/* field = layer + 1 */
            G_percent(cat, n_features, 2);
            while ((Ogr_feature = OGR_L_GetNextFeature(Ogr_layer)) != NULL) {
                cat++;
                G_percent(cat, n_features, 2);
                /* Geometry */
                Ogr_geometry = OGR_F_GetGeometryRef(Ogr_feature);
                if (Ogr_geometry != NULL) {
                    centroid(Ogr_geometry, Centr, &si, layer + 1, cat,
                             min_area, type);
                }

                OGR_F_Destroy(Ogr_feature);
            }
        }

        /* Write centroids */
        G_message("%s", separator);
        G_message(_("Writing centroids..."));

        n_overlaps = n_nocat = 0;
        total_area = overlap_area = nocat_area = 0.0;
        for (centr = 1; centr <= ncentr; centr++) {
            double area;

            G_percent(centr, ncentr, 2);

            area = Vect_get_area_area(&Tmp, centr);
            total_area += area;

            if (!(Centr[centr].valid)) {
                continue;
            }

            if (Centr[centr].cats->n_cats == 0) {
                nocat_area += area;
                n_nocat++;
                continue;
            }

            if (Centr[centr].cats->n_cats > 1) {
                Vect_cat_set(Centr[centr].cats, nlayers + 1,
                             Centr[centr].cats->n_cats);
                overlap_area += area;
                n_overlaps++;
            }

            Vect_reset_line(Points);
            Vect_append_point(Points, Centr[centr].x, Centr[centr].y, 0.0);
            if (type & GV_POINT)
                otype = GV_POINT;
            else
                otype = GV_CENTROID;
            Vect_write_line(&Tmp, otype, Points, Centr[centr].cats);
        }
        if (Centr)
            G_free(Centr);

        Vect_spatial_index_destroy(&si);

        if (n_overlaps > 0) {
            G_warning(_("%d areas represent more (overlapping) features, because polygons overlap "
                        "in input layer(s). Such areas are linked to more than 1 row in attribute table. "
                        "The number of features for those areas is stored as category in layer %d"),
                      n_overlaps, nlayers + 1);
        }

        G_message("%s", separator);

        Vect_hist_write(&Map, separator);
        Vect_hist_write(&Map, "\n");
        sprintf(buf, _("%d input polygons\n"), n_polygons);
        G_message(_("%d input polygons"), n_polygons);
        Vect_hist_write(&Map, buf);

        sprintf(buf, _("Total area: %G (%d areas)\n"), total_area, ncentr);
        G_message(_("Total area: %G (%d areas)"), total_area, ncentr);
        Vect_hist_write(&Map, buf);

        sprintf(buf, _("Overlapping area: %G (%d areas)\n"), overlap_area,
                n_overlaps);
        G_message(_("Overlapping area: %G (%d areas)"), overlap_area,
                  n_overlaps);
        Vect_hist_write(&Map, buf);

        sprintf(buf, _("Area without category: %G (%d areas)\n"), nocat_area,
                n_nocat);
        G_message(_("Area without category: %G (%d areas)"), nocat_area,
                  n_nocat);
        Vect_hist_write(&Map, buf);
        G_message("%s", separator);
    }

    /* needed?
     * OGR_DS_Destroy( Ogr_ds );
     */

    if (use_tmp_vect) {
        /* Copy temporary vector to output vector */
        Vect_copy_map_lines(&Tmp, &Map);
        /* release memory occupied by topo, we may need that memory for main output */
        Vect_set_release_support(&Tmp);
        Vect_close(&Tmp);
        Vect_delete(tempvect);
    }

    Vect_build(&Map);
    Vect_close(&Map);

    /* -------------------------------------------------------------------- */
    /*      Extend current window based on dataset.                         */
    /* -------------------------------------------------------------------- */
    if (flag.extend->answer) {
        G_get_default_window(&loc_wind);

        loc_wind.north = MAX(loc_wind.north, cellhd.north);
        loc_wind.south = MIN(loc_wind.south, cellhd.south);
        loc_wind.west = MIN(loc_wind.west, cellhd.west);
        loc_wind.east = MAX(loc_wind.east, cellhd.east);

        loc_wind.rows = (int)ceil((loc_wind.north - loc_wind.south)
                                  / loc_wind.ns_res);
        loc_wind.south = loc_wind.north - loc_wind.rows * loc_wind.ns_res;

        loc_wind.cols = (int)ceil((loc_wind.east - loc_wind.west)
                                  / loc_wind.ew_res);
        loc_wind.east = loc_wind.west + loc_wind.cols * loc_wind.ew_res;

        G__put_window(&loc_wind, "../PERMANENT", "DEFAULT_WIND");
    }

    if (with_z && !flag.z->answer)
        G_warning(_("Input data contains 3D features. Created vector is 2D only, "
                    "use -z flag to import 3D vector."));

    exit(EXIT_SUCCESS);
}
Пример #16
0
int main(int argc, char **argv)
{
    char *mapname,		/* ptr to name of output layer  */
     *setname,			/* ptr to name of input mapset  */
     *ipolname;			/* name of interpolation method */

    int fdi,			/* input map file descriptor    */
      fdo,			/* output map file descriptor   */
      method,			/* position of method in table  */
      permissions,		/* mapset permissions           */
      cell_type,		/* output celltype              */
      cell_size,		/* size of a cell in bytes      */
      row, col,			/* counters                     */
      irows, icols,		/* original rows, cols          */
      orows, ocols, have_colors,	/* Input map has a colour table */
      overwrite,		/* Overwrite                    */
      curr_proj;		/* output projection (see gis.h) */

    void *obuffer,		/* buffer that holds one output row     */
     *obufptr;			/* column ptr in output buffer  */
    struct cache *ibuffer;	/* buffer that holds the input map      */
    func interpolate;		/* interpolation routine        */

    double xcoord1, xcoord2,	/* temporary x coordinates      */
      ycoord1, ycoord2,		/* temporary y coordinates      */
      col_idx,			/* column index in input matrix */
      row_idx,			/* row index in input matrix    */
      onorth, osouth,		/* save original border coords  */
      oeast, owest, inorth, isouth, ieast, iwest;
    char north_str[30], south_str[30], east_str[30], west_str[30];

    struct Colors colr;		/* Input map colour table       */
    struct History history;

    struct pj_info iproj,	/* input map proj parameters    */
      oproj;			/* output map proj parameters   */

    struct Key_Value *in_proj_info,	/* projection information of    */
     *in_unit_info,		/* input and output mapsets     */
     *out_proj_info, *out_unit_info;

    struct GModule *module;

    struct Flag *list,		/* list files in source location */
     *nocrop,			/* don't crop output map        */
     *print_bounds,		/* print output bounds and exit */
     *gprint_bounds;		/* same but print shell style	*/

    struct Option *imapset,	/* name of input mapset         */
     *inmap,			/* name of input layer          */
     *inlocation,		/* name of input location       */
     *outmap,			/* name of output layer         */
     *indbase,			/* name of input database       */
     *interpol,			/* interpolation method:
				   nearest neighbor, bilinear, cubic */
     *memory,			/* amount of memory for cache   */
     *res;			/* resolution of target map     */
    struct Cell_head incellhd,	/* cell header of input map     */
      outcellhd;		/* and output map               */


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    module->description =
	_("Re-projects a raster map from given location to the current location.");

    inmap = G_define_standard_option(G_OPT_R_INPUT);
    inmap->description = _("Name of input raster map to re-project");
    inmap->required = NO;
    inmap->guisection = _("Source");

    inlocation = G_define_option();
    inlocation->key = "location";
    inlocation->type = TYPE_STRING;
    inlocation->required = YES;
    inlocation->description = _("Location containing input raster map");
    inlocation->gisprompt = "old,location,location";
    inlocation->key_desc = "name";

    imapset = G_define_standard_option(G_OPT_M_MAPSET);
    imapset->label = _("Mapset containing input raster map");
    imapset->description = _("default: name of current mapset");
    imapset->guisection = _("Source");

    indbase = G_define_option();
    indbase->key = "dbase";
    indbase->type = TYPE_STRING;
    indbase->required = NO;
    indbase->description = _("Path to GRASS database of input location");
    indbase->gisprompt = "old,dbase,dbase";
    indbase->key_desc = "path";
    indbase->guisection = _("Source");

    outmap = G_define_standard_option(G_OPT_R_OUTPUT);
    outmap->required = NO;
    outmap->description = _("Name for output raster map (default: same as 'input')");
    outmap->guisection = _("Target");

    ipolname = make_ipol_list();
    
    interpol = G_define_option();
    interpol->key = "method";
    interpol->type = TYPE_STRING;
    interpol->required = NO;
    interpol->answer = "nearest";
    interpol->options = ipolname;
    interpol->description = _("Interpolation method to use");
    interpol->guisection = _("Target");
    interpol->descriptions = make_ipol_desc();

    memory = G_define_option();
    memory->key = "memory";
    memory->type = TYPE_INTEGER;
    memory->required = NO;
    memory->description = _("Cache size (MiB)");

    res = G_define_option();
    res->key = "resolution";
    res->type = TYPE_DOUBLE;
    res->required = NO;
    res->description = _("Resolution of output raster map");
    res->guisection = _("Target");

    list = G_define_flag();
    list->key = 'l';
    list->description = _("List raster maps in input location and exit");

    nocrop = G_define_flag();
    nocrop->key = 'n';
    nocrop->description = _("Do not perform region cropping optimization");

    print_bounds = G_define_flag();
    print_bounds->key = 'p';
    print_bounds->description =
	_("Print input map's bounds in the current projection and exit");
    print_bounds->guisection = _("Target");
    
    gprint_bounds = G_define_flag();
    gprint_bounds->key = 'g';
    gprint_bounds->description =
	_("Print input map's bounds in the current projection and exit (shell style)");
    gprint_bounds->guisection = _("Target");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* get the method */
    for (method = 0; (ipolname = menu[method].name); method++)
	if (strcmp(ipolname, interpol->answer) == 0)
	    break;

    if (!ipolname)
	G_fatal_error(_("<%s=%s> unknown %s"),
		      interpol->key, interpol->answer, interpol->key);
    interpolate = menu[method].method;

    mapname = outmap->answer ? outmap->answer : inmap->answer;
    if (mapname && !list->answer && !overwrite &&
	G_find_raster(mapname, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists."), "output", mapname);

    setname = imapset->answer ? imapset->answer : G_store(G_mapset());
    if (strcmp(inlocation->answer, G_location()) == 0 &&
        (!indbase->answer || strcmp(indbase->answer, G_gisdbase()) == 0))
#if 0
	G_fatal_error(_("Input and output locations can not be the same"));
#else
	G_warning(_("Input and output locations are the same"));
#endif
    G_get_window(&outcellhd);

    if(gprint_bounds->answer && !print_bounds->answer)
	print_bounds->answer = gprint_bounds->answer;
    curr_proj = G_projection();

    /* Get projection info for output mapset */
    if ((out_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of output raster map"));

    if ((out_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of output raster map"));

    if (pj_get_kv(&oproj, out_proj_info, out_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of output raster map"));

    /* Change the location           */
    G__create_alt_env();
    G__setenv("GISDBASE", indbase->answer ? indbase->answer : G_gisdbase());
    G__setenv("LOCATION_NAME", inlocation->answer);

    permissions = G__mapset_permissions(setname);
    if (permissions < 0)	/* can't access mapset       */
	G_fatal_error(_("Mapset <%s> in input location <%s> - %s"),
		      setname, inlocation->answer,
		      permissions == 0 ? _("permission denied")
		      : _("not found"));

    /* if requested, list the raster maps in source location - MN 5/2001 */
    if (list->answer) {
	int i;
	char **list;
	G_verbose_message(_("Checking location <%s> mapset <%s>"),
			  inlocation->answer, setname);
	list = G_list(G_ELEMENT_RASTER, G__getenv("GISDBASE"),
		      G__getenv("LOCATION_NAME"), setname);
	for (i = 0; list[i]; i++) {
	    fprintf(stdout, "%s\n", list[i]);
	}
	fflush(stdout);
	exit(EXIT_SUCCESS);	/* leave r.proj after listing */
    }

    if (!inmap->answer)
	G_fatal_error(_("Required parameter <%s> not set"), inmap->key);

    if (!G_find_raster(inmap->answer, setname))
	G_fatal_error(_("Raster map <%s> in location <%s> in mapset <%s> not found"),
		      inmap->answer, inlocation->answer, setname);

    /* Read input map colour table */
    have_colors = Rast_read_colors(inmap->answer, setname, &colr);

    /* Get projection info for input mapset */
    if ((in_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of input map"));

    if ((in_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of input map"));

    if (pj_get_kv(&iproj, in_proj_info, in_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of input map"));

    G_free_key_value(in_proj_info);
    G_free_key_value(in_unit_info);
    G_free_key_value(out_proj_info);
    G_free_key_value(out_unit_info);
    if (G_verbose() > G_verbose_std())
	pj_print_proj_params(&iproj, &oproj);

    /* this call causes r.proj to read the entire map into memeory */
    Rast_get_cellhd(inmap->answer, setname, &incellhd);

    Rast_set_input_window(&incellhd);

    if (G_projection() == PROJECTION_XY)
	G_fatal_error(_("Unable to work with unprojected data (xy location)"));

    /* Save default borders so we can show them later */
    inorth = incellhd.north;
    isouth = incellhd.south;
    ieast = incellhd.east;
    iwest = incellhd.west;
    irows = incellhd.rows;
    icols = incellhd.cols;

    onorth = outcellhd.north;
    osouth = outcellhd.south;
    oeast = outcellhd.east;
    owest = outcellhd.west;
    orows = outcellhd.rows;
    ocols = outcellhd.cols;


    if (print_bounds->answer) {
	G_message(_("Input map <%s@%s> in location <%s>:"),
	    inmap->answer, setname, inlocation->answer);

	if (pj_do_proj(&iwest, &isouth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));
	if (pj_do_proj(&ieast, &inorth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));

	G_format_northing(inorth, north_str, curr_proj);
	G_format_northing(isouth, south_str, curr_proj);
	G_format_easting(ieast, east_str, curr_proj);
	G_format_easting(iwest, west_str, curr_proj);

	if(gprint_bounds->answer) {
	    fprintf(stdout, "n=%s s=%s w=%s e=%s rows=%d cols=%d\n",
		north_str, south_str, west_str, east_str, irows, icols);
	}
	else {
	    fprintf(stdout, "Source cols: %d\n", icols);
	    fprintf(stdout, "Source rows: %d\n", irows);
	    fprintf(stdout, "Local north: %s\n",  north_str);
	    fprintf(stdout, "Local south: %s\n", south_str);
	    fprintf(stdout, "Local west: %s\n", west_str);
	    fprintf(stdout, "Local east: %s\n", east_str);
	}

	/* somehow approximate local ewres, nsres ?? (use 'g.region -m' on lat/lon side) */

	exit(EXIT_SUCCESS);
    }


    /* Cut non-overlapping parts of input map */
    if (!nocrop->answer)
	bordwalk(&outcellhd, &incellhd, &oproj, &iproj);

    /* Add 2 cells on each side for bilinear/cubic & future interpolation methods */
    /* (should probably be a factor based on input and output resolution) */
    incellhd.north += 2 * incellhd.ns_res;
    incellhd.east += 2 * incellhd.ew_res;
    incellhd.south -= 2 * incellhd.ns_res;
    incellhd.west -= 2 * incellhd.ew_res;
    if (incellhd.north > inorth)
	incellhd.north = inorth;
    if (incellhd.east > ieast)
	incellhd.east = ieast;
    if (incellhd.south < isouth)
	incellhd.south = isouth;
    if (incellhd.west < iwest)
	incellhd.west = iwest;

    Rast_set_input_window(&incellhd);

    /* And switch back to original location */

    G__switch_env();

    /* Adjust borders of output map */

    if (!nocrop->answer)
	bordwalk(&incellhd, &outcellhd, &iproj, &oproj);

#if 0
    outcellhd.west = outcellhd.south = HUGE_VAL;
    outcellhd.east = outcellhd.north = -HUGE_VAL;
    for (row = 0; row < incellhd.rows; row++) {
	ycoord1 = Rast_row_to_northing((double)(row + 0.5), &incellhd);
	for (col = 0; col < incellhd.cols; col++) {
	    xcoord1 = Rast_col_to_easting((double)(col + 0.5), &incellhd);
	    pj_do_proj(&xcoord1, &ycoord1, &iproj, &oproj);
	    if (xcoord1 > outcellhd.east)
		outcellhd.east = xcoord1;
	    if (ycoord1 > outcellhd.north)
		outcellhd.north = ycoord1;
	    if (xcoord1 < outcellhd.west)
		outcellhd.west = xcoord1;
	    if (ycoord1 < outcellhd.south)
		outcellhd.south = ycoord1;
	}
    }
#endif

    if (res->answer != NULL)	/* set user defined resolution */
	outcellhd.ns_res = outcellhd.ew_res = atof(res->answer);

    G_adjust_Cell_head(&outcellhd, 0, 0);
    Rast_set_output_window(&outcellhd);

    G_message(" ");
    G_message(_("Input:"));
    G_message(_("Cols: %d (%d)"), incellhd.cols, icols);
    G_message(_("Rows: %d (%d)"), incellhd.rows, irows);
    G_message(_("North: %f (%f)"), incellhd.north, inorth);
    G_message(_("South: %f (%f)"), incellhd.south, isouth);
    G_message(_("West: %f (%f)"), incellhd.west, iwest);
    G_message(_("East: %f (%f)"), incellhd.east, ieast);
    G_message(_("EW-res: %f"), incellhd.ew_res);
    G_message(_("NS-res: %f"), incellhd.ns_res);
    G_message(" ");

    G_message(_("Output:"));
    G_message(_("Cols: %d (%d)"), outcellhd.cols, ocols);
    G_message(_("Rows: %d (%d)"), outcellhd.rows, orows);
    G_message(_("North: %f (%f)"), outcellhd.north, onorth);
    G_message(_("South: %f (%f)"), outcellhd.south, osouth);
    G_message(_("West: %f (%f)"), outcellhd.west, owest);
    G_message(_("East: %f (%f)"), outcellhd.east, oeast);
    G_message(_("EW-res: %f"), outcellhd.ew_res);
    G_message(_("NS-res: %f"), outcellhd.ns_res);
    G_message(" ");

    /* open and read the relevant parts of the input map and close it */
    G__switch_env();
    Rast_set_input_window(&incellhd);
    fdi = Rast_open_old(inmap->answer, setname);
    cell_type = Rast_get_map_type(fdi);
    ibuffer = readcell(fdi, memory->answer);
    Rast_close(fdi);

    G__switch_env();
    Rast_set_output_window(&outcellhd);

    if (strcmp(interpol->answer, "nearest") == 0) {
	fdo = Rast_open_new(mapname, cell_type);
	obuffer = (CELL *) Rast_allocate_output_buf(cell_type);
    }
    else {
	fdo = Rast_open_fp_new(mapname);
	cell_type = FCELL_TYPE;
	obuffer = (FCELL *) Rast_allocate_output_buf(cell_type);
    }

    cell_size = Rast_cell_size(cell_type);

    xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
    /**/ ycoord1 = ycoord2 = outcellhd.north - (outcellhd.ns_res / 2);
    /**/ G_important_message(_("Projecting..."));
    G_percent(0, outcellhd.rows, 2);

    for (row = 0; row < outcellhd.rows; row++) {
	obufptr = obuffer;

	for (col = 0; col < outcellhd.cols; col++) {
	    /* project coordinates in output matrix to       */
	    /* coordinates in input matrix                   */
	    if (pj_do_proj(&xcoord1, &ycoord1, &oproj, &iproj) < 0)
		Rast_set_null_value(obufptr, 1, cell_type);
	    else {
		/* convert to row/column indices of input matrix */
		col_idx = (xcoord1 - incellhd.west) / incellhd.ew_res;
		row_idx = (incellhd.north - ycoord1) / incellhd.ns_res;

		/* and resample data point               */
		interpolate(ibuffer, obufptr, cell_type,
			    &col_idx, &row_idx, &incellhd);
	    }

	    obufptr = G_incr_void_ptr(obufptr, cell_size);
	    xcoord2 += outcellhd.ew_res;
	    xcoord1 = xcoord2;
	    ycoord1 = ycoord2;
	}

	Rast_put_row(fdo, obuffer, cell_type);

	xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
	ycoord2 -= outcellhd.ns_res;
	ycoord1 = ycoord2;
	G_percent(row, outcellhd.rows - 1, 2);
    }

    Rast_close(fdo);

    if (have_colors > 0) {
	Rast_write_colors(mapname, G_mapset(), &colr);
	Rast_free_colors(&colr);
    }

    Rast_short_history(mapname, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(mapname, &history);

    G_done_msg(NULL);
    exit(EXIT_SUCCESS);
}
Пример #17
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *start_opt, *select_opt, *stop_opt, *output_opt,
        *width_opt, *height_opt, *bgcolor_opt, *res_opt;
    struct Flag *list_flag, *selected_flag, *select_flag, *release_flag, 
        *cmd_flag, *truecolor_flag, *update_flag, *x_flag, *sfile_flag;
    
    int nopts, ret;
    const char *mon;
    
    G_gisinit(argv[0]);
    
    module = G_define_module();
    G_add_keyword(_("display"));
    G_add_keyword(_("graphics"));
    G_add_keyword(_("monitors"));
    module->description = _("Controls graphics display monitors from the command line.");
    
    start_opt = G_define_option();
    start_opt->key = "start";
    start_opt->type = TYPE_STRING;
    start_opt->description = _("Name of monitor to start");
    start_opt->options = "wx0,wx1,wx2,wx3,wx4,wx5,wx6,wx7,png,ps,html,cairo";
    start_opt->guisection = _("Manage");
    
    stop_opt = G_define_option();
    stop_opt->key = "stop";
    stop_opt->type = TYPE_STRING;
    stop_opt->description = _("Name of monitor to stop");
    stop_opt->options = "wx0,wx1,wx2,wx3,wx4,wx5,wx6,wx7,png,ps,html,cairo";
    stop_opt->guisection = _("Manage");

    select_opt = G_define_option();
    select_opt->key = "select";
    select_opt->type = TYPE_STRING;
    select_opt->description = _("Name of monitor to select");
    select_opt->options = "wx0,wx1,wx2,wx3,wx4,wx5,wx6,wx7,png,ps,html,cairo";
    select_opt->guisection = _("Manage");

    width_opt = G_define_option();
    width_opt->key = "width";
    width_opt->label = _("Width for display monitor if not set by GRASS_RENDER_WIDTH");
    width_opt->description = _("Default value: 720");
    width_opt->type = TYPE_INTEGER;
    width_opt->key_desc = "value";
    width_opt->guisection = _("Settings");

    height_opt = G_define_option();
    height_opt->key = "height";
    height_opt->label = _("Height for display monitor if not set by GRASS_RENDER_HEIGHT");
    height_opt->description = _("Default value: 480");
    height_opt->type = TYPE_INTEGER;
    height_opt->key_desc = "value";
    height_opt->guisection = _("Settings");

    res_opt = G_define_option();
    res_opt->key = "resolution";
    res_opt->label = _("Dimensions of display monitor versus current size");
    res_opt->description = _("Example: resolution=2 enlarge display monitor twice to 1280x960"); 
    res_opt->type = TYPE_INTEGER;
    res_opt->key_desc = "value";
    res_opt->guisection = _("Settings");

    bgcolor_opt = G_define_standard_option(G_OPT_CN);
    bgcolor_opt->key = "bgcolor";
    bgcolor_opt->label = _("Background color");
    bgcolor_opt->answer = DEFAULT_BG_COLOR;
    bgcolor_opt->guisection = _("Settings");

    output_opt = G_define_standard_option(G_OPT_F_OUTPUT);
    output_opt->required = NO;
    output_opt->label = _("Name for output file (when starting new monitor)");
    output_opt->description = _("Ignored for 'wx' monitors");
    output_opt->guisection = _("Settings");
    
    list_flag = G_define_flag();
    list_flag->key = 'l';
    list_flag->description = _("List running monitors and exit");
    list_flag->guisection = _("Print");

    selected_flag = G_define_flag();
    selected_flag->key = 'p';
    selected_flag->description = _("Print name of currently selected monitor and exit");
    selected_flag->guisection = _("Print");

    cmd_flag = G_define_flag();
    cmd_flag->key = 'c';
    cmd_flag->description = _("Print commands for currently selected monitor and exit");
    cmd_flag->guisection = _("Print");

    sfile_flag = G_define_flag();
    sfile_flag->key = 'g';
    sfile_flag->description =
	_("Print path to support files of currently selected monitor and exit");

    select_flag = G_define_flag();
    select_flag->key = 's';
    select_flag->description = _("Do not automatically select when starting");
    select_flag->guisection = _("Manage");

    release_flag = G_define_flag();
    release_flag->key = 'r';
    release_flag->description = _("Release and stop currently selected monitor and exit");
    release_flag->guisection = _("Manage");

    truecolor_flag = G_define_flag();
    truecolor_flag->key = 't';
    truecolor_flag->description = _("Disable true colors");
    truecolor_flag->guisection = _("Settings");

    update_flag = G_define_flag();
    update_flag->key = 'u';
    update_flag->label = _("Open output file in update mode");
    update_flag->description = _("Requires --overwrite flag");
    update_flag->guisection = _("Settings");

    x_flag = G_define_flag();
    x_flag->key = 'x';
    x_flag->label = _("Launch light-weight wx monitor without toolbars and statusbar");
    x_flag->description = _("Requires 'start=wx0-7'");
    x_flag->guisection = _("Settings");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (x_flag->answer && start_opt->answer && strncmp(start_opt->answer, "wx", 2) != 0)
        G_warning(_("Flag -%c has effect only for wx monitors (%s=wx0-7)"),
                  x_flag->key, start_opt->key);
            
    if (selected_flag->answer || release_flag->answer ||
        cmd_flag->answer || sfile_flag->answer) {
	if (list_flag->answer)
	    G_warning(_("Flag -%c ignored"), list_flag->key);
	mon = G_getenv_nofatal("MONITOR");
	if (mon) {
	    if (selected_flag->answer) {
		G_verbose_message(_("Currently selected monitor:"));
		fprintf(stdout, "%s\n", mon);
	    }
	    else if (cmd_flag->answer) {
		G_message(_("List of commands for monitor <%s>:"), mon);
		list_cmd(mon, stdout);
	    }
            else if (sfile_flag->answer) {
                list_files(mon, stdout);
            }
	    else if (mon) { /* release */
		G_unsetenv("MONITOR");
		G_verbose_message(_("Monitor <%s> released"), mon); 
                ret = stop_mon(mon);
	    }
	}
	else
	    G_important_message(_("No monitor selected"));
	
	exit(EXIT_SUCCESS);
    }

    if (list_flag->answer) {
	print_list(stdout);
	exit(EXIT_SUCCESS);
    }
	
    nopts = 0;
    if (start_opt->answer)
	nopts++;
    if (stop_opt->answer)
	nopts++;
    if (select_opt->answer)
	nopts++;

    if (nopts != 1)
	G_fatal_error(_("Either <%s>, <%s> or <%s> must be given"),
		      start_opt->key, stop_opt->key, select_opt->key);
    
    if (output_opt->answer &&
	(!start_opt->answer || strncmp(start_opt->answer, "wx", 2) == 0))
	G_warning(_("Option <%s> ignored"), output_opt->key);
    
    if (start_opt->answer) {
        int width, height;

        width = width_opt->answer ? atoi(width_opt->answer) : 0;
        height = height_opt->answer ? atoi(height_opt->answer) : 0;
        if (width < 1) {
            char *env_width = getenv("GRASS_RENDER_WIDTH");
            if (env_width)
                width = atoi(env_width);
        }
        if (height < 1) {
            char *env_height = getenv("GRASS_RENDER_HEIGHT");
            if (env_height)
                height = atoi(env_height);
        }
        if (width < 1)
            width = DEFAULT_WIDTH;
        if (height < 1)
            height = DEFAULT_HEIGHT;
        
        if (res_opt->answer) {
            int res;
            
            res = atoi(res_opt->answer);
            width *= res;
            height *= res;
        }

        G_debug(1, "Monitor width/height = %d/%d", width, height);

	ret = start_mon(start_opt->answer, output_opt->answer, !select_flag->answer,
			width, height, bgcolor_opt->answer,
			!truecolor_flag->answer, x_flag->answer, update_flag->answer);
        if (output_opt->answer && !update_flag->answer) {
            D_open_driver();
            D_setup_unity(0);
            D_erase(bgcolor_opt->answer);
            D_close_driver();
        }
    }
    
    if (stop_opt->answer)
	ret = stop_mon(stop_opt->answer);
    
    if (select_opt->answer)
	ret = select_mon(select_opt->answer);
    
    if (ret != 0)
	exit(EXIT_FAILURE);
    
    exit(EXIT_SUCCESS);
}
Пример #18
0
void
subcluster(struct SigSet *S, int Class_Index, int *Max_num, int maxsubclasses)
{
    int nparams_clust;
    int ndata_points;
    int min_i, min_j;
    int nbands;
    double rissanen;
    double min_riss;
    struct ClassSig *Sig;

    static int first = 1;
    static struct SigSet min_S;
    static struct ClassSig *min_Sig;

    /* set class pointer */
    Sig = &(S->ClassSig[Class_Index]);

    /* set number of bands */
    nbands = S->nbands;

    /* allocate scratch class first time subroutine is called */
    if (first) {
	int i;

	I_InitSigSet(&min_S);
	I_SigSetNBands(&min_S, nbands);
	min_Sig = I_NewClassSig(&min_S);

	/* allocate enough subsignatures in scratch space */
	for (i = 0; i < maxsubclasses; i++)
	    I_NewSubSig(&min_S, min_Sig);

	first = 0;
    }

    /* compute number of parameters per cluster */
    nparams_clust = 1 + nbands + 0.5 * (nbands + 1) * nbands;

    /* compute number of data points */
    ndata_points = Sig->ClassData.npixels * nbands - total_nulls;
    if (ndata_points <= 1)
	G_fatal_error("Not enough data points");

    /* Check for too few pixels */
    *Max_num = (ndata_points + 1) / nparams_clust - 1;
    if (maxsubclasses > *Max_num / 2)
	maxsubclasses = *Max_num / 2;
    if (maxsubclasses < 1) {
	G_warning(_("Not enough pixels in class %d"),
		  Class_Index + 1);
	Sig->nsubclasses = 0;
	Sig->used = 0;
	return;
    }

    /* check for too many subclasses */
    if (Sig->nsubclasses > maxsubclasses) {
	Sig->nsubclasses = maxsubclasses;
	G_warning(_("Too many subclasses for class index %d"),
		  Class_Index + 1);
	G_message(_("Number of subclasses set to %d"),
		  Sig->nsubclasses);
    }


    /* initialize clustering */
    seed(Sig, nbands);

    /* EM algorithm */
    min_riss = refine_clusters(Sig, nbands);
    G_debug(1, "Subclasses = %d Rissanen = %f", Sig->nsubclasses,
	      min_riss);
    copy_ClassSig(Sig, min_Sig, nbands);

    G_debug(1, "combine classes");
    while (Sig->nsubclasses > 1) {
	min_i = min_j = 0;
	reduce_order(Sig, nbands, &min_i, &min_j);
	G_verbose_message(_("Combining subclasses (%d,%d)..."), min_i + 1,
			  min_j + 1);
	
	rissanen = refine_clusters(Sig, nbands);
	G_debug(1, "Subclasses = %d; Rissanen = %f", Sig->nsubclasses,
		rissanen);
	if (rissanen < min_riss) {
	    min_riss = rissanen;
	    copy_ClassSig(Sig, min_Sig, nbands);
	}
    }

    copy_ClassSig(min_Sig, Sig, nbands);
}
Пример #19
0
/*!
   \brief Build partial topology for vector map.

   Should only be used in special cases of vector processing.

   This functions optionally builds only some parts of
   topology. Highest level is specified by build parameter which may
   be:
    - GV_BUILD_NONE - nothing is build
    - GV_BUILD_BASE - basic topology, nodes, lines, spatial index;
    - GV_BUILD_AREAS - build areas and islands, but islands are not attached to areas;
    - GV_BUILD_ATTACH_ISLES - attach islands to areas;
    - GV_BUILD_CENTROIDS - assign centroids to areas, build category index;
    - GV_BUILD_ALL - top level, the same as GV_BUILD_CENTROIDS.
    
   If functions is called with build lower than current value of the
   Map, the level is downgraded to requested value.

   All calls to Vect_write_line(), Vect_rewrite_line(),
   Vect_delete_line() respect the last value of build used in this
   function.

   Note that the functions has effect only if requested level is
   higher than current level, to rebuild part of topology, call first
   downgrade and then upgrade, for example:

   - Vect_build()
   - Vect_build_partial(,GV_BUILD_BASE,)
   - Vect_build_partial(,GV_BUILD_AREAS,) 

   \param Map vector map
   \param build highest level of build

   \return 1 on success
   \return 0 on error
 */
int Vect_build_partial(struct Map_info *Map, int build)
{
    struct Plus_head *plus;
    int ret;

    G_debug(3, "Vect_build(): build = %d", build);

    /* If topology is already build (map on > level 2), set level to 1
     * so that lines will be read by V1_read_ (all lines) */
    Map->level = LEVEL_1; /* may be not needed, because V1_read is used
                             directly by Vect_build_ */

    if (Map->format != GV_FORMAT_OGR_DIRECT &&
        !(Map->format == GV_FORMAT_POSTGIS && Map->fInfo.pg.toposchema_name))
        /* don't write support files for OGR direct and PostGIS Topology */
	Map->support_updated = TRUE;

    if (!Map->plus.Spidx_built) {
	if (Vect_open_sidx(Map, 2) < 0)
	    G_fatal_error(_("Unable to open spatial index file for vector map <%s>"),
			    Vect_get_full_name(Map));
    }

    plus = &(Map->plus);
    if (build > GV_BUILD_NONE && !Map->temporary) {
	G_message(_("Building topology for vector map <%s>..."),
		  Vect_get_full_name(Map));
    }
    plus->with_z = Map->head.with_z;
    plus->spidx_with_z = Map->head.with_z;

    if (build == GV_BUILD_ALL && plus->built < GV_BUILD_ALL) {
	dig_cidx_free(plus);	/* free old (if any) category index */
	dig_cidx_init(plus);
    }

    ret = ((*Build_array[Map->format]) (Map, build));
    if (ret == 0) {
	return 0;
    }

    if (build > GV_BUILD_NONE) {
        Map->level = LEVEL_2;
	G_verbose_message(_("Topology was built"));
    }

    plus->mode = GV_MODE_WRITE;

    if (build == GV_BUILD_ALL) {
	plus->cidx_up_to_date = TRUE;	/* category index was build */
	dig_cidx_sort(plus);
    }

    if (build > GV_BUILD_NONE) {
	G_message(_("Number of nodes: %d"), plus->n_nodes);
	G_message(_("Number of primitives: %d"), plus->n_lines);
	G_message(_("Number of points: %d"), plus->n_plines);
	G_message(_("Number of lines: %d"), plus->n_llines);
	G_message(_("Number of boundaries: %d"), plus->n_blines);
	G_message(_("Number of centroids: %d"), plus->n_clines);

	if (plus->n_flines > 0)
	    G_message(_("Number of faces: %d"), plus->n_flines);

	if (plus->n_klines > 0)
	    G_message(_("Number of kernels: %d"), plus->n_klines);
    }

    if (plus->built >= GV_BUILD_AREAS) {
	int line, nlines, area, nareas, err_boundaries, err_centr_out,
	    err_centr_dupl, err_nocentr;
	struct P_line *Line;
	struct Plus_head *Plus;

	/* Count errors (it does not take much time comparing to build process) */
	Plus = &(Map->plus);
	nlines = Vect_get_num_lines(Map);
	err_boundaries = err_centr_out = err_centr_dupl = 0;
	for (line = 1; line <= nlines; line++) {
	    Line = Plus->Line[line];
	    if (!Line)
		continue;
	    if (Line->type == GV_BOUNDARY) {
		struct P_topo_b *topo = (struct P_topo_b *)Line->topo;

		if (topo->left == 0 || topo->right == 0) {
		    G_debug(3, "line = %d left = %d right = %d", line, 
			    topo->left, topo->right);
		    err_boundaries++;
		}
	    }
	    if (Line->type == GV_CENTROID) {
		struct P_topo_c *topo = (struct P_topo_c *)Line->topo;

		if (topo->area == 0)
		    err_centr_out++;
		else if (topo->area < 0)
		    err_centr_dupl++;
	    }
	}

	err_nocentr = 0;
	nareas = Vect_get_num_areas(Map);
	for (area = 1; area <= nareas; area++) {
	    if (!Vect_area_alive(Map, area))
		continue;
	    line = Vect_get_area_centroid(Map, area);
	    if (line == 0)
		err_nocentr++;
	}

	G_message(_("Number of areas: %d"), plus->n_areas);
	G_message(_("Number of isles: %d"), plus->n_isles);

#if 0
	/* not an error, message disabled to avoid confusion */
	if (err_nocentr)
	    G_message(_("Number of areas without centroid: %d"),
		      err_nocentr);
#endif

	if (plus->n_clines > plus->n_areas)
	    G_warning(_("Number of centroids exceeds number of areas: %d > %d"),
		      plus->n_clines, plus->n_areas);

	if (err_boundaries)
	    G_warning(_("Number of incorrect boundaries: %d"),
		      err_boundaries);

	if (err_centr_out)
	    G_warning(_("Number of centroids outside area: %d"),
		      err_centr_out);

	if (err_centr_dupl)
	    G_warning(_("Number of duplicate centroids: %d"), err_centr_dupl);

    }
    else if (build > GV_BUILD_NONE) {
	G_message(_("Number of areas: -"));
	G_message(_("Number of isles: -"));
    }
    return 1;
}
Пример #20
0
int main(int argc, char **argv)
{
    struct Flag *printattributes, *topo_flag, *shell_flag;
    struct Option *opt1, *coords_opt, *maxdistance;
    struct Cell_head window;
    struct GModule *module;
    char *mapset;
    char *str;
    char buf[2000];
    int i, j, level, width = 0, mwidth = 0, ret;
    double xval, yval, xres, yres, maxd, x;
    double EW_DIST1, EW_DIST2, NS_DIST1, NS_DIST2;
    char nsres[30], ewres[30];
    char ch;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    module->keywords = _("vector, querying");
    module->description = _("Queries a vector map layer at given locations.");

    opt1 = G_define_standard_option(G_OPT_V_MAP);
    opt1->multiple = YES;
    opt1->required = YES;

    coords_opt = G_define_option();
    coords_opt->key = "east_north";
    coords_opt->type = TYPE_DOUBLE;
    coords_opt->key_desc = "east,north";
    coords_opt->required = NO;
    coords_opt->multiple = YES;
    coords_opt->label = _("Coordinates for query");
    coords_opt->description = _("If not given reads from standard input");

    maxdistance = G_define_option();
    maxdistance->type = TYPE_DOUBLE;
    maxdistance->key = "distance";
    maxdistance->answer = "0";
    maxdistance->multiple = NO;
    maxdistance->description = _("Query threshold distance");

    topo_flag = G_define_flag();
    topo_flag->key = 'd';
    topo_flag->description = _("Print topological information (debugging)");

    printattributes = G_define_flag();
    printattributes->key = 'a';
    printattributes->description = _("Print attribute information");

    shell_flag = G_define_flag();
    shell_flag->key = 'g';
    shell_flag->description = _("Print the stats in shell script style");

    if ((argc > 1 || !vect) && G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (opt1->answers && opt1->answers[0])
	vect = opt1->answers;

    maxd = atof(maxdistance->answer);

    /*  
     *  fprintf(stdout, maxdistance->answer);
     *  fprintf(stdout, "Maxd is %f", maxd);
     *  fprintf(stdout, xcoord->answer);
     *  fprintf(stdout, "xval is %f", xval);
     *  fprintf(stdout, ycoord->answer);
     *  fprintf(stdout, "yval is %f", yval);
     */

    if (maxd == 0.0) {
	G_get_window(&window);
	x = window.proj;
	G_format_resolution(window.ew_res, ewres, x);
	G_format_resolution(window.ns_res, nsres, x);
	EW_DIST1 =
	    G_distance(window.east, window.north, window.west, window.north);
	/* EW Dist at South Edge */
	EW_DIST2 =
	    G_distance(window.east, window.south, window.west, window.south);
	/* NS Dist at East edge */
	NS_DIST1 =
	    G_distance(window.east, window.north, window.east, window.south);
	/* NS Dist at West edge */
	NS_DIST2 =
	    G_distance(window.west, window.north, window.west, window.south);
	xres = ((EW_DIST1 + EW_DIST2) / 2) / window.cols;
	yres = ((NS_DIST1 + NS_DIST2) / 2) / window.rows;
	if (xres > yres)
	    maxd = xres;
	else
	    maxd = yres;
    }

    /* Look at maps given on command line */
    if (vect) {
	for (i = 0; vect[i]; i++) ;
	nvects = i;

	Map = (struct Map_info *)G_malloc(nvects * sizeof(struct Map_info));

	width = mwidth = 0;
	for (i = 0; i < nvects; i++) {
	    str = strchr(vect[i], '@');
	    if (str)
		j = str - vect[i];
	    else
		j = strlen(vect[i]);
	    if (j > width)
		width = j;

	    mapset = G_find_vector2(vect[i], "");
	    if (!mapset)
		G_fatal_error(_("Vector map <%s> not found"), vect[i]);

	    j = strlen(mapset);
	    if (j > mwidth)
		mwidth = j;

	    level = Vect_open_old(&Map[i], vect[i], mapset);
	    if (level < 2)
		G_fatal_error(_("You must build topology on vector map <%s>"),
			      vect[i]);

	    G_verbose_message(_("Building spatial index..."));
	    Vect_build_spatial_index(&Map[i]);
	}
    }

    if (!coords_opt->answer) {
	/* if coords are not given on command line, read them from stdin */
	setvbuf(stdin, NULL, _IOLBF, 0);
	setvbuf(stdout, NULL, _IOLBF, 0);
	while (fgets(buf, sizeof(buf), stdin) != NULL) {
	    ret = sscanf(buf, "%lf%c%lf", &xval, &ch, &yval);
	    if (ret == 3 && (ch == ',' || ch == ' ' || ch == '\t')) {
		what(xval, yval, maxd, width, mwidth, topo_flag->answer,
		     printattributes->answer, shell_flag->answer);
	    }
	    else {
		G_warning(_("Unknown input format, skipping: '%s'"), buf);
		continue;
	    }
	}
    }
    else {
	/* use coords given on command line */
	for (i = 0; coords_opt->answers[i] != NULL; i += 2) {
	    xval = atof(coords_opt->answers[i]);
	    yval = atof(coords_opt->answers[i + 1]);
	    what(xval, yval, maxd, width, mwidth, topo_flag->answer,
		 printattributes->answer, shell_flag->answer);
	}
    }

    for (i = 0; i < nvects; i++)
	Vect_close(&Map[i]);

    exit(EXIT_SUCCESS);
}
Пример #21
0
int main(int argc, char *argv[])
{
    int i, type, stat;
    int day, yr, Out_proj;
    int out_zone = 0;
    int overwrite;		/* overwrite output map */
    const char *mapset;
    const char *omap_name, *map_name, *iset_name, *iloc_name;
    struct pj_info info_in;
    struct pj_info info_out;
    const char *gbase;
    char date[40], mon[4];
    struct GModule *module;
    struct Option *omapopt, *mapopt, *isetopt, *ilocopt, *ibaseopt, *smax;
    struct Key_Value *in_proj_keys, *in_unit_keys;
    struct Key_Value *out_proj_keys, *out_unit_keys;
    struct line_pnts *Points, *Points2;
    struct line_cats *Cats;
    struct Map_info Map;
    struct Map_info Out_Map;
    struct bound_box src_box, tgt_box;
    int nowrap = 0, recommend_nowrap = 0;
    double lmax;
    struct
    {
	struct Flag *list;	/* list files in source location */
	struct Flag *transformz;	/* treat z as ellipsoidal height */
	struct Flag *wrap;		/* latlon output: wrap to 0,360 */
	struct Flag *no_topol;		/* do not build topology */
    } flag;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    G_add_keyword(_("import"));
    module->description = _("Re-projects a vector map from one location to the current location.");

    /* set up the options and flags for the command line parser */

    ilocopt = G_define_standard_option(G_OPT_M_LOCATION);
    ilocopt->required = YES;
    ilocopt->label = _("Location containing input vector map");
    ilocopt->guisection = _("Source");
    
    isetopt = G_define_standard_option(G_OPT_M_MAPSET);
    isetopt->label = _("Mapset containing input vector map");
    isetopt->description = _("Default: name of current mapset");
    isetopt->guisection = _("Source");

    mapopt = G_define_standard_option(G_OPT_V_INPUT);
    mapopt->required = NO;
    mapopt->label = _("Name of input vector map to re-project");
    mapopt->description = NULL;
    mapopt->guisection = _("Source");
    
    ibaseopt = G_define_standard_option(G_OPT_M_DBASE);
    ibaseopt->label = _("Path to GRASS database of input location");
    
    smax = G_define_option();
    smax->key = "smax";
    smax->type = TYPE_DOUBLE;
    smax->required = NO;
    smax->answer = "10000";
    smax->label = _("Maximum segment length in meters in output vector map");
    smax->description = _("Increases accuracy of reprojected shapes, disable with smax=0");
    smax->guisection = _("Target");

    omapopt = G_define_standard_option(G_OPT_V_OUTPUT);
    omapopt->required = NO;
    omapopt->description = _("Name for output vector map (default: input)");
    omapopt->guisection = _("Target");

    flag.list = G_define_flag();
    flag.list->key = 'l';
    flag.list->description = _("List vector maps in input mapset and exit");

    flag.transformz = G_define_flag();
    flag.transformz->key = 'z';
    flag.transformz->description = _("3D vector maps only");
    flag.transformz->label =
	_("Assume z coordinate is ellipsoidal height and "
	  "transform if possible");
    flag.transformz->guisection = _("Target");

    flag.wrap = G_define_flag();
    flag.wrap->key = 'w';
    flag.wrap->description = _("Latlon output only, default is -180,180");
    flag.wrap->label =
	_("Disable wrapping to -180,180 for latlon output");
    flag.transformz->guisection = _("Target");

    flag.no_topol = G_define_flag();
    flag.no_topol->key = 'b';
    flag.no_topol->label = _("Do not build vector topology");
    flag.no_topol->description = _("Recommended for massive point projection");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* start checking options and flags */
    /* set input vector map name and mapset */
    map_name = mapopt->answer;
    if (omapopt->answer)
	omap_name = omapopt->answer;
    else
	omap_name = map_name;
    if (omap_name && !flag.list->answer && !overwrite &&
	G_find_vector2(omap_name, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists. To overwrite, use the --overwrite flag"), omapopt->key,
		      omap_name);
    if (isetopt->answer)
	iset_name = isetopt->answer;
    else
	iset_name = G_store(G_mapset());

    iloc_name = ilocopt->answer;

    if (ibaseopt->answer)
	gbase = ibaseopt->answer;
    else
	gbase = G_store(G_gisdbase());

    if (!ibaseopt->answer && strcmp(iloc_name, G_location()) == 0)
	G_fatal_error(_("Input and output locations can not be the same"));

    lmax = atof(smax->answer);
    if (lmax < 0)
	lmax = 0;

    Out_proj = G_projection();
    if (Out_proj == PROJECTION_LL && flag.wrap->answer)
	nowrap = 1;
    
    G_begin_distance_calculations();

    /* Change the location here and then come back */

    select_target_env();
    G_setenv_nogisrc("GISDBASE", gbase);
    G_setenv_nogisrc("LOCATION_NAME", iloc_name);
    stat = G_mapset_permissions(iset_name);
    
    if (stat >= 0) {		/* yes, we can access the mapset */
	/* if requested, list the vector maps in source location - MN 5/2001 */
	if (flag.list->answer) {
	    int i;
	    char **list;
	    G_verbose_message(_("Checking location <%s> mapset <%s>"),
			      iloc_name, iset_name);
	    list = G_list(G_ELEMENT_VECTOR, G_getenv_nofatal("GISDBASE"),
			  G_getenv_nofatal("LOCATION_NAME"), iset_name);
	    if (list[0]) {
		for (i = 0; list[i]; i++) {
		    fprintf(stdout, "%s\n", list[i]);
		}
		fflush(stdout);
	    }
	    else {
		G_important_message(_("No vector maps found"));
	    }
	    exit(EXIT_SUCCESS);	/* leave v.proj after listing */
	}

	if (mapopt->answer == NULL) {
	    G_fatal_error(_("Required parameter <%s> not set"), mapopt->key);
	}

	G_setenv_nogisrc("MAPSET", iset_name);
	/* Make sure map is available */
	mapset = G_find_vector2(map_name, iset_name);
	if (mapset == NULL)
	    G_fatal_error(_("Vector map <%s> in location <%s> mapset <%s> not found"),
			  map_name, iloc_name, iset_name);

	 /*** Get projection info for input mapset ***/
	in_proj_keys = G_get_projinfo();
	if (in_proj_keys == NULL)
	    exit(EXIT_FAILURE);

	/* apparently the +over switch must be set in the input projection,
	 * not the output latlon projection */
	if (Out_proj == PROJECTION_LL && nowrap == 1)
	    G_set_key_value("+over", "defined", in_proj_keys);

	in_unit_keys = G_get_projunits();
	if (in_unit_keys == NULL)
	    exit(EXIT_FAILURE);

	if (pj_get_kv(&info_in, in_proj_keys, in_unit_keys) < 0)
	    exit(EXIT_FAILURE);

	Vect_set_open_level(1);
	G_debug(1, "Open old: location: %s mapset : %s", G_location_path(),
		G_mapset());
	if (Vect_open_old(&Map, map_name, mapset) < 0)
	    G_fatal_error(_("Unable to open vector map <%s>"), map_name);
    }
    else if (stat < 0)
    {				/* allow 0 (i.e. denied permission) */
	/* need to be able to read from others */
	if (stat == 0)
	    G_fatal_error(_("Mapset <%s> in input location <%s> - permission denied"),
			  iset_name, iloc_name);
	else
	    G_fatal_error(_("Mapset <%s> in input location <%s> not found"),
			  iset_name, iloc_name);
    }

    select_current_env();

    /****** get the output projection parameters ******/
    out_proj_keys = G_get_projinfo();
    if (out_proj_keys == NULL)
	exit(EXIT_FAILURE);

    out_unit_keys = G_get_projunits();
    if (out_unit_keys == NULL)
	exit(EXIT_FAILURE);

    if (pj_get_kv(&info_out, out_proj_keys, out_unit_keys) < 0)
	exit(EXIT_FAILURE);

    G_free_key_value(in_proj_keys);
    G_free_key_value(in_unit_keys);
    G_free_key_value(out_proj_keys);
    G_free_key_value(out_unit_keys);

    if (G_verbose() == G_verbose_max()) {
	pj_print_proj_params(&info_in, &info_out);
    }

    /* Initialize the Point / Cat structure */
    Points = Vect_new_line_struct();
    Points2 = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    /* test if latlon wrapping to -180,180 should be disabled */
    if (Out_proj == PROJECTION_LL && nowrap == 0) {
	int first = 1, counter = 0;
	double x, y;
	
	/* Cycle through all lines */
	Vect_rewind(&Map);
	while (1) {
	    type = Vect_read_next_line(&Map, Points, Cats);	/* read line */
	    if (type == 0)
		continue;		/* Dead */

	    if (type == -1)
		G_fatal_error(_("Reading input vector map"));
	    if (type == -2)
		break;
		
	    if (first && Points->n_points > 0) {
		first = 0;
		src_box.E = src_box.W = Points->x[0];
		src_box.N = src_box.S = Points->y[0];
		src_box.T = src_box.B = Points->z[0];
	    }
	    for (i = 0; i < Points->n_points; i++) {
		if (src_box.E < Points->x[i])
		    src_box.E = Points->x[i];
		if (src_box.W > Points->x[i])
		    src_box.W = Points->x[i];
		if (src_box.N < Points->y[i])
		    src_box.N = Points->y[i];
		if (src_box.S > Points->y[i])
		    src_box.S = Points->y[i];
	    }
	    counter++;
	}
	if (counter == 0) {
	    G_warning(_("Input vector map <%s> is empty"), omap_name);
	    exit(EXIT_SUCCESS);
	}
	/* NW corner */
	x = src_box.W;
	y = src_box.N;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	tgt_box.E = x;
	tgt_box.W = x;
	tgt_box.N = y;
	tgt_box.S = y;
	/* SW corner */
	x = src_box.W;
	y = src_box.S;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	if (tgt_box.W > x)
	    tgt_box.W = x;
	if (tgt_box.E < x)
	    tgt_box.E = x;
	if (tgt_box.N < y)
	    tgt_box.N = y;
	if (tgt_box.S > y)
	    tgt_box.S = y;
	/* NE corner */
	x = src_box.E;
	y = src_box.N;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	if (tgt_box.W > x) {
	    tgt_box.E = x + 360;
	    recommend_nowrap = 1;
	}
	if (tgt_box.N < y)
	    tgt_box.N = y;
	if (tgt_box.S > y)
	    tgt_box.S = y;
	/* SE corner */
	x = src_box.E;
	y = src_box.S;
	if (pj_do_transform(1, &x, &y, NULL,
			    &info_in, &info_out) < 0) {
	    G_fatal_error(_("Error in pj_do_transform"));
	}
	if (tgt_box.W > x) {
	    if (tgt_box.E < x + 360)
		tgt_box.E = x + 360;
	    recommend_nowrap = 1;
	}
	if (tgt_box.N < y)
	    tgt_box.N = y;
	if (tgt_box.S > y)
	    tgt_box.S = y;
    }

    G_debug(1, "Open new: location: %s mapset : %s", G_location_path(),
	    G_mapset());

    if (Vect_open_new(&Out_Map, omap_name, Vect_is_3d(&Map)) < 0)
	G_fatal_error(_("Unable to create vector map <%s>"), omap_name);

    Vect_set_error_handler_io(NULL, &Out_Map); /* register standard i/o error handler */
    
    Vect_copy_head_data(&Map, &Out_Map);
    Vect_hist_copy(&Map, &Out_Map);
    Vect_hist_command(&Out_Map);

    out_zone = info_out.zone;
    Vect_set_zone(&Out_Map, out_zone);

    /* Read and write header info */
    sprintf(date, "%s", G_date());
    sscanf(date, "%*s%s%d%*s%d", mon, &day, &yr);
    if (yr < 2000)
	yr = yr - 1900;
    else
	yr = yr - 2000;
    sprintf(date, "%s %d %d", mon, day, yr);
    Vect_set_date(&Out_Map, date);

    /* line densification works only with vector topology */
    if (Map.format != GV_FORMAT_NATIVE)
	lmax = 0;

    /* Cycle through all lines */
    Vect_rewind(&Map);
    i = 0;
    G_message(_("Reprojecting primitives ..."));
    while (TRUE) {
	++i;
	G_progress(i, 1e3);
	type = Vect_read_next_line(&Map, Points, Cats);	/* read line */
	if (type == 0)
	    continue;		/* Dead */

	if (type == -1)
	    G_fatal_error(_("Reading input vector map"));
	if (type == -2)
	    break;

	Vect_line_prune(Points);
	if (lmax > 0 && (type & GV_LINES) && Points->n_points > 1) {
	    double x1, y1, z1, x2, y2, z2;
	    double dx, dy, dz;
	    double l;
	    int i, n;

	    Vect_reset_line(Points2);
	    for (i = 0; i < Points->n_points - 1; i++) {
		x1 = Points->x[i];
		y1 = Points->y[i];
		z1 = Points->z[i];
		n = i + 1;
		x2 = Points->x[n];
		y2 = Points->y[n];
		z2 = Points->z[n];

		dx = x2 - x1;
		dy = y2 - y1;
		dz = z2 - z1;

		if (pj_do_transform(1, &x1, &y1,
				    flag.transformz->answer ? &z1 : NULL,
				    &info_in, &info_out) < 0) {
		  G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
				Vect_get_full_name(&Map), ilocopt->answer);
		}

		if (pj_do_transform(1, &x2, &y2,
				    flag.transformz->answer ? &z2 : NULL,
				    &info_in, &info_out) < 0) {
		  G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
				Vect_get_full_name(&Map), ilocopt->answer);
		}

		Vect_append_point(Points2, x1, y1, z1);

		l = G_distance(x1, y1, x2, y2);

		if (l > lmax) {
		    int j;
		    double x, y, z;

		    x1 = Points->x[i];
		    y1 = Points->y[i];
		    z1 = Points->z[i];

		    n = ceil(l / lmax);

		    for (j = 1; j < n; j++) {
			x = x1 + dx * j / n;
			y = y1 + dy * j / n;
			z = z1 + dz * j / n;

			if (pj_do_transform(1, &x, &y,
					    flag.transformz->answer ? &z : NULL,
					    &info_in, &info_out) < 0) {
			  G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
					Vect_get_full_name(&Map), ilocopt->answer);
			}
			Vect_append_point(Points2, x, y, z);
		    }
		}
	    }
	    Vect_append_point(Points2, x2, y2, z2);
	    Vect_write_line(&Out_Map, type, Points2, Cats);	/* write line */
	}
	else {
	    if (pj_do_transform(Points->n_points, Points->x, Points->y,
				flag.transformz->answer ? Points->z : NULL,
				&info_in, &info_out) < 0) {
	      G_fatal_error(_("Unable to re-project vector map <%s> from <%s>"),
			    Vect_get_full_name(&Map), ilocopt->answer);
	    }

	    Vect_write_line(&Out_Map, type, Points, Cats);	/* write line */
	}
    }				/* end lines section */
    G_progress(1, 1);

    /* Copy tables */
    if (Vect_copy_tables(&Map, &Out_Map, 0))
        G_warning(_("Failed to copy attribute table to output map"));

    Vect_close(&Map);

    if (!flag.no_topol->answer)
        Vect_build(&Out_Map);
    Vect_close(&Out_Map);

    if (recommend_nowrap)
	G_important_message(_("Try to disable wrapping to -180,180 "
			      "if topological errors occurred"));

    exit(EXIT_SUCCESS);
}
Пример #22
0
/*--------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Variable declarations */
    int nsply, nsplx, nrows, ncols, nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row, subregion_row, subregion_col;
    int subregion = 0, nsubregions = 0;
    int last_row, last_column, grid, bilin, ext, flag_auxiliar, cross;	/* booleans */
    double stepN, stepE, lambda, mean;
    double N_extension, E_extension, edgeE, edgeN;

    const char *mapset, *drv, *db, *vector, *map;
    char table_name[GNAME_MAX], title[64];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];

    int dim_vect, nparameters, BW;
    int *lineVect;		/* Vector restoring primitive's ID */
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect;	/* Interpolation and least-square matrix */

    SEGMENT out_seg, mask_seg;
    const char *out_file, *mask_file;
    int out_fd, mask_fd;
    double seg_size;
    int seg_mb, segments_in_memory;
    int have_mask;

    /* Structs declarations */
    int raster;
    struct Map_info In, In_ext, Out;
    struct History history;

    struct GModule *module;
    struct Option *in_opt, *in_ext_opt, *out_opt, *out_map_opt, *stepE_opt,
               *stepN_opt, *lambda_f_opt, *type_opt, *dfield_opt, *col_opt, *mask_opt,
               *memory_opt, *solver, *error, *iter;
    struct Flag *cross_corr_flag, *spline_step_flag;

    struct Reg_dimens dims;
    struct Cell_head elaboration_reg, original_reg;
    struct bound_box general_box, overlap_box, original_box;

    struct Point *observ;
    struct line_cats *Cats;
    dbCatValArray cvarr;

    int with_z;
    int nrec, ctype = 0;
    struct field_info *Fi;
    dbDriver *driver, *driver_cats;

    /*----------------------------------------------------------------*/
    /* Options declarations */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("surface"));
    G_add_keyword(_("interpolation"));
    G_add_keyword(_("LIDAR"));
    module->description =
        _("Performs bicubic or bilinear spline interpolation with Tykhonov regularization.");

    cross_corr_flag = G_define_flag();
    cross_corr_flag->key = 'c';
    cross_corr_flag->description =
        _("Find the best Tykhonov regularizing parameter using a \"leave-one-out\" cross validation method");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
        _("Estimate point density and distance for the input vector points within the current region extends and quit");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_opt->label = _("Name of input vector point map");

    dfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    dfield_opt->guisection = _("Settings");

    col_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    col_opt->required = NO;
    col_opt->label =
        _("Name of the attribute column with values to be used for approximation");
    col_opt->description = _("If not given and input is 3D vector map then z-coordinates are used.");
    col_opt->guisection = _("Settings");

    in_ext_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_ext_opt->key = "sparse_input";
    in_ext_opt->required = NO;
    in_ext_opt->label =
        _("Name of input vector map with sparse points");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->required = NO;
    out_opt->guisection = _("Outputs");

    out_map_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    out_map_opt->key = "raster_output";
    out_map_opt->required = NO;
    out_map_opt->guisection = _("Outputs");

    mask_opt = G_define_standard_option(G_OPT_R_INPUT);
    mask_opt->key = "mask";
    mask_opt->label = _("Raster map to use for masking (applies to raster output only)");
    mask_opt->description = _("Only cells that are not NULL and not zero are interpolated");
    mask_opt->required = NO;

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "4";
    stepE_opt->description =
        _("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "4";
    stepN_opt->description =
        _("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    type_opt = G_define_option();
    type_opt->key = "method";
    type_opt->description = _("Spline interpolation algorithm");
    type_opt->type = TYPE_STRING;
    type_opt->options = "bilinear,bicubic";
    type_opt->answer = "bilinear";
    type_opt->guisection = _("Settings");
    G_asprintf((char **) &(type_opt->descriptions),
               "bilinear;%s;bicubic;%s",
               _("Bilinear interpolation"),
               _("Bicubic interpolation"));

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda_i";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description = _("Tykhonov regularization parameter (affects smoothing)");
    lambda_f_opt->answer = "0.01";
    lambda_f_opt->guisection = _("Settings");

    solver = N_define_standard_option(N_OPT_SOLVER_SYMM);
    solver->options = "cholesky,cg";
    solver->answer = "cholesky";

    iter = N_define_standard_option(N_OPT_MAX_ITERATIONS);

    error = N_define_standard_option(N_OPT_ITERATION_ERROR);

    memory_opt = G_define_option();
    memory_opt->key = "memory";
    memory_opt->type = TYPE_INTEGER;
    memory_opt->required = NO;
    memory_opt->answer = "300";
    memory_opt->label = _("Maximum memory to be used (in MB)");
    memory_opt->description = _("Cache size for raster rows");

    /*----------------------------------------------------------------*/
    /* Parsing */
    G_gisinit(argv[0]);
    if (G_parser(argc, argv))
        exit(EXIT_FAILURE);

    vector = out_opt->answer;
    map = out_map_opt->answer;

    if (vector && map)
        G_fatal_error(_("Choose either vector or raster output, not both"));

    if (!vector && !map && !cross_corr_flag->answer)
        G_fatal_error(_("No raster or vector or cross-validation output"));

    if (!strcmp(type_opt->answer, "linear"))
        bilin = P_BILINEAR;
    else
        bilin = P_BICUBIC;

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);

    flag_auxiliar = FALSE;

    drv = db_get_default_driver_name();
    if (!drv) {
        if (db_set_default_connection() != DB_OK)
            G_fatal_error(_("Unable to set default DB connection"));
        drv = db_get_default_driver_name();
    }
    db = db_get_default_database_name();
    if (!db)
        G_fatal_error(_("No default DB defined"));

    /* Set auxiliary table's name */
    if (vector) {
        if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
            sprintf(table_name, "%s_aux", xname);
        }
        else
            sprintf(table_name, "%s_aux", out_opt->answer);
    }

    /* Something went wrong in a previous v.surf.bspline execution */
    if (db_table_exists(drv, db, table_name)) {
        /* Start driver and open db */
        driver = db_start_driver_open_database(drv, db);
        if (driver == NULL)
            G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
                          drv);
        db_set_error_handler_driver(driver);

        if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
            G_fatal_error(_("Old auxiliary table could not be dropped"));
        db_close_database_shutdown_driver(driver);
    }

    /* Open input vector */
    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL)
        G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);

    Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
        G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
                      in_opt->answer);

    bspline_field = 0; /* assume 3D input */
    bspline_column = col_opt->answer;

    with_z = !bspline_column && Vect_is_3d(&In);

    if (Vect_is_3d(&In)) {
        if (!with_z)
            G_verbose_message(_("Input is 3D: using attribute values instead of z-coordinates for approximation"));
        else
            G_verbose_message(_("Input is 3D: using z-coordinates for approximation"));
    }
    else { /* 2D */
        if (!bspline_column)
            G_fatal_error(_("Input vector map is 2D. Parameter <%s> required."), col_opt->key);
    }

    if (!with_z) {
        bspline_field = Vect_get_field_number(&In, dfield_opt->answer);
    }

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
        double dens, dist;
        if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
            fprintf(stdout, _("Estimated point density: %.4g"), dens);
            fprintf(stdout, _("Estimated mean distance between points: %.4g"), dist);
        }
        else {
            fprintf(stdout, _("No points in current region"));
        }

        Vect_close(&In);
        exit(EXIT_SUCCESS);
    }

    /*----------------------------------------------------------------*/
    /* Cross-correlation begins */
    if (cross_corr_flag->answer) {
        G_debug(1, "CrossCorrelation()");
        cross = cross_correlation(&In, stepE, stepN);

        if (cross != TRUE)
            G_fatal_error(_("Cross validation didn't finish correctly"));
        else {
            G_debug(1, "Cross validation finished correctly");

            Vect_close(&In);

            G_done_msg(_("Cross validation finished for ew_step = %f and ns_step = %f"), stepE, stepN);
            exit(EXIT_SUCCESS);
        }
    }

    /* Open input ext vector */
    ext = FALSE;
    if (in_ext_opt->answer) {
        ext = TRUE;
        G_message(_("Vector map <%s> of sparse points will be interpolated"),
                  in_ext_opt->answer);

        if ((mapset = G_find_vector2(in_ext_opt->answer, "")) == NULL)
            G_fatal_error(_("Vector map <%s> not found"), in_ext_opt->answer);

        Vect_set_open_level(1);	/* WITHOUT TOPOLOGY */
        if (1 > Vect_open_old(&In_ext, in_ext_opt->answer, mapset))
            G_fatal_error(_("Unable to open vector map <%s> at the topological level"),
                          in_opt->answer);
    }

    /* Open output map */
    /* vector output */
    if (vector && !map) {
        if (strcmp(drv, "dbf") == 0)
            G_fatal_error(_("Sorry, the <%s> driver is not compatible with "
                            "the vector output of this module. "
                            "Try with raster output or another driver."), drv);

        Vect_check_input_output_name(in_opt->answer, out_opt->answer,
                                     G_FATAL_EXIT);
        grid = FALSE;

        if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z))
            G_fatal_error(_("Unable to create vector map <%s>"),
                          out_opt->answer);

        /* Copy vector Head File */
        if (ext == FALSE) {
            Vect_copy_head_data(&In, &Out);
            Vect_hist_copy(&In, &Out);
        }
        else {
            Vect_copy_head_data(&In_ext, &Out);
            Vect_hist_copy(&In_ext, &Out);
        }
        Vect_hist_command(&Out);

        G_verbose_message(_("Points in input vector map <%s> will be interpolated"),
                          vector);
    }


    /* read z values from attribute table */
    if (bspline_field > 0) {
        G_message(_("Reading values from attribute table..."));
        db_CatValArray_init(&cvarr);
        Fi = Vect_get_field(&In, bspline_field);
        if (Fi == NULL)
            G_fatal_error(_("Cannot read layer info"));

        driver_cats = db_start_driver_open_database(Fi->driver, Fi->database);
        /*G_debug (0, _("driver=%s db=%s"), Fi->driver, Fi->database); */

        if (driver_cats == NULL)
            G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
                          Fi->database, Fi->driver);
        db_set_error_handler_driver(driver_cats);

        nrec =
            db_select_CatValArray(driver_cats, Fi->table, Fi->key,
                                  col_opt->answer, NULL, &cvarr);
        G_debug(3, "nrec = %d", nrec);

        ctype = cvarr.ctype;
        if (ctype != DB_C_TYPE_INT && ctype != DB_C_TYPE_DOUBLE)
            G_fatal_error(_("Column type not supported"));

        if (nrec < 0)
            G_fatal_error(_("Unable to select data from table"));

        G_verbose_message(_("%d records selected from table"), nrec);

        db_close_database_shutdown_driver(driver_cats);
    }

    /*----------------------------------------------------------------*/
    /* Interpolation begins */
    G_debug(1, "Interpolation()");

    /* Open driver and database */
    driver = db_start_driver_open_database(drv, db);
    if (driver == NULL)
        G_fatal_error(_("No database connection for driver <%s> is defined. "
                        "Run db.connect."), drv);
    db_set_error_handler_driver(driver);

    /* Create auxiliary table */
    if (vector) {
        if ((flag_auxiliar = P_Create_Aux4_Table(driver, table_name)) == FALSE) {
            P_Drop_Aux_Table(driver, table_name);
            G_fatal_error(_("Interpolation: Creating table: "
                            "It was impossible to create table <%s>."),
                          table_name);
        }
        /* db_create_index2(driver, table_name, "ID"); */
        /* sqlite likes that ??? */
        db_close_database_shutdown_driver(driver);
        driver = db_start_driver_open_database(drv, db);
    }

    /* raster output */
    raster = -1;
    Rast_set_fp_type(DCELL_TYPE);
    if (!vector && map) {
        grid = TRUE;
        raster = Rast_open_fp_new(out_map_opt->answer);

        G_verbose_message(_("Cells for raster map <%s> will be interpolated"),
                          map);
    }

    /* Setting regions and boxes */
    G_debug(1, "Interpolation: Setting regions and boxes");
    G_get_window(&original_reg);
    G_get_window(&elaboration_reg);
    Vect_region_box(&original_reg, &original_box);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* Alloc raster matrix */
    have_mask = 0;
    out_file = mask_file = NULL;
    out_fd = mask_fd = -1;
    if (grid == TRUE) {
        int row;
        DCELL *drastbuf;

        seg_mb = atoi(memory_opt->answer);
        if (seg_mb < 3)
            G_fatal_error(_("Memory in MB must be >= 3"));

        if (mask_opt->answer)
            seg_size = sizeof(double) + sizeof(char);
        else
            seg_size = sizeof(double);

        seg_size = (seg_size * SEGSIZE * SEGSIZE) / (1 << 20);
        segments_in_memory = seg_mb / seg_size + 0.5;
        G_debug(1, "%d %dx%d segments held in memory", segments_in_memory, SEGSIZE, SEGSIZE);

        out_file = G_tempfile();
        out_fd = creat(out_file, 0666);
        if (Segment_format(out_fd, nrows, ncols, SEGSIZE, SEGSIZE, sizeof(double)) != 1)
            G_fatal_error(_("Can not create temporary file"));
        close(out_fd);

        out_fd = open(out_file, 2);
        if (Segment_init(&out_seg, out_fd, segments_in_memory) != 1)
            G_fatal_error(_("Can not initialize temporary file"));

        /* initialize output */
        G_message(_("Initializing output..."));

        drastbuf = Rast_allocate_buf(DCELL_TYPE);
        Rast_set_d_null_value(drastbuf, ncols);
        for (row = 0; row < nrows; row++) {
            G_percent(row, nrows, 2);
            Segment_put_row(&out_seg, drastbuf, row);
        }
        G_percent(row, nrows, 2);

        if (mask_opt->answer) {
            int row, col, maskfd;
            DCELL dval, *drastbuf;
            char mask_val;

            G_message(_("Load masking map"));

            mask_file = G_tempfile();
            mask_fd = creat(mask_file, 0666);
            if (Segment_format(mask_fd, nrows, ncols, SEGSIZE, SEGSIZE, sizeof(char)) != 1)
                G_fatal_error(_("Can not create temporary file"));
            close(mask_fd);

            mask_fd = open(mask_file, 2);
            if (Segment_init(&mask_seg, mask_fd, segments_in_memory) != 1)
                G_fatal_error(_("Can not initialize temporary file"));

            maskfd = Rast_open_old(mask_opt->answer, "");
            drastbuf = Rast_allocate_buf(DCELL_TYPE);

            for (row = 0; row < nrows; row++) {
                G_percent(row, nrows, 2);
                Rast_get_d_row(maskfd, drastbuf, row);
                for (col = 0; col < ncols; col++) {
                    dval = drastbuf[col];
                    if (Rast_is_d_null_value(&dval) || dval == 0)
                        mask_val = 0;
                    else
                        mask_val = 1;

                    Segment_put(&mask_seg, &mask_val, row, col);
                }
            }

            G_percent(row, nrows, 2);
            G_free(drastbuf);
            Rast_close(maskfd);

            have_mask = 1;
        }
    }

    /*------------------------------------------------------------------
      | Subdividing and working with tiles:
      | Each original region will be divided into several subregions.
      | Each one will be overlaped by its neighbouring subregions.
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);		/* Set dim struct to zero */

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
        dims.overlap = OVERLAP_SIZE * stepN;
    else
        dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(bilin, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(_("Adjusted EW splines %d"), nsplx_adj);
    G_verbose_message(_("Adjusted NS splines %d"), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
        nsubregion_col = 0;
    if (nsubregion_row < 0)
        nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    /* Creating line and categories structs */
    Cats = Vect_new_cats_struct();
    Vect_cat_set(Cats, 1, 0);

    subregion_row = 0;
    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each subregion row */
        subregion_row++;
        P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                      GENERAL_ROW);

        if (elaboration_reg.north > original_reg.north) {	/* First row */

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          FIRST_ROW);
        }

        if (elaboration_reg.south <= original_reg.south) {	/* Last row */

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          LAST_ROW);
            last_row = TRUE;
        }

        nsply =
            ceil((elaboration_reg.north -
                  elaboration_reg.south) / stepN) + 0.5;
        G_debug(1, "Interpolation: nsply = %d", nsply);
        /*
        if (nsply > NSPLY_MAX)
            nsply = NSPLY_MAX;
        */
        elaboration_reg.east = original_reg.west;
        last_column = FALSE;
        subregion_col = 0;

        /* TODO: process each subregion using its own thread (via OpenMP or pthreads) */
        /*     I'm not sure about pthreads, but you can tell OpenMP to start all at the
        	same time and it will keep num_workers supplied with the next job as free
        	cpus become available */
        while (last_column == FALSE) {	/* For each subregion column */
            int npoints = 0;
            /* needed for sparse points interpolation */
            int npoints_ext, *lineVect_ext = NULL;
            double **obsVect_ext;	/*, mean_ext = .0; */
            struct Point *observ_ext;

            subregion_col++;
            subregion++;
            if (nsubregions > 1)
                G_message(_("Processing subregion %d of %d..."), subregion, nsubregions);

            P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
                          GENERAL_COLUMN);

            if (elaboration_reg.west < original_reg.west) {	/* First column */

                P_set_regions(&elaboration_reg, &general_box, &overlap_box,
                              dims, FIRST_COLUMN);
            }

            if (elaboration_reg.east >= original_reg.east) {	/* Last column */

                P_set_regions(&elaboration_reg, &general_box, &overlap_box,
                              dims, LAST_COLUMN);
                last_column = TRUE;
            }
            nsplx =
                ceil((elaboration_reg.east -
                      elaboration_reg.west) / stepE) + 0.5;
            G_debug(1, "Interpolation: nsplx = %d", nsplx);
            /*
            if (nsplx > NSPLX_MAX)
            nsplx = NSPLX_MAX;
            */
            G_debug(1, "Interpolation: (%d,%d): subregion bounds",
                    subregion_row, subregion_col);
            G_debug(1, "Interpolation: \t\tNORTH:%.2f\t",
                    elaboration_reg.north);
            G_debug(1, "Interpolation: WEST:%.2f\t\tEAST:%.2f",
                    elaboration_reg.west, elaboration_reg.east);
            G_debug(1, "Interpolation: \t\tSOUTH:%.2f",
                    elaboration_reg.south);

#ifdef DEBUG_SUBREGIONS
            fprintf(stdout, "B 5\n");
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.north);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.west, elaboration_reg.north);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.west, elaboration_reg.south);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.south);
            fprintf(stdout, " %.11g %.11g\n", elaboration_reg.east, elaboration_reg.north);
            fprintf(stdout, "C 1 1\n");
            fprintf(stdout, " %.11g %.11g\n", (elaboration_reg.west + elaboration_reg.east) / 2,
                    (elaboration_reg.south + elaboration_reg.north) / 2);
            fprintf(stdout, " 1 %d\n", subregion);
#endif



            /* reading points in interpolation region */
            dim_vect = nsplx * nsply;
            observ_ext = NULL;
            if (grid == FALSE && ext == TRUE) {
                observ_ext =
                    P_Read_Vector_Region_Map(&In_ext,
                                             &elaboration_reg,
                                             &npoints_ext, dim_vect,
                                             1);
            }
            else
                npoints_ext = 1;

            if (grid == TRUE && have_mask) {
                /* any unmasked cells in general region ? */
                mean = 0;
                observ_ext =
                    P_Read_Raster_Region_masked(&mask_seg, &original_reg,
                                                original_box, general_box,
                                                &npoints_ext, dim_vect, mean);
            }

            observ = NULL;
            if (npoints_ext > 0) {
                observ =
                    P_Read_Vector_Region_Map(&In, &elaboration_reg, &npoints,
                                             dim_vect, bspline_field);
            }
            else
                npoints = 1;

            G_debug(1,
                    "Interpolation: (%d,%d): Number of points in <elaboration_box> is %d",
                    subregion_row, subregion_col, npoints);
            if (npoints > 0)
                G_verbose_message(_("%d points found in this subregion"), npoints);
            /* only interpolate if there are any points in current subregion */
            if (npoints > 0 && npoints_ext > 0) {
                int i;

                nparameters = nsplx * nsply;
                BW = P_get_BandWidth(bilin, nsply);

                /* Least Squares system */
                N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
                TN = G_alloc_vector(nparameters);	/* vector */
                parVect = G_alloc_vector(nparameters);	/* Parameters vector */
                obsVect = G_alloc_matrix(npoints, 3);	/* Observation vector */
                Q = G_alloc_vector(npoints);	/* "a priori" var-cov matrix */
                lineVect = G_alloc_ivector(npoints);	/*  */

                for (i = 0; i < npoints; i++) {	/* Setting obsVect vector & Q matrix */
                    double dval;

                    Q[i] = 1;	/* Q=I */
                    lineVect[i] = observ[i].lineID;
                    obsVect[i][0] = observ[i].coordX;
                    obsVect[i][1] = observ[i].coordY;

                    /* read z coordinates from attribute table */
                    if (bspline_field > 0) {
                        int cat, ival, ret;

                        cat = observ[i].cat;
                        if (cat < 0)
                            continue;

                        if (ctype == DB_C_TYPE_INT) {
                            ret =
                                db_CatValArray_get_value_int(&cvarr, cat,
                                                             &ival);
                            obsVect[i][2] = ival;
                            observ[i].coordZ = ival;
                        }
                        else {	/* DB_C_TYPE_DOUBLE */
                            ret =
                                db_CatValArray_get_value_double(&cvarr, cat,
                                                                &dval);
                            obsVect[i][2] = dval;
                            observ[i].coordZ = dval;
                        }
                        if (ret != DB_OK) {
                            G_warning(_("Interpolation: (%d,%d): No record for point (cat = %d)"),
                                      subregion_row, subregion_col, cat);
                            continue;
                        }
                    }
                    /* use z coordinates of 3D vector */
                    else {
                        obsVect[i][2] = observ[i].coordZ;
                    }
                }

                /* Mean calculation for every point */
                mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

                G_debug(1, "Interpolation: (%d,%d): mean=%lf",
                        subregion_row, subregion_col, mean);

                G_free(observ);

                for (i = 0; i < npoints; i++)
                    obsVect[i][2] -= mean;

                /* Bilinear interpolation */
                if (bilin) {
                    G_debug(1,
                            "Interpolation: (%d,%d): Bilinear interpolation...",
                            subregion_row, subregion_col);
                    normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
                                   nsply, elaboration_reg.west,
                                   elaboration_reg.south, npoints,
                                   nparameters, BW);
                    nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
                }
                /* Bicubic interpolation */
                else {
                    G_debug(1,
                            "Interpolation: (%d,%d): Bicubic interpolation...",
                            subregion_row, subregion_col);
                    normalDefBicubic(N, TN, Q, obsVect, stepE, stepN, nsplx,
                                     nsply, elaboration_reg.west,
                                     elaboration_reg.south, npoints,
                                     nparameters, BW);
                    nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
                }

                if(G_strncasecmp(solver->answer, "cg", 2) == 0)
                    G_math_solver_cg_sband(N, parVect, TN, nparameters, BW, atoi(iter->answer), atof(error->answer));
                else
                    G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);


                G_free_matrix(N);
                G_free_vector(TN);
                G_free_vector(Q);

                if (grid == TRUE) {	/* GRID INTERPOLATION ==> INTERPOLATION INTO A RASTER */
                    G_debug(1, "Interpolation: (%d,%d): Regular_Points...",
                            subregion_row, subregion_col);

                    if (!have_mask) {
                        P_Regular_Points(&elaboration_reg, &original_reg, general_box,
                                         overlap_box, &out_seg, parVect,
                                         stepN, stepE, dims.overlap, mean,
                                         nsplx, nsply, nrows, ncols, bilin);
                    }
                    else {
                        P_Sparse_Raster_Points(&out_seg,
                                               &elaboration_reg, &original_reg,
                                               general_box, overlap_box,
                                               observ_ext, parVect,
                                               stepE, stepN,
                                               dims.overlap, nsplx, nsply,
                                               npoints_ext, bilin, mean);
                    }
                }
                else {		/* OBSERVATION POINTS INTERPOLATION */
                    if (ext == FALSE) {
                        G_debug(1, "Interpolation: (%d,%d): Sparse_Points...",
                                subregion_row, subregion_col);
                        P_Sparse_Points(&Out, &elaboration_reg, general_box,
                                        overlap_box, obsVect, parVect,
                                        lineVect, stepE, stepN,
                                        dims.overlap, nsplx, nsply, npoints,
                                        bilin, Cats, driver, mean,
                                        table_name);
                    }
                    else {	/* FLAG_EXT == TRUE */

                        /* done that earlier */
                        /*
                        int npoints_ext, *lineVect_ext = NULL;
                        double **obsVect_ext;
                        struct Point *observ_ext;

                        observ_ext =
                            P_Read_Vector_Region_Map(&In_ext,
                        			     &elaboration_reg,
                        			     &npoints_ext, dim_vect,
                        			     1);
                        */

                        obsVect_ext = G_alloc_matrix(npoints_ext, 3);	/* Observation vector_ext */
                        lineVect_ext = G_alloc_ivector(npoints_ext);

                        for (i = 0; i < npoints_ext; i++) {	/* Setting obsVect_ext vector & Q matrix */
                            obsVect_ext[i][0] = observ_ext[i].coordX;
                            obsVect_ext[i][1] = observ_ext[i].coordY;
                            obsVect_ext[i][2] = observ_ext[i].coordZ - mean;
                            lineVect_ext[i] = observ_ext[i].lineID;
                        }

                        G_free(observ_ext);

                        G_debug(1, "Interpolation: (%d,%d): Sparse_Points...",
                                subregion_row, subregion_col);
                        P_Sparse_Points(&Out, &elaboration_reg, general_box,
                                        overlap_box, obsVect_ext, parVect,
                                        lineVect_ext, stepE, stepN,
                                        dims.overlap, nsplx, nsply,
                                        npoints_ext, bilin, Cats, driver,
                                        mean, table_name);

                        G_free_matrix(obsVect_ext);
                        G_free_ivector(lineVect_ext);
                    }		/* END FLAG_EXT == TRUE */
                }		/* END GRID == FALSE */
                G_free_vector(parVect);
                G_free_matrix(obsVect);
                G_free_ivector(lineVect);
            }
            else {
                if (observ)
                    G_free(observ);
                if (observ_ext)
                    G_free(observ_ext);
                if (npoints == 0)
                    G_warning(_("No data within this subregion. "
                                "Consider increasing spline step values."));
            }
        }			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    G_verbose_message(_("Writing output..."));
    /* Writing the output raster map */
    if (grid == TRUE) {
        int row, col;
        DCELL *drastbuf, dval;


        if (have_mask) {
            Segment_release(&mask_seg);	/* release memory  */
            close(mask_fd);
            unlink(mask_file);
        }

        drastbuf = Rast_allocate_buf(DCELL_TYPE);
        for (row = 0; row < nrows; row++) {
            G_percent(row, nrows, 2);
            for (col = 0; col < ncols; col++) {
                Segment_get(&out_seg, &dval, row, col);
                drastbuf[col] = dval;
            }
            Rast_put_d_row(raster, drastbuf);
        }

        Rast_close(raster);

        Segment_release(&out_seg);	/* release memory  */
        close(out_fd);
        unlink(out_file);
        /* set map title */
        sprintf(title, "%s interpolation with Tykhonov regularization",
                type_opt->answer);
        Rast_put_cell_title(out_map_opt->answer, title);
        /* write map history */
        Rast_short_history(out_map_opt->answer, "raster", &history);
        Rast_command_history(&history);
        Rast_write_history(out_map_opt->answer, &history);
    }
    /* Writing to the output vector map the points from the overlapping zones */
    else if (flag_auxiliar == TRUE) {
        if (ext == FALSE)
            P_Aux_to_Vector(&In, &Out, driver, table_name);
        else
            P_Aux_to_Vector(&In_ext, &Out, driver, table_name);

        /* Drop auxiliary table */
        G_debug(1, "%s: Dropping <%s>", argv[0], table_name);
        if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
            G_fatal_error(_("Auxiliary table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    if (ext != FALSE)
        Vect_close(&In_ext);
    if (vector)
        Vect_close(&Out);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*END MAIN */
Пример #23
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *in_opt, *layer_opt, *out_opt, *length_opt, *units_opt, *vertices_opt;
    
    struct Map_info In, Out;
    struct line_pnts *Points, *Points2;
    struct line_cats *Cats;

    int line, nlines, layer;
    double length = -1;
    int vertices = 0;
    double (*line_length) ();
    int latlon = 0;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("geometry"));
    module->description = _("Splits vector lines to shorter segments.");
    
    in_opt = G_define_standard_option(G_OPT_V_INPUT);

    layer_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    
    length_opt = G_define_option();
    length_opt->key = "length";
    length_opt->type = TYPE_DOUBLE;
    length_opt->required = NO;
    length_opt->multiple = NO;
    length_opt->description = _("Maximum segment length");

    units_opt = G_define_option();
    units_opt->key = "units";
    units_opt->type = TYPE_STRING;
    units_opt->required = NO;
    units_opt->multiple = NO;
    units_opt->options = "meters,kilometers,feet,miles,nautmiles";
    units_opt->answer = "meters";
    units_opt->description = _("Length units");
    
    vertices_opt = G_define_option();
    vertices_opt->key = "vertices";
    vertices_opt->type = TYPE_INTEGER;
    vertices_opt->required = NO;
    vertices_opt->multiple = NO;
    vertices_opt->description = _("Maximum number of vertices in segment");
    
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
    
    if ((length_opt->answer && vertices_opt->answer) ||
	!(length_opt->answer || vertices_opt->answer))
	G_fatal_error(_("Use either length or vertices"));

    line_length = NULL;

    if (length_opt->answer) {
	length = atof(length_opt->answer);
	if (length <= 0)
	    G_fatal_error(_("Length must be positive but is %g"), length);

	/* convert length to meters */
	if (strcmp(units_opt->answer, "meters") == 0)
	    /* do nothing */ ;
	else if (strcmp(units_opt->answer, "kilometers") == 0)
	    length *= FROM_KILOMETERS;
	else if (strcmp(units_opt->answer, "feet") == 0)
	    length *= FROM_FEET;
	else if (strcmp(units_opt->answer, "miles") == 0)
	    length *= FROM_MILES;
	else if (strcmp(units_opt->answer, "nautmiles") == 0)
	    length *= FROM_NAUTMILES;
	else
	    G_fatal_error(_("Unknown unit %s"), units_opt->answer); 

	/* set line length function */
	if ((latlon = (G_projection() == PROJECTION_LL)) == 1)
	    line_length = Vect_line_geodesic_length;
	else {
	    double factor;
	    
	    line_length = Vect_line_length;
	    
	    /* convert length to map units */
	    if ((factor = G_database_units_to_meters_factor()) == 0)
		G_fatal_error(_("Can not get projection units"));
	    else {
		/* meters to units */
		length = length / factor;
	    }
	}
	G_verbose_message(_("length in %s: %g"), (latlon ? "meters" : "map units"), length);
    }

    if (vertices_opt->answer) {
	vertices = atoi(vertices_opt->answer);
	if (vertices < 2)
	    G_fatal_error(_("Number of vertices must be at least 2"));
    }
    
    Vect_set_open_level(2);
    Vect_open_old2(&In, in_opt->answer, "", layer_opt->answer);
    layer = Vect_get_field_number(&In, layer_opt->answer);
    
    Vect_open_new(&Out, out_opt->answer, Vect_is_3d(&In));
    
    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);
    Vect_copy_tables(&In, &Out, layer);
    
    Points = Vect_new_line_struct();
    Points2 = Vect_new_line_struct();
    Cats = Vect_new_cats_struct();

    nlines = Vect_get_num_lines(&In);

    for (line = 1; line <= nlines; line++) {
	int ltype;

	G_percent(line, nlines, 1);

	if (!Vect_line_alive(&In, line))
	    continue;

	ltype = Vect_read_line(&In, Points, Cats, line);

	if (layer != -1 && !Vect_cat_get(Cats, layer, NULL))
	  continue;

	if (ltype & GV_LINES) {
	    if (length > 0) {
		double l, from, to, step;

		l = line_length(Points);

		if (l <= length) {
		    Vect_write_line(&Out, ltype, Points, Cats);
		}
		else {
		    int n, i;

		    n = ceil(l / length);
		    if (latlon)
			l = Vect_line_length(Points);

		    step = l / n;
		    from = 0.;

		    for (i = 0; i < n; i++) {
			int ret;
			double x, y, z;

			if (i == n - 1) {
			    to = l;	/* to be sure that it goes to end */
			}
			else {
			    to = from + step;
			}

			ret = Vect_line_segment(Points, from, to, Points2);
			if (ret == 0) {
			    G_warning(_("Unable to make line segment: %f - %f (line length = %f)"),
				      from, to, l);
			    continue;
			}

			/* To be sure that the coordinates are identical */
			if (i > 0) {
			    Points2->x[0] = x;
			    Points2->y[0] = y;
			    Points2->z[0] = z;
			}
			if (i == n - 1) {
			    Points2->x[Points2->n_points - 1] =
				Points->x[Points->n_points - 1];
			    Points2->y[Points2->n_points - 1] =
				Points->y[Points->n_points - 1];
			    Points2->z[Points2->n_points - 1] =
				Points->z[Points->n_points - 1];
			}

			Vect_write_line(&Out, ltype, Points2, Cats);

			/* last point */
			x = Points2->x[Points2->n_points - 1];
			y = Points2->y[Points2->n_points - 1];
			z = Points2->z[Points2->n_points - 1];

			from += step;
		    }
		}
	    }
	    else {
		int start = 0;	/* number of coordinates written */

		while (start < Points->n_points - 1) {
		    int i, v;

		    Vect_reset_line(Points2);
		    for (i = 0; i < vertices; i++) {
			v = start + i;
			if (v == Points->n_points)
			    break;

			Vect_append_point(Points2, Points->x[v], Points->y[v],
					  Points->z[v]);
		    }

		    Vect_write_line(&Out, ltype, Points2, Cats);

		    start = v;
		}
	    }
	}
	else {
	    Vect_write_line(&Out, ltype, Points, Cats);
	}
    }

    Vect_close(&In);
    Vect_build(&Out);
    Vect_close(&Out);
    
    exit(EXIT_SUCCESS);
}
Пример #24
0
/*----------------------------------------------------------------------------------------------------------*/
int main(int argc, char *argv[])
{
    /* Declarations */
    int dim_vect, nparameters, BW, npoints;
    int nsply, nsplx, nsplx_adj, nsply_adj;
    int nsubregion_col, nsubregion_row;
    int subregion = 0, nsubregions = 0;
    const char *dvr, *db, *mapset;
    char table_name[GNAME_MAX];
    char xname[GNAME_MAX], xmapset[GMAPSET_MAX];
    double lambda, mean, stepN, stepE, HighThresh,
	LowThresh;
    double N_extension, E_extension, edgeE, edgeN;

    int i, nterrain, count_terrain;

    int last_row, last_column, flag_auxiliar = FALSE;

    int *lineVect;
    double *TN, *Q, *parVect;	/* Interpolating and least-square vectors */
    double **N, **obsVect, **obsVect_all;	/* Interpolation and least-square matrix */

    struct Map_info In, Out, Terrain;
    struct Option *in_opt, *out_opt, *out_terrain_opt, *stepE_opt,
	*stepN_opt, *lambda_f_opt, *Thresh_A_opt, *Thresh_B_opt;
    struct Flag *spline_step_flag;
    struct GModule *module;

    struct Cell_head elaboration_reg, original_reg;
    struct Reg_dimens dims;
    struct bound_box general_box, overlap_box;

    struct Point *observ;
    struct lidar_cat *lcat;

    dbDriver *driver;

/*----------------------------------------------------------------------------------------------------------*/
    /* Options' declaration */
    module = G_define_module();
    G_add_keyword(_("vector"));
    G_add_keyword(_("LIDAR"));
    module->description =
	_("Corrects the v.lidar.growing output. It is the last of the three algorithms for LIDAR filtering.");

    spline_step_flag = G_define_flag();
    spline_step_flag->key = 'e';
    spline_step_flag->label = _("Estimate point density and distance");
    spline_step_flag->description =
	_("Estimate point density and distance for the input vector points within the current region extends and quit");

    in_opt = G_define_standard_option(G_OPT_V_INPUT);
    in_opt->description =
	_("Input observation vector map name (v.lidar.growing output)");

    out_opt = G_define_standard_option(G_OPT_V_OUTPUT);
    out_opt->description = _("Output classified vector map name");

    out_terrain_opt = G_define_option();
    out_terrain_opt->key = "terrain";
    out_terrain_opt->type = TYPE_STRING;
    out_terrain_opt->key_desc = "name";
    out_terrain_opt->required = YES;
    out_terrain_opt->gisprompt = "new,vector,vector";
    out_terrain_opt->description =
	_("Only 'terrain' points output vector map");

    stepE_opt = G_define_option();
    stepE_opt->key = "ew_step";
    stepE_opt->type = TYPE_DOUBLE;
    stepE_opt->required = NO;
    stepE_opt->answer = "25";
    stepE_opt->description =
	_("Length of each spline step in the east-west direction");
    stepE_opt->guisection = _("Settings");

    stepN_opt = G_define_option();
    stepN_opt->key = "ns_step";
    stepN_opt->type = TYPE_DOUBLE;
    stepN_opt->required = NO;
    stepN_opt->answer = "25";
    stepN_opt->description =
	_("Length of each spline step in the north-south direction");
    stepN_opt->guisection = _("Settings");

    lambda_f_opt = G_define_option();
    lambda_f_opt->key = "lambda_c";
    lambda_f_opt->type = TYPE_DOUBLE;
    lambda_f_opt->required = NO;
    lambda_f_opt->description =
	_("Regularization weight in reclassification evaluation");
    lambda_f_opt->answer = "1";

    Thresh_A_opt = G_define_option();
    Thresh_A_opt->key = "tch";
    Thresh_A_opt->type = TYPE_DOUBLE;
    Thresh_A_opt->required = NO;
    Thresh_A_opt->description =
	_("High threshold for object to terrain reclassification");
    Thresh_A_opt->answer = "2";

    Thresh_B_opt = G_define_option();
    Thresh_B_opt->key = "tcl";
    Thresh_B_opt->type = TYPE_DOUBLE;
    Thresh_B_opt->required = NO;
    Thresh_B_opt->description =
	_("Low threshold for terrain to object reclassification");
    Thresh_B_opt->answer = "1";

    /* Parsing */
    G_gisinit(argv[0]);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    stepN = atof(stepN_opt->answer);
    stepE = atof(stepE_opt->answer);
    lambda = atof(lambda_f_opt->answer);
    HighThresh = atof(Thresh_A_opt->answer);
    LowThresh = atof(Thresh_B_opt->answer);

    if (!(db = G_getenv_nofatal2("DB_DATABASE", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of database"));

    if (!(dvr = G_getenv_nofatal2("DB_DRIVER", G_VAR_MAPSET)))
	G_fatal_error(_("Unable to read name of driver"));

    /* Setting auxiliar table's name */
    if (G_name_is_fully_qualified(out_opt->answer, xname, xmapset)) {
	sprintf(table_name, "%s_aux", xname);
    }
    else
	sprintf(table_name, "%s_aux", out_opt->answer);

    /* Something went wrong in a previous v.lidar.correction execution */
    if (db_table_exists(dvr, db, table_name)) {
	/* Start driver and open db */
	driver = db_start_driver_open_database(dvr, db);
	if (driver == NULL)
	    G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
			  dvr);
        db_set_error_handler_driver(driver);
        
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Old auxiliar table could not be dropped"));
	db_close_database_shutdown_driver(driver);
    }

    /* Checking vector names */
    Vect_check_input_output_name(in_opt->answer, out_opt->answer,
				 G_FATAL_EXIT);

    /* Open input vector */
    if ((mapset = G_find_vector2(in_opt->answer, "")) == NULL)
	G_fatal_error(_("Vector map <%s> not found"), in_opt->answer);

    Vect_set_open_level(1);	/* without topology */
    if (1 > Vect_open_old(&In, in_opt->answer, mapset))
	G_fatal_error(_("Unable to open vector map <%s>"), in_opt->answer);

    /* Input vector must be 3D */
    if (!Vect_is_3d(&In))
	G_fatal_error(_("Input vector map <%s> is not 3D!"), in_opt->answer);

    /* Estimate point density and mean distance for current region */
    if (spline_step_flag->answer) {
	double dens, dist;
	if (P_estimate_splinestep(&In, &dens, &dist) == 0) {
	    G_message("Estimated point density: %.4g", dens);
	    G_message("Estimated mean distance between points: %.4g", dist);
	}
	else
	    G_warning(_("No points in current region!"));
	
	Vect_close(&In);
	exit(EXIT_SUCCESS);
    }

    /* Open output vector */
    if (0 > Vect_open_new(&Out, out_opt->answer, WITH_Z)) {
	Vect_close(&In);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    if (0 > Vect_open_new(&Terrain, out_terrain_opt->answer, WITH_Z)) {
	Vect_close(&In);
	Vect_close(&Out);
	G_fatal_error(_("Unable to create vector map <%s>"), out_opt->answer);
    }

    /* Copy vector Head File */
    Vect_copy_head_data(&In, &Out);
    Vect_hist_copy(&In, &Out);
    Vect_hist_command(&Out);
    Vect_copy_head_data(&In, &Terrain);
    Vect_hist_copy(&In, &Terrain);
    Vect_hist_command(&Terrain);

    /* Start driver and open db */
    driver = db_start_driver_open_database(dvr, db);
    if (driver == NULL)
	G_fatal_error(_("No database connection for driver <%s> is defined. Run db.connect."),
		      dvr);
    db_set_error_handler_driver(driver);

    /* Create auxiliar table */
    if ((flag_auxiliar =
	 P_Create_Aux2_Table(driver, table_name)) == FALSE) {
	Vect_close(&In);
	Vect_close(&Out);
	Vect_close(&Terrain);
	exit(EXIT_FAILURE);
    }

    db_create_index2(driver, table_name, "ID");
    /* sqlite likes that ??? */
    db_close_database_shutdown_driver(driver);
    driver = db_start_driver_open_database(dvr, db);

    /* Setting regions and boxes */
    G_get_set_window(&original_reg);
    G_get_set_window(&elaboration_reg);
    Vect_region_box(&elaboration_reg, &overlap_box);
    Vect_region_box(&elaboration_reg, &general_box);

    /*------------------------------------------------------------------
      | Subdividing and working with tiles: 									
      | Each original region will be divided into several subregions. 
      | Each one will be overlaped by its neighbouring subregions. 
      | The overlapping is calculated as a fixed OVERLAP_SIZE times
      | the largest spline step plus 2 * edge
      ----------------------------------------------------------------*/

    /* Fixing parameters of the elaboration region */
    P_zero_dim(&dims);

    nsplx_adj = NSPLX_MAX;
    nsply_adj = NSPLY_MAX;
    if (stepN > stepE)
	dims.overlap = OVERLAP_SIZE * stepN;
    else
	dims.overlap = OVERLAP_SIZE * stepE;
    P_get_edge(P_BILINEAR, &dims, stepE, stepN);
    P_set_dim(&dims, stepE, stepN, &nsplx_adj, &nsply_adj);

    G_verbose_message(n_("adjusted EW spline %d",
                         "adjusted EW splines %d",
                         nsplx_adj), nsplx_adj);
    G_verbose_message(n_("adjusted NS spline %d",
                         "adjusted NS splines %d",
                         nsply_adj), nsply_adj);

    /* calculate number of subregions */
    edgeE = dims.ew_size - dims.overlap - 2 * dims.edge_v;
    edgeN = dims.sn_size - dims.overlap - 2 * dims.edge_h;

    N_extension = original_reg.north - original_reg.south;
    E_extension = original_reg.east - original_reg.west;

    nsubregion_col = ceil(E_extension / edgeE) + 0.5;
    nsubregion_row = ceil(N_extension / edgeN) + 0.5;

    if (nsubregion_col < 0)
	nsubregion_col = 0;
    if (nsubregion_row < 0)
	nsubregion_row = 0;

    nsubregions = nsubregion_row * nsubregion_col;

    elaboration_reg.south = original_reg.north;
    last_row = FALSE;

    while (last_row == FALSE) {	/* For each row */

	P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
		      GENERAL_ROW);

	if (elaboration_reg.north > original_reg.north) {	/* First row */
	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  FIRST_ROW);
	}

	if (elaboration_reg.south <= original_reg.south) {	/* Last row */
	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  LAST_ROW);
	    last_row = TRUE;
	}

	nsply =
	    ceil((elaboration_reg.north -
		  elaboration_reg.south) / stepN) + 0.5;
	/*
	if (nsply > NSPLY_MAX) {
	    nsply = NSPLY_MAX;
	}
	*/
	G_debug(1, _("nsply = %d"), nsply);

	elaboration_reg.east = original_reg.west;
	last_column = FALSE;

	while (last_column == FALSE) {	/* For each column */

	    subregion++;
	    if (nsubregions > 1)
		G_message(_("subregion %d of %d"), subregion, nsubregions);

	    P_set_regions(&elaboration_reg, &general_box, &overlap_box, dims,
			  GENERAL_COLUMN);

	    if (elaboration_reg.west < original_reg.west) {	/* First column */
		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, FIRST_COLUMN);
	    }

	    if (elaboration_reg.east >= original_reg.east) {	/* Last column */
		P_set_regions(&elaboration_reg, &general_box, &overlap_box,
			      dims, LAST_COLUMN);
		last_column = TRUE;
	    }

	    nsplx =
		ceil((elaboration_reg.east - elaboration_reg.west) / stepE) +
		0.5;
	    /*
	    if (nsplx > NSPLX_MAX) {
		nsplx = NSPLX_MAX;
	    }
	    */
	    G_debug(1, _("nsplx = %d"), nsplx);

	    dim_vect = nsplx * nsply;
	    G_debug(1, _("read vector region map"));
	    observ =
		P_Read_Vector_Correction(&In, &elaboration_reg, &npoints,
					 &nterrain, dim_vect, &lcat);

	    G_debug(5, _("npoints = %d, nterrain = %d"), npoints, nterrain);
	    if (npoints > 0) {	/* If there is any point falling into elaboration_reg. */
		count_terrain = 0;
		nparameters = nsplx * nsply;

		/* Mean calculation */
		G_debug(3, _("Mean calculation"));
		mean = P_Mean_Calc(&elaboration_reg, observ, npoints);

		/*Least Squares system */
		BW = P_get_BandWidth(P_BILINEAR, nsply);	/* Bilinear interpolation */
		N = G_alloc_matrix(nparameters, BW);	/* Normal matrix */
		TN = G_alloc_vector(nparameters);	/* vector */
		parVect = G_alloc_vector(nparameters);	/* Bilinear parameters vector */
		obsVect = G_alloc_matrix(nterrain + 1, 3);	/* Observation vector with terrain points */
		obsVect_all = G_alloc_matrix(npoints + 1, 3);	/* Observation vector with all points */
		Q = G_alloc_vector(nterrain + 1);	/* "a priori" var-cov matrix */
		lineVect = G_alloc_ivector(npoints + 1);

		/* Setting obsVect vector & Q matrix */
		G_debug(3, _("Only TERRAIN points"));
		for (i = 0; i < npoints; i++) {
		    if (observ[i].cat == TERRAIN_SINGLE) {
			obsVect[count_terrain][0] = observ[i].coordX;
			obsVect[count_terrain][1] = observ[i].coordY;
			obsVect[count_terrain][2] = observ[i].coordZ - mean;
			Q[count_terrain] = 1;	/* Q=I */
			count_terrain++;
		    }
		    lineVect[i] = observ[i].lineID;
		    obsVect_all[i][0] = observ[i].coordX;
		    obsVect_all[i][1] = observ[i].coordY;
		    obsVect_all[i][2] = observ[i].coordZ - mean;
		}

		G_free(observ);

		G_verbose_message(_("Bilinear interpolation"));
		normalDefBilin(N, TN, Q, obsVect, stepE, stepN, nsplx,
			       nsply, elaboration_reg.west,
			       elaboration_reg.south, nterrain, nparameters,
			       BW);
		nCorrectGrad(N, lambda, nsplx, nsply, stepE, stepN);
		G_math_solver_cholesky_sband(N, parVect, TN, nparameters, BW);

		G_free_matrix(N);
		G_free_vector(TN);
		G_free_vector(Q);
		G_free_matrix(obsVect);

		G_verbose_message( _("Correction and creation of terrain vector"));
		P_Sparse_Correction(&In, &Out, &Terrain, &elaboration_reg,
				    general_box, overlap_box, obsVect_all, lcat,
				    parVect, lineVect, stepN, stepE,
				    dims.overlap, HighThresh, LowThresh,
				    nsplx, nsply, npoints, driver, mean, table_name);

		G_free_vector(parVect);
		G_free_matrix(obsVect_all);
		G_free_ivector(lineVect);
	    }
	    else {
		G_free(observ);
		G_warning(_("No data within this subregion. "
			    "Consider changing the spline step."));
	    }
	    G_free(lcat);
	}			/*! END WHILE; last_column = TRUE */
    }				/*! END WHILE; last_row = TRUE */

    /* Dropping auxiliar table */
    if (npoints > 0) {
	G_debug(1, _("Dropping <%s>"), table_name);
	if (P_Drop_Aux_Table(driver, table_name) != DB_OK)
	    G_fatal_error(_("Auxiliar table could not be dropped"));
    }

    db_close_database_shutdown_driver(driver);

    Vect_close(&In);
    Vect_close(&Out);
    Vect_close(&Terrain);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}				/*! END MAIN */
Пример #25
0
int main(int argc, char *argv[])
{
    const char *input, *source, *output;
    char *title;
    struct Cell_head cellhd;
    GDALDatasetH hDS;
    GDALRasterBandH hBand;
    struct GModule *module;
    struct {
	struct Option *input, *source, *output, *band, *title;
    } parm;
    struct {
	struct Flag *o, *f, *e, *r, *h, *v;
    } flag;
    int min_band, max_band, band;
    struct band_info info;
    int flip;
    struct Ref reference;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("import"));
    G_add_keyword(_("input"));
    G_add_keyword(_("external"));
    module->description =
	_("Links GDAL supported raster data as a pseudo GRASS raster map.");

    parm.input = G_define_standard_option(G_OPT_F_INPUT);
    parm.input->description = _("Name of raster file to be linked");
    parm.input->required = NO;
    parm.input->guisection = _("Input");

    parm.source = G_define_option();
    parm.source->key = "source";
    parm.source->description = _("Name of non-file GDAL data source");
    parm.source->required = NO;
    parm.source->type = TYPE_STRING;
    parm.source->key_desc = "name";
    parm.source->guisection = _("Input");
    
    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);
    
    parm.band = G_define_option();
    parm.band->key = "band";
    parm.band->type = TYPE_INTEGER;
    parm.band->required = NO;
    parm.band->description = _("Band to select (default: all)");
    parm.band->guisection = _("Input");

    parm.title = G_define_option();
    parm.title->key = "title";
    parm.title->key_desc = "phrase";
    parm.title->type = TYPE_STRING;
    parm.title->required = NO;
    parm.title->description = _("Title for resultant raster map");
    parm.title->guisection = _("Metadata");

    flag.f = G_define_flag();
    flag.f->key = 'f';
    flag.f->description = _("List supported formats and exit");
    flag.f->guisection = _("Print");
    flag.f->suppress_required = YES;

    flag.o = G_define_flag();
    flag.o->key = 'o';
    flag.o->description =
	_("Override projection (use location's projection)");

    flag.e = G_define_flag();
    flag.e->key = 'e';
    flag.e->description = _("Extend location extents based on new dataset");

    flag.r = G_define_flag();
    flag.r->key = 'r';
    flag.r->description = _("Require exact range");

    flag.h = G_define_flag();
    flag.h->key = 'h';
    flag.h->description = _("Flip horizontally");

    flag.v = G_define_flag();
    flag.v->key = 'v';
    flag.v->description = _("Flip vertically");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    GDALAllRegister();

    if (flag.f->answer) {
	list_formats();
	exit(EXIT_SUCCESS);
    }

    input = parm.input->answer;
    source = parm.source->answer;
    output = parm.output->answer;

    flip = 0;
    if (flag.h->answer)
	flip |= FLIP_H;
    if (flag.v->answer)
	flip |= FLIP_V;

    if (parm.title->answer) {
	title = G_store(parm.title->answer);
	G_strip(title);
    }
    else
	title = NULL;

    if (!input && !source)
	G_fatal_error(_("One of options <%s> or <%s> must be given"),
		      parm.input->key, parm.source->key);

    if (input && source)
	G_fatal_error(_("Option <%s> and <%s> are mutually exclusive"),
		      parm.input->key, parm.source->key);
    
    if (input && !G_is_absolute_path(input)) {
	char path[GPATH_MAX];
	getcwd(path, sizeof(path));
	strcat(path, "/");
	strcat(path, input);
	input = G_store(path);
    }

    if (!input)
	input = source;

    hDS = GDALOpen(input, GA_ReadOnly);
    if (hDS == NULL)
	return 1;

    setup_window(&cellhd, hDS, &flip);

    check_projection(&cellhd, hDS, flag.o->answer);

    Rast_set_window(&cellhd);

    if (parm.band->answer)
	min_band = max_band = atoi(parm.band->answer);
    else
	min_band = 1, max_band = GDALGetRasterCount(hDS);

    G_verbose_message(_("Proceeding with import..."));

    if (max_band > min_band) {
	if (I_find_group(output) == 1)
	    G_warning(_("Imagery group <%s> already exists and will be overwritten."), output);
	I_init_group_ref(&reference);
    }

    for (band = min_band; band <= max_band; band++) {
	char *output2, *title2 = NULL;

	G_message(_("Reading band %d of %d..."),
		  band, GDALGetRasterCount( hDS ));

	hBand = GDALGetRasterBand(hDS, band);
	if (!hBand)
	    G_fatal_error(_("Selected band (%d) does not exist"), band);

	if (max_band > min_band) {
	    G_asprintf(&output2, "%s.%d", output, band);
	    if (title)
		G_asprintf(&title2, "%s (band %d)", title, band);
	    G_debug(1, "Adding raster map <%s> to group <%s>", output2, output);
	    I_add_file_to_group_ref(output2, G_mapset(), &reference);
	}
	else {
	    output2 = G_store(output);
	    if (title)
		title2 = G_store(title);
	}

	query_band(hBand, output2, flag.r->answer, &cellhd, &info);
	create_map(input, band, output2, &cellhd, &info, title, flip);

	G_free(output2);
	G_free(title2);
    }

    if (flag.e->answer)
	update_default_window(&cellhd);

    /* Create the imagery group if multiple bands are imported */
    if (max_band > min_band) {
    	I_put_group_ref(output, &reference);
	I_put_group(output);
	G_message(_("Imagery group <%s> created"), output);
    }

    exit(EXIT_SUCCESS);
}
Пример #26
0
int main(int argc, char **argv)
{
    int ret, level;
    int stat, type, display;
    int chcat;
    int has_color, has_fcolor;
    struct color_rgb color, fcolor;
    double size;
    int default_width;
    double width_scale;
    double minreg, maxreg, reg;
    char map_name[GNAME_MAX];
    
    struct GModule *module;
    struct Option *map_opt;
    struct Option *color_opt, *fcolor_opt, *rgbcol_opt, *zcol_opt;
    struct Option *type_opt, *display_opt;
    struct Option *icon_opt, *size_opt, *sizecolumn_opt, *rotcolumn_opt;
    struct Option *where_opt;
    struct Option *field_opt, *cat_opt, *lfield_opt;
    struct Option *lcolor_opt, *bgcolor_opt, *bcolor_opt;
    struct Option *lsize_opt, *font_opt, *enc_opt, *xref_opt, *yref_opt;
    struct Option *attrcol_opt, *maxreg_opt, *minreg_opt;
    struct Option *width_opt, *wcolumn_opt, *wscale_opt;
    struct Option *leglab_opt;
    struct Option *icon_line_opt, *icon_area_opt;
    struct Flag *id_flag, *cats_acolors_flag, *sqrt_flag, *legend_flag;
    char *desc;
    
    struct cat_list *Clist;
    LATTR lattr;
    struct Map_info Map;
    struct Cell_head window;
    struct bound_box box;
    double overlap;

    stat = 0;
    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("display"));
    G_add_keyword(_("graphics"));
    G_add_keyword(_("vector"));
    module->description = _("Displays user-specified vector map "
			    "in the active graphics frame.");
    
    map_opt = G_define_standard_option(G_OPT_V_MAP);

    field_opt = G_define_standard_option(G_OPT_V_FIELD_ALL);
    field_opt->answer = "1";
    field_opt->guisection = _("Selection");

    display_opt = G_define_option();
    display_opt->key = "display";
    display_opt->type = TYPE_STRING;
    display_opt->required = YES;
    display_opt->multiple = YES;
    display_opt->answer = "shape";
    display_opt->options = "shape,cat,topo,vert,dir,zcoor";
    display_opt->description = _("Display");
    desc = NULL;
    G_asprintf(&desc,
	       "shape;%s;cat;%s;topo;%s;vert;%s;dir;%s;zcoor;%s",
	       _("Display geometry of features"),
	       _("Display category numbers of features"),
	       _("Display topology information (nodes, edges)"),
               _("Display vertices of features"),
	       _("Display direction of linear features"),
	       _("Display z-coordinate of features (only for 3D vector maps)"));
    display_opt->descriptions = desc;
    
    /* Query */
    type_opt = G_define_standard_option(G_OPT_V_TYPE);
    type_opt->answer = "point,line,area,face";
    type_opt->options = "point,line,boundary,centroid,area,face";
    type_opt->guisection = _("Selection");
    
    cat_opt = G_define_standard_option(G_OPT_V_CATS);
    cat_opt->guisection = _("Selection");

    where_opt = G_define_standard_option(G_OPT_DB_WHERE);
    where_opt->guisection = _("Selection");


    /* Colors */
    color_opt = G_define_standard_option(G_OPT_CN);
    color_opt->label = _("Feature color");
    color_opt->guisection = _("Colors");
    
    fcolor_opt = G_define_standard_option(G_OPT_CN);
    fcolor_opt->key = "fill_color";
    fcolor_opt->answer = "200:200:200";
    fcolor_opt->label = _("Area fill color");
    fcolor_opt->guisection = _("Colors");

    rgbcol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    rgbcol_opt->key = "rgb_column";
    rgbcol_opt->guisection = _("Colors");
    rgbcol_opt->label = _("Colorize features according color definition column");
    rgbcol_opt->description = _("Color definition in R:G:B form");
    
    zcol_opt = G_define_standard_option(G_OPT_M_COLR);
    zcol_opt->key = "zcolor";
    zcol_opt->description = _("Colorize point or area features according to z-coordinate");
    zcol_opt->guisection = _("Colors");

    /* Lines */
    width_opt = G_define_option();
    width_opt->key = "width";
    width_opt->type = TYPE_INTEGER;
    width_opt->answer = "0";
    width_opt->guisection = _("Lines");
    width_opt->description = _("Line width");

    wcolumn_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    wcolumn_opt->key = "width_column";
    wcolumn_opt->guisection = _("Lines");
    wcolumn_opt->label = _("Name of numeric column containing line width");
    wcolumn_opt->description = _("These values will be scaled by width_scale");

    wscale_opt = G_define_option();
    wscale_opt->key = "width_scale";
    wscale_opt->type = TYPE_DOUBLE;
    wscale_opt->answer = "1";
    wscale_opt->guisection = _("Lines");
    wscale_opt->description = _("Scale factor for width_column");

    /* Symbols */
    icon_opt = G_define_option();
    icon_opt->key = "icon";
    icon_opt->type = TYPE_STRING;
    icon_opt->required = NO;
    icon_opt->multiple = NO;
    icon_opt->guisection = _("Symbols");
    icon_opt->answer = "basic/x";
    /* This could also use ->gisprompt = "old,symbol,symbol" instead of ->options */
    icon_opt->options = icon_files();
    icon_opt->description = _("Point and centroid symbol");

    size_opt = G_define_option();
    size_opt->key = "size";
    size_opt->type = TYPE_DOUBLE;
    size_opt->answer = "5";
    size_opt->guisection = _("Symbols");
    size_opt->label = _("Symbol size");
    size_opt->description =
	_("When used with the size_column option this becomes the scale factor");

    sizecolumn_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    sizecolumn_opt->key = "size_column";
    sizecolumn_opt->guisection = _("Symbols");
    sizecolumn_opt->description =
	_("Name of numeric column containing symbol size");

    rotcolumn_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    rotcolumn_opt->key = "rotation_column";
    rotcolumn_opt->guisection = _("Symbols");
    rotcolumn_opt->label =
	_("Name of numeric column containing symbol rotation angle");
    rotcolumn_opt->description =
	_("Measured in degrees CCW from east");

    icon_area_opt = G_define_option();
    icon_area_opt->key = "icon_area";
    icon_area_opt->type = TYPE_STRING;
    icon_area_opt->required = NO;
    icon_area_opt->multiple = NO;
    icon_area_opt->guisection = _("Legend");
    icon_area_opt->answer = "legend/area";
    icon_area_opt->options = icon_files();
    icon_area_opt->description = _("Area/boundary symbol for legend");

    icon_line_opt = G_define_option();
    icon_line_opt->key = "icon_line";
    icon_line_opt->type = TYPE_STRING;
    icon_line_opt->required = NO;
    icon_line_opt->multiple = NO;
    icon_line_opt->guisection = _("Legend");
    icon_line_opt->answer = "legend/line";
    icon_line_opt->options = icon_files();
    icon_line_opt->description = _("Line symbol for legend");

    leglab_opt = G_define_option();
    leglab_opt->key = "legend_label";
    leglab_opt->type = TYPE_STRING;
    leglab_opt->guisection = _("Legend");
    leglab_opt->description = _("Label to display after symbol in vector legend");

    /* Labels */
    lfield_opt = G_define_standard_option(G_OPT_V_FIELD);
    lfield_opt->key = "label_layer";
    lfield_opt->required = NO;
    lfield_opt->guisection = _("Labels");
    lfield_opt->label =
	_("Layer number for labels (default: the given layer number)");
    
    attrcol_opt = G_define_standard_option(G_OPT_DB_COLUMN);
    attrcol_opt->key = "attribute_column";
    attrcol_opt->multiple = NO;	/* or fix attr.c, around line 102 */
    attrcol_opt->guisection = _("Labels");
    attrcol_opt->description = _("Name of column to be displayed as a label");

    lcolor_opt = G_define_standard_option(G_OPT_C);
    lcolor_opt->key = "label_color";
    lcolor_opt->answer = "red";
    lcolor_opt->label = _("Label color");
    lcolor_opt->guisection = _("Labels");

    bgcolor_opt = G_define_standard_option(G_OPT_CN);
    bgcolor_opt->key = "label_bgcolor";
    bgcolor_opt->answer = "none";
    bgcolor_opt->guisection = _("Labels");
    bgcolor_opt->label = _("Label background color");

    bcolor_opt = G_define_standard_option(G_OPT_CN);
    bcolor_opt->key = "label_bcolor";
    bcolor_opt->type = TYPE_STRING;
    bcolor_opt->answer = "none";
    bcolor_opt->guisection = _("Labels");
    bcolor_opt->label = _("Label border color");

    lsize_opt = G_define_option();
    lsize_opt->key = "label_size";
    lsize_opt->type = TYPE_INTEGER;
    lsize_opt->answer = "8";
    lsize_opt->guisection = _("Labels");
    lsize_opt->description = _("Label size (pixels)");

    font_opt = G_define_option();
    font_opt->key = "font";
    font_opt->type = TYPE_STRING;
    font_opt->guisection = _("Labels");
    font_opt->description = _("Font name");

    enc_opt = G_define_option();
    enc_opt->key = "encoding";
    enc_opt->type = TYPE_STRING;
    enc_opt->guisection = _("Labels");
    enc_opt->description = _("Text encoding");

    xref_opt = G_define_option();
    xref_opt->key = "xref";
    xref_opt->type = TYPE_STRING;
    xref_opt->guisection = _("Labels");
    xref_opt->answer = "left";
    xref_opt->options = "left,center,right";
    xref_opt->description = _("Label horizontal justification");

    yref_opt = G_define_option();
    yref_opt->key = "yref";
    yref_opt->type = TYPE_STRING;
    yref_opt->guisection = _("Labels");
    yref_opt->answer = "center";
    yref_opt->options = "top,center,bottom";
    yref_opt->description = _("Label vertical justification");

    minreg_opt = G_define_option();
    minreg_opt->key = "minreg";
    minreg_opt->type = TYPE_DOUBLE;
    minreg_opt->required = NO;
    minreg_opt->description =
	_("Minimum region size (average from height and width) "
	  "when map is displayed");

    maxreg_opt = G_define_option();
    maxreg_opt->key = "maxreg";
    maxreg_opt->type = TYPE_DOUBLE;
    maxreg_opt->required = NO;
    maxreg_opt->description =
	_("Maximum region size (average from height and width) "
	  "when map is displayed");

    /* Colors */
    cats_acolors_flag = G_define_flag();
    cats_acolors_flag->key = 'c';
    cats_acolors_flag->guisection = _("Colors");
    cats_acolors_flag->description =
	_("Random colors according to category number "
	  "(or layer number if 'layer=-1' is given)");

    /* Query */
    id_flag = G_define_flag();
    id_flag->key = 'i';
    id_flag->guisection = _("Selection");
    id_flag->description = _("Use values from 'cats' option as feature id");

    sqrt_flag = G_define_flag();
    sqrt_flag->key = 'r';
    sqrt_flag->label = _("Use square root of the value of size_column");
    sqrt_flag->description =
	_("This makes circle areas proportionate to the size_column values "
	  "instead of circle radius");
    sqrt_flag->guisection = _("Symbols");

    legend_flag = G_define_flag();
    legend_flag->key = 's';
    legend_flag->label = _("Do not show this layer in vector legend");
    legend_flag->guisection = _("Legend");

    /* Check command line */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    D_open_driver();
    
    G_get_set_window(&window);
    
    /* Check min/max region */
    reg = ((window.east - window.west) + (window.north - window.south)) / 2;
    if (minreg_opt->answer) {
	minreg = atof(minreg_opt->answer);

	if (reg < minreg) {
	    G_important_message(_("Region size is lower than minreg, nothing displayed"));
	    exit(EXIT_SUCCESS);
	}
    }
    if (maxreg_opt->answer) {
	maxreg = atof(maxreg_opt->answer);

	if (reg > maxreg) {
	    G_important_message(_("Region size is greater than maxreg, nothing displayed"));
	    exit(EXIT_SUCCESS);
	}
    }

    strcpy(map_name, map_opt->answer);

    default_width = atoi(width_opt->answer);
    if (default_width < 0)
	default_width = 0;
    width_scale = atof(wscale_opt->answer);

    if (cats_acolors_flag->answer && rgbcol_opt->answer) {
	G_warning(_("The -%c flag and <%s> option cannot be used together, "
		    "the -%c flag will be ignored!"), 
                  cats_acolors_flag->key, rgbcol_opt->key, cats_acolors_flag->key);
        cats_acolors_flag->answer = FALSE;
    }

    color = G_standard_color_rgb(WHITE);
    has_color = option_to_color(&color, color_opt->answer);
    fcolor = G_standard_color_rgb(WHITE);
    has_fcolor = option_to_color(&fcolor, fcolor_opt->answer);
    
    size = atof(size_opt->answer);

    /* if where_opt was specified select categories from db 
     * otherwise parse cat_opt */
    Clist = Vect_new_cat_list();
    Clist->field = atoi(field_opt->answer);

    /* open vector */
    level = Vect_open_old2(&Map, map_name, "", field_opt->answer);

    chcat = 0;
    if (where_opt->answer) {
	if (Clist->field < 1)
	    G_fatal_error(_("Option <%s> must be > 0"), field_opt->key);
	chcat = 1;
	option_to_where(&Map, Clist, where_opt->answer);
    }
    else if (cat_opt->answer) {
	if (Clist->field < 1 && !id_flag->answer)
	    G_fatal_error(_("Option <%s> must be > 0"), field_opt->key);
	chcat = 1;
	ret = Vect_str_to_cat_list(cat_opt->answer, Clist);
	if (ret > 0)
	    G_warning(n_("%d error in cat option", "%d errors in cat option", ret), ret);
    }
    
    type = Vect_option_to_types(type_opt);
    
    display = option_to_display(display_opt);

    /* labels */
    options_to_lattr(&lattr, lfield_opt->answer,
		     lcolor_opt->answer, bgcolor_opt->answer, bcolor_opt->answer,
		     atoi(lsize_opt->answer), font_opt->answer, enc_opt->answer,
		     xref_opt->answer, yref_opt->answer);

    D_setup(0);
    D_set_reduction(1.0);

    G_verbose_message(_("Plotting..."));

    if (level >= 2)
	Vect_get_map_box(&Map, &box);

    if (level >= 2 && (window.north < box.S || window.south > box.N ||
		       window.east < box.W ||
		       window.west > G_adjust_easting(box.E, &window))) {
	G_warning(_("The bounding box of the map is outside the current region, "
		    "nothing drawn"));
    }
    else {
	overlap = G_window_percentage_overlap(&window, box.N, box.S,
					      box.E, box.W);
	G_debug(1, "overlap = %f \n", overlap);
	if (overlap < 1)
	    Vect_set_constraint_region(&Map, window.north, window.south,
				       window.east, window.west,
				       PORT_DOUBLE_MAX, -PORT_DOUBLE_MAX);

	/* default line width */
	if (!wcolumn_opt->answer)
	    D_line_width(default_width);

	if (display & DISP_SHAPE) {
	    stat += display_shape(&Map, type, Clist, &window,
				  has_color ? &color : NULL, has_fcolor ? &fcolor : NULL, chcat,
				  icon_opt->answer, size, sizecolumn_opt->answer,
				  sqrt_flag->answer ? TRUE : FALSE, rotcolumn_opt->answer,
				  id_flag->answer ? TRUE : FALSE, 
				  cats_acolors_flag->answer ? TRUE : FALSE, rgbcol_opt->answer,
				  default_width,  wcolumn_opt->answer, width_scale,
				  zcol_opt->answer);
	    
	    if (wcolumn_opt->answer)
		D_line_width(default_width);
	}

	if (has_color) {
	    D_RGB_color(color.r, color.g, color.b);
	    if (display & DISP_DIR)
		stat += display_dir(&Map, type, Clist, chcat, size);
	}

	if (!legend_flag->answer) {
		write_into_legfile(&Map, type, leglab_opt->answer, map_name,
			   icon_opt->answer, size_opt->answer, 
			   color_opt->answer, fcolor_opt->answer, 
			   width_opt->answer, icon_area_opt->answer,
			   icon_line_opt->answer, sizecolumn_opt->answer);
	}

	/* reset line width: Do we need to get line width from display
	 * driver (not implemented)?  It will help restore previous line
	 * width (not just 0) determined by another module (e.g.,
	 * d.linewidth). */
	if (!wcolumn_opt->answer)
	    D_line_width(0);
	
	if (display & DISP_CAT)
	    stat += display_label(&Map, type, Clist, &lattr, chcat);

	if (attrcol_opt->answer)
	    stat += display_attr(&Map, type, attrcol_opt->answer, Clist, &lattr, chcat);

	if (display & DISP_ZCOOR)
	    stat += display_zcoor(&Map, type, &lattr);

	if (display & DISP_VERT)
            stat += display_vert(&Map, type, &lattr, size);

	if (display & DISP_TOPO)
            stat += display_topo(&Map, type, &lattr, size);
    }

    D_save_command(G_recreate_command());
    D_close_driver();

    Vect_close(&Map);
    Vect_destroy_cat_list(Clist);

    if (stat != 0) {
	G_fatal_error(_("Rendering failed"));
    }
    
    G_done_msg(" ");
    exit(EXIT_SUCCESS);
}
Пример #27
0
/*!
  \brief Load raster maps/constants and set surface attributes
  
  \param params module parameters
  \param data nviz data
*/
int load_rasters(const struct GParams *params, nv_data * data)
{
    const char *mapset;
    int i;
    int nelevs, nelev_map, nelev_const, ncolor_map, ncolor_const, nmask_map;
    int ntransp_map, ntransp_const, nshine_map, nshine_const;
    int nemit_map, nemit_const;
    int *surf_list, nsurfs;
    int id;

    double x, y, z;

    nelev_map = opt_get_num_answers(params->elev_map);
    nelev_const = opt_get_num_answers(params->elev_const);

    nelevs = nelev_const + nelev_map;
    /* topography (required) */
    for (i = 0; i < nelevs; i++) {
	/* check maps */
	if (i < nelev_map && strcmp(params->elev_map->answers[i], "")) {
	    mapset = G_find_raster2(params->elev_map->answers[i], "");
	    if (mapset == NULL) {
		G_fatal_error(_("Raster map <%s> not found"),
			      params->elev_map->answers[i]);
	    }

	    id = Nviz_new_map_obj(MAP_OBJ_SURF,
				  G_fully_qualified_name(params->elev_map->
							 answers[i], mapset),
				  0.0, data);
	}
	else {
	    if (i-nelev_map < nelev_const && strcmp(params->elev_const->answers[i-nelev_map], "")) {
		id = Nviz_new_map_obj(MAP_OBJ_SURF,
				      NULL,
				      atof(params->elev_const->answers[i-nelev_map]),
				      data);
	    }
	    else {
		G_fatal_error(_("Missing topography attribute for surface %d"),
			      i + 1);
	    }
	}

	/* set position */
    if (opt_get_num_answers(params->surface_pos) != 3 * nelevs){
        x = atof(params->surface_pos->answers[0]);
        y = atof(params->surface_pos->answers[1]);
        z = atof(params->surface_pos->answers[2]);
    }
    else{
        x = atof(params->surface_pos->answers[i*3+0]);
        y = atof(params->surface_pos->answers[i*3+1]);
        z = atof(params->surface_pos->answers[i*3+2]);
    }

	GS_set_trans(id, x, y, z);
    }

    /* set surface attributes */
    surf_list = GS_get_surf_list(&nsurfs);

    ncolor_map = opt_get_num_answers(params->color_map);
    ncolor_const = opt_get_num_answers(params->color_const);
    nmask_map = opt_get_num_answers(params->mask_map);
    ntransp_map = opt_get_num_answers(params->transp_map);
    ntransp_const = opt_get_num_answers(params->transp_const);
    nshine_map = opt_get_num_answers(params->shine_map);
    nshine_const = opt_get_num_answers(params->shine_const);
    nemit_map = opt_get_num_answers(params->emit_map);
    nemit_const = opt_get_num_answers(params->emit_const);

    for (i = 0; i < nsurfs; i++) {
	id = surf_list[i];
	/* color */
	/* check for color map */
	if (i < ncolor_map && strcmp(params->color_map->answers[i], "")) {
	    mapset = G_find_raster2(params->color_map->answers[i], "");
	    if (mapset == NULL) {
		G_fatal_error(_("Raster map <%s> not found"),
			      params->color_map->answers[i]);
	    }

	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_COLOR, MAP_ATT,
			  G_fully_qualified_name(params->color_map->
						 answers[i], mapset), -1.0,
			  data);
	}
	/* check for color value */
	else if (i-ncolor_map < ncolor_const &&
		 strcmp(params->color_const->answers[i-ncolor_map], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_COLOR, CONST_ATT, NULL,
			  Nviz_color_from_str(params->color_const->
					      answers[i-ncolor_map]), data);
	}
	else {			/* use by default elevation map for coloring */
        if (nelev_map > 0){
            Nviz_set_attr(id, MAP_OBJ_SURF, ATT_COLOR, MAP_ATT,
                G_fully_qualified_name(params->elev_map->answers[i],
                            mapset), -1.0, data);
            G_verbose_message(_("Color attribute not defined, using default <%s>"),
                G_fully_qualified_name(params->elev_map->
                                 answers[i], mapset));
        }
        else{
            G_fatal_error(_("Missing color attribute for surface %d"),
			      i + 1);
        }
	}
	/* mask */
	if (i < nmask_map && strcmp(params->mask_map->answers[i], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_MASK, MAP_ATT,
			  G_fully_qualified_name(params->mask_map->answers[i],
						 mapset), -1.0, data);
	}

	/* transparency */
	if (i < ntransp_map && strcmp(params->transp_map->answers[i], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_TRANSP, MAP_ATT,
			  G_fully_qualified_name(params->transp_map->
						 answers[i], mapset), -1.0,
			  data);
	}
	else if (i-ntransp_map < ntransp_const &&
		 strcmp(params->transp_const->answers[i-ntransp_map], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_TRANSP, CONST_ATT, NULL,
			  atof(params->transp_const->answers[i-ntransp_map]), data);
	}

	/* shininess */
	if (i < nshine_map && strcmp(params->shine_map->answers[i], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_SHINE, MAP_ATT,
			  G_fully_qualified_name(params->shine_map->
						 answers[i], mapset), -1.0,
			  data);
	}
	else if (i-nshine_map < nshine_const &&
		 strcmp(params->shine_const->answers[i-nshine_map], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_SHINE, CONST_ATT, NULL,
			  atof(params->shine_const->answers[i-nshine_map]), data);
	}

	/* emission */
	if (i < nemit_map && strcmp(params->emit_map->answers[i], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_EMIT, MAP_ATT,
			  G_fully_qualified_name(params->emit_map->answers[i],
						 mapset), -1.0, data);
	}
	else if (i-nemit_map < nemit_const &&
		 strcmp(params->emit_const->answers[i-nemit_map], "")) {
	    Nviz_set_attr(id, MAP_OBJ_SURF, ATT_EMIT, CONST_ATT, NULL,
			  atof(params->emit_const->answers[i-nemit_map]), data);
	}

	/*
	   if (i > 1)
	   set_default_wirecolors(data, i);
	 */
    }

    return nsurfs;
}
Пример #28
0
int main(int argc, char **argv)
{
    int fe, fd, fm;
    int i, j, type;
    int new_id;
    int nrows, ncols, nbasins;
    int map_id, dir_id, bas_id;
    char map_name[GNAME_MAX], new_map_name[GNAME_MAX];
    const char *tempfile1, *tempfile2, *tempfile3;
    char dir_name[GNAME_MAX];
    char bas_name[GNAME_MAX];

    struct Cell_head window;
    struct GModule *module;
    struct Option *opt1, *opt2, *opt3, *opt4, *opt5;
    struct Flag *flag1;
    int in_type, bufsz;
    void *in_buf;
    CELL *out_buf;
    struct band3 bnd, bndC;

    /*  Initialize the GRASS environment variables */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("hydrology"));
    module->description =
	_("Filters and generates a depressionless elevation map and a "
	  "flow direction map from a given elevation raster map.");
    
    opt1 = G_define_standard_option(G_OPT_R_ELEV);
    
    opt2 = G_define_standard_option(G_OPT_R_OUTPUT);
    opt2->key = "depressionless";
    opt2->description = _("Name for output depressionless elevation raster map");
    
    opt4 = G_define_standard_option(G_OPT_R_OUTPUT);
    opt4->key = "direction";
    opt4->description = _("Name for output flow direction map for depressionless elevation raster map");

    opt5 = G_define_standard_option(G_OPT_R_OUTPUT);
    opt5->key = "areas";
    opt5->required = NO;
    opt5->description = _("Name for output raster map of problem areas");

    opt3 = G_define_option();
    opt3->key = "type";
    opt3->type = TYPE_STRING;
    opt3->required = NO;
    opt3->description =
	_("Aspect direction format");
    opt3->options = "agnps,answers,grass";
    opt3->answer = "grass";
    
    flag1 = G_define_flag();
    flag1->key = 'f';
    flag1->description = _("Find unresolved areas only");
    
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (flag1->answer && opt5->answer == NULL) {
	G_fatal_error(_("The '%c' flag requires '%s'to be specified"),
		      flag1->key, opt5->key);
    }

    type = 0;
    strcpy(map_name, opt1->answer);
    strcpy(new_map_name, opt2->answer);
    strcpy(dir_name, opt4->answer);
    if (opt5->answer != NULL)
	strcpy(bas_name, opt5->answer);

    if (strcmp(opt3->answer, "agnps") == 0)
	type = 1;
    else if (strcmp(opt3->answer, "answers") == 0)
	type = 2;
    else if (strcmp(opt3->answer, "grass") == 0)
	type = 3;
    
    G_debug(1, "output type (1=AGNPS, 2=ANSWERS, 3=GRASS): %d", type);

    if (type == 3)
	G_verbose_message(_("Direction map is D8 resolution, i.e. 45 degrees"));
    
    /* open the maps and get their file id  */
    map_id = Rast_open_old(map_name, "");

    /* allocate cell buf for the map layer */
    in_type = Rast_get_map_type(map_id);

    /* set the pointers for multi-typed functions */
    set_func_pointers(in_type);

    /* get the window information  */
    G_get_window(&window);
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* buffers for internal use */
    bndC.ns = ncols;
    bndC.sz = sizeof(CELL) * ncols;
    bndC.b[0] = G_calloc(ncols, sizeof(CELL));
    bndC.b[1] = G_calloc(ncols, sizeof(CELL));
    bndC.b[2] = G_calloc(ncols, sizeof(CELL));

    /* buffers for external use */
    bnd.ns = ncols;
    bnd.sz = ncols * bpe();
    bnd.b[0] = G_calloc(ncols, bpe());
    bnd.b[1] = G_calloc(ncols, bpe());
    bnd.b[2] = G_calloc(ncols, bpe());

    in_buf = get_buf();

    tempfile1 = G_tempfile();
    tempfile2 = G_tempfile();
    tempfile3 = G_tempfile();

    fe = open(tempfile1, O_RDWR | O_CREAT, 0666);	/* elev */
    fd = open(tempfile2, O_RDWR | O_CREAT, 0666);	/* dirn */
    fm = open(tempfile3, O_RDWR | O_CREAT, 0666);	/* problems */

    G_message(_("Reading elevation map..."));
    for (i = 0; i < nrows; i++) {
	G_percent(i, nrows, 2);
	get_row(map_id, in_buf, i);
	write(fe, in_buf, bnd.sz);
    }
    G_percent(1, 1, 1);
    Rast_close(map_id);

    /* fill single-cell holes and take a first stab at flow directions */
    G_message(_("Filling sinks..."));
    filldir(fe, fd, nrows, &bnd);

    /* determine flow directions for ambiguous cases */
    G_message(_("Determining flow directions for ambiguous cases..."));
    resolve(fd, nrows, &bndC);

    /* mark and count the sinks in each internally drained basin */
    nbasins = dopolys(fd, fm, nrows, ncols);
    if (flag1->answer) {
	/* determine the watershed for each sink */
	wtrshed(fm, fd, nrows, ncols, 4);

	/* fill all of the watersheds up to the elevation necessary for drainage */
	ppupdate(fe, fm, nrows, nbasins, &bnd, &bndC);

	/* repeat the first three steps to get the final directions */
	G_message(_("Repeat to get the final directions..."));
	filldir(fe, fd, nrows, &bnd);
	resolve(fd, nrows, &bndC);
	nbasins = dopolys(fd, fm, nrows, ncols);
    }

    G_free(bndC.b[0]);
    G_free(bndC.b[1]);
    G_free(bndC.b[2]);

    G_free(bnd.b[0]);
    G_free(bnd.b[1]);
    G_free(bnd.b[2]);

    out_buf = Rast_allocate_c_buf();
    bufsz = ncols * sizeof(CELL);

    lseek(fe, 0, SEEK_SET);
    new_id = Rast_open_new(new_map_name, in_type);

    lseek(fd, 0, SEEK_SET);
    dir_id = Rast_open_new(dir_name, CELL_TYPE);

    if (opt5->answer != NULL) {
	lseek(fm, 0, SEEK_SET);
	bas_id = Rast_open_new(bas_name, CELL_TYPE);

	for (i = 0; i < nrows; i++) {
	    read(fm, out_buf, bufsz);
	    Rast_put_row(bas_id, out_buf, CELL_TYPE);
	}

	Rast_close(bas_id);
	close(fm);
    }

    for (i = 0; i < nrows; i++) {
	read(fe, in_buf, bnd.sz);
	put_row(new_id, in_buf);

	read(fd, out_buf, bufsz);

	for (j = 0; j < ncols; j += 1)
	    out_buf[j] = dir_type(type, out_buf[j]);

	Rast_put_row(dir_id, out_buf, CELL_TYPE);

    }

    Rast_close(new_id);
    close(fe);

    Rast_close(dir_id);
    close(fd);

    G_free(in_buf);
    G_free(out_buf);

    exit(EXIT_SUCCESS);
}
Пример #29
0
int main(int argc, char *argv[])
{

    int i, row, col;		/* counters */
    unsigned long filesize;

    int endianness;		/* 0=little, 1=big */
    int data_format;		/* 0=double  1=float  2=32bit signed int  5=8bit unsigned int (ie text) */
    int data_type;		/* 0=numbers  1=text */
    int format_block;		/* combo of endianness, 0, data_format, and type */
    int realflag = 0;		/* 0=only real values used */

    /* should type be specifically uint32 ??? */

    char array_name[32];	/* variable names must start with a letter (case 
				   sensitive) followed by letters, numbers, or 
				   underscores. 31 chars max. */
    int name_len;
    int mrows, ncols;		/* text/data/map array dimensions */

    int val_i;			/* for misc use */
    float val_f;		/* for misc use */
    double val_d;		/* for misc use */

    char *infile, *outfile, *maptitle, *basename;
    struct Cell_head region;
    void *raster, *ptr;
    RASTER_MAP_TYPE map_type;

    struct Option *inputfile, *outputfile;
    struct GModule *module;

    int fd;
    FILE *fp1;


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("export"));
    module->description = _("Exports a GRASS raster to a binary MAT-File.");

    /* Define the different options */

    inputfile = G_define_standard_option(G_OPT_R_INPUT);

    outputfile = G_define_option();
    outputfile->key = "output";
    outputfile->type = TYPE_STRING;
    outputfile->required = YES;
    outputfile->gisprompt = "new_file,file,output";
    outputfile->description = _("Name for the output binary MAT-File");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    infile = inputfile->answer;
    basename = G_store(outputfile->answer);
    G_basename(basename, "mat");
    outfile = G_malloc(strlen(basename) + 5);
    sprintf(outfile, "%s.mat", basename);

    fd = Rast_open_old(infile, "");

    map_type = Rast_get_map_type(fd);

    /* open bin file for writing */
    fp1 = fopen(outfile, "wb");
    if (NULL == fp1)
	G_fatal_error(_("Unable to open output file <%s>"), outfile);


    /* Check Endian State of Host Computer */
    if (G_is_little_endian())
	endianness = 0;		/* ie little endian */
    else
	endianness = 1;		/* ie big endian */
    G_debug(1, "Machine is %s endian.\n", endianness ? "big" : "little");

    G_get_window(&region);


    /********** Write map **********/

    /** write text element (map name) **/
    strncpy(array_name, "map_name", 31);
    mrows = 1;
    ncols = strlen(infile);
    data_format = 5;		/* 0=double  1=float  2=32bit signed int  5=8bit unsigned int(text) */
    data_type = 1;		/* 0=numbers  1=text */

    G_verbose_message(_("Exporting <%s>"), infile);

    /* 4 byte data format */
    format_block = endianness * 1000 + data_format * 10 + data_type;
    fwrite(&format_block, sizeof(int), 1, fp1);
    /* fprintf(stderr, "name data format is [%04ld]\n", format_block); */

    /* 4 byte number of rows & columns */
    fwrite(&mrows, sizeof(int), 1, fp1);
    fwrite(&ncols, sizeof(int), 1, fp1);

    /* 4 byte real/imag flag   0=real vals only */
    fwrite(&realflag, sizeof(int), 1, fp1);

    /* length of array_name+1 */
    name_len = strlen(array_name) + 1;
    fwrite(&name_len, sizeof(int), 1, fp1);

    /* array name */
    fprintf(fp1, "%s%c", array_name, '\0');

    /* array data */
    fprintf(fp1, "%s", infile);


    /********** Write title (if there is one) **********/
    maptitle = Rast_get_cell_title(infile, "");
    if (strlen(maptitle) >= 1) {

	/** write text element (map title) **/
	strncpy(array_name, "map_title", 31);
	mrows = 1;
	ncols = strlen(maptitle);
	data_format = 5;	/* 0=double  1=float  2=32bit signed int  5=8bit unsigned int(text) */
	data_type = 1;		/* 0=numbers  1=text */

	/* 4 byte data format */
	format_block = endianness * 1000 + data_format * 10 + data_type;
	fwrite(&format_block, sizeof(int), 1, fp1);

	/* 4 byte number of rows & columns */
	fwrite(&mrows, sizeof(int), 1, fp1);
	fwrite(&ncols, sizeof(int), 1, fp1);

	/* 4 byte real/imag flag   0=real vals only */
	fwrite(&realflag, sizeof(int), 1, fp1);

	/* length of array_name+1 */
	name_len = strlen(array_name) + 1;
	fwrite(&name_len, sizeof(int), 1, fp1);

	/* array name */
	fprintf(fp1, "%s%c", array_name, '\0');

	/* array data */
	fprintf(fp1, "%s", maptitle);
    }

    /***** Write bounds *****/
    G_verbose_message("");
    G_verbose_message(_("Using the Current Region settings:"));
    G_verbose_message(_("northern edge=%f"), region.north);
    G_verbose_message(_("southern edge=%f"), region.south);
    G_verbose_message(_("eastern edge=%f"), region.east);
    G_verbose_message(_("western edge=%f"), region.west);
    G_verbose_message(_("nsres=%f"), region.ns_res);
    G_verbose_message(_("ewres=%f"), region.ew_res);
    G_verbose_message(_("rows=%d"), region.rows);
    G_verbose_message(_("cols=%d"), region.cols);
    G_verbose_message("");

    for (i = 0; i < 4; i++) {
	switch (i) {
	case 0:
	    strncpy(array_name, "map_northern_edge", 31);
	    val_d = region.north;
	    break;
	case 1:
	    strncpy(array_name, "map_southern_edge", 31);
	    val_d = region.south;
	    break;
	case 2:
	    strncpy(array_name, "map_eastern_edge", 31);
	    val_d = region.east;
	    break;
	case 3:
	    strncpy(array_name, "map_western_edge", 31);
	    val_d = region.west;
	    break;
	default:
	    fclose(fp1);
	    G_fatal_error("please contact development team");
	    break;
	}

	/** write data element **/
	data_format = 0;	/* 0=double  1=float  2=32bit signed int  5=8bit unsigned int(text) */
	data_type = 0;		/* 0=numbers  1=text */
	mrows = 1;
	ncols = 1;

	/* 4 byte data format */
	format_block = endianness * 1000 + data_format * 10 + data_type;
	fwrite(&format_block, sizeof(int), 1, fp1);
	/* fprintf(stderr, "bounds data format is [%04ld]\n", format_block); */

	/* 4 byte number of rows , 4 byte number of colums */
	fwrite(&mrows, sizeof(int), 1, fp1);
	fwrite(&ncols, sizeof(int), 1, fp1);

	/* 4 byte real/imag flag   0=only real */
	fwrite(&realflag, sizeof(int), 1, fp1);

	/* length of array_name+1 */
	name_len = strlen(array_name) + 1;
	fwrite(&name_len, sizeof(int), 1, fp1);

	/* array name */
	fprintf(fp1, "%s%c", array_name, '\0');

	/* write array data, by increasing column */
	fwrite(&val_d, sizeof(double), 1, fp1);

	/** end of data element **/
    }



    /***** Write map data *****/
    strncpy(array_name, "map_data", 31);

    switch (map_type) {		/* data_format: 0=double  1=float  2=32bit signed int  5=8bit unsigned int (ie text) */

    case CELL_TYPE:
	data_format = 2;
	G_verbose_message(_("Exporting raster as integer values"));
	break;

    case FCELL_TYPE:
	data_format = 1;
	G_verbose_message(_("Exporting raster as floating point values"));
	break;

    case DCELL_TYPE:
	data_format = 0;
	G_verbose_message(_("Exporting raster as double FP values"));
	break;

    default:
	fclose(fp1);
	G_fatal_error("Please contact development team");
	break;
    }

    data_type = 0;		/* 0=numbers  1=text */

    mrows = region.rows;
    ncols = region.cols;

    /* 4 byte data format */
    format_block = (endianness * 1000) + (data_format * 10) + data_type;
    fwrite(&format_block, sizeof(int), 1, fp1);

    G_debug(3, "map data format is [%04d]\n", format_block);

    /* 4 byte number of rows & columns */
    fwrite(&mrows, sizeof(int), 1, fp1);
    fwrite(&ncols, sizeof(int), 1, fp1);

    /* 4 byte real/imag flag   0=only real */
    fwrite(&realflag, sizeof(int), 1, fp1);

    /* length of array_name+1 */
    name_len = strlen(array_name) + 1;
    fwrite(&name_len, sizeof(int), 1, fp1);

    /* array name */
    fprintf(fp1, "%s%c", array_name, '\0');

    /* data array, by increasing column */
    raster =
	G_calloc((Rast_window_rows() + 1) * (Rast_window_cols() + 1),
		 Rast_cell_size(map_type));

    G_debug(1, "mem alloc is %d bytes\n",	/* I think _cols()+1 is unneeded? */
	    Rast_cell_size(map_type) * (Rast_window_rows() +
				       1) * (Rast_window_cols() + 1));

    G_verbose_message(_("Reading in map ... "));

    /* load entire map into memory */
    for (row = 0, ptr = raster; row < mrows; row++,
	 ptr =
	 G_incr_void_ptr(ptr,
			 (Rast_window_cols() + 1) * Rast_cell_size(map_type))) {
	Rast_get_row(fd, ptr, row, map_type);
	G_percent(row, mrows, 2);
    }
    G_percent(row, mrows, 2);	/* finish it off */


    G_verbose_message(_("Writing out map..."));

    /* then write it to disk */
    /* NoGood: fwrite(raster, Rast_cell_size(map_type), mrows*ncols, fp1); */
    for (col = 0; col < ncols; col++) {
	for (row = 0; row < mrows; row++) {

	    ptr = raster;
	    ptr =
		G_incr_void_ptr(ptr,
				(col +
				 row * (ncols +
					1)) * Rast_cell_size(map_type));

	    if (!Rast_is_null_value(ptr, map_type)) {
		if (map_type == CELL_TYPE) {
		    val_i = *((CELL *) ptr);
		    fwrite(&val_i, sizeof(int), 1, fp1);
		}
		else if (map_type == FCELL_TYPE) {
		    val_f = *((FCELL *) ptr);
		    fwrite(&val_f, sizeof(float), 1, fp1);
		}
		else if (map_type == DCELL_TYPE) {
		    val_d = *((DCELL *) ptr);
		    fwrite(&val_d, sizeof(double), 1, fp1);
		}
	    }
	    else {		/* ie if NULL cell -> write IEEE NaN value */
		if (map_type == CELL_TYPE) {
		    val_i = *((CELL *) ptr);	/* int has no NaN value, so use whatever GRASS uses */
		    fwrite(&val_i, sizeof(int), 1, fp1);
		}
		else if (map_type == FCELL_TYPE) {
		    if (endianness)	/* ie big */
			fprintf(fp1, "%c%c%c%c", 0xff, 0xf8, 0, 0);
		    else	/* ie little */
			fprintf(fp1, "%c%c%c%c", 0, 0, 0xf8, 0xff);
		}
		else if (map_type == DCELL_TYPE) {
		    if (endianness)
			fprintf(fp1, "%c%c%c%c%c%c%c%c", 0xff, 0xf8, 0, 0, 0,
				0, 0, 0);
		    else
			fprintf(fp1, "%c%c%c%c%c%c%c%c", 0, 0, 0, 0, 0, 0,
				0xf8, 0xff);
		}
	    }
	}
	G_percent(col, ncols, 2);
    }
    G_percent(col, ncols, 2);	/* finish it off */

    /*** end of data element ***/


    /* done! */
    filesize = G_ftell(fp1);
    fclose(fp1);

    G_verbose_message(_("%ld bytes written to '%s'"), filesize, outfile);

    G_done_msg("");

    G_free(basename);
    G_free(outfile);

    exit(EXIT_SUCCESS);
}
Пример #30
0
/*-------------------------------------------------------------------------------------------*/
int cross_correlation(struct Map_info *Map, double passWE, double passNS)
    /*
       Map: Vector map from which cross-crorrelation will take values
       passWE: spline step in West-East direction
       passNS: spline step in North-South direction

       RETURN:
       TRUE on success
       FALSE on failure
     */
{
    int bilin = TRUE;		/*booleans */
    int nsplx, nsply, nparam_spl, ndata;
    double *mean, *rms, *stdev;

    /* double lambda[PARAM_LAMBDA] = { 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0 }; */	/* Fixed values (by the moment) */
    double lambda[PARAM_LAMBDA] = { 0.0001, 0.001, 0.005, 0.01, 0.02, 0.05 };	/* Fixed values (by the moment) */
    /* a more exhaustive search:
    #define PARAM_LAMBDA 11
    double lambda[PARAM_LAMBDA] = { 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0 }; */

    double *TN, *Q, *parVect;	/* Interpolation and least-square vectors */
    double **N, **obsVect;	/* Interpolation and least-square matrix */

    struct Point *observ;
    struct Stats stat_vect;

    /*struct line_pnts *points; */
    /*struct line_cats *Cats; */
    struct Cell_head region;

    G_get_window(&region);

    extern int bspline_field;
    extern char *bspline_column;
    dbCatValArray cvarr;

    G_debug(5,
	    "CrossCorrelation: Some tests using different lambda_i values will be done");

    ndata = Vect_get_num_lines(Map);

    if (ndata > NDATA_MAX)
	G_warning(_("%d are too many points. "
		    "The cross validation would take too much time."), ndata);

    /*points = Vect_new_line_struct (); */
    /*Cats = Vect_new_cats_struct (); */

    /* Current region is read and points recorded into observ */
    observ = P_Read_Vector_Region_Map(Map, &region, &ndata, 1024, 1);
    G_debug(5, "CrossCorrelation: %d points read in region. ", ndata);
    G_verbose_message(_("%d points read in region"),
		      ndata);

    if (ndata > 50)
	G_warning(_("Maybe it takes too long. "
		    "It will depend on how many points you are considering."));
    else
	G_debug(5, "CrossCorrelation: It shouldn't take too long.");

    if (ndata > 0) {		/* If at least one point is in the region */
	int i, j, lbd;		/* lbd: lambda index */
	int BW;	
	double mean_reg, *obs_mean;

	int nrec, ctype = 0, verbosity;
	struct field_info *Fi;
	dbDriver *driver_cats;

	mean = G_alloc_vector(PARAM_LAMBDA);	/* Alloc as much mean, rms and stdev values as the total */
	rms = G_alloc_vector(PARAM_LAMBDA);	/* number of parameter used used for cross validation */
	stdev = G_alloc_vector(PARAM_LAMBDA);

	verbosity = G_verbose(); /* store for later reset */

	/* Working with attributes */
	if (bspline_field > 0) {
	    db_CatValArray_init(&cvarr);

	    Fi = Vect_get_field(Map, bspline_field);
	    if (Fi == NULL)
	      G_fatal_error(_("Database connection not defined for layer %d"),
			    bspline_field);

	    driver_cats =
		db_start_driver_open_database(Fi->driver, Fi->database);
	    G_debug(1, _("CrossCorrelation: driver=%s db=%s"), Fi->driver,
		    Fi->database);

	    if (driver_cats == NULL)
		G_fatal_error(_("Unable to open database <%s> by driver <%s>"),
			      Fi->database, Fi->driver);

	    nrec =
		db_select_CatValArray(driver_cats, Fi->table, Fi->key,
				      bspline_column, NULL, &cvarr);
	    G_debug(3, "nrec = %d", nrec);

	    ctype = cvarr.ctype;
	    if (ctype != DB_C_TYPE_INT && ctype != DB_C_TYPE_DOUBLE)
		G_fatal_error(_("Column type not supported"));

	    if (nrec < 0)
		G_fatal_error(_("No records selected from table <%s> "),
			      Fi->table);

	    G_debug(1, "%d records selected from table",
		    nrec);

	    db_close_database_shutdown_driver(driver_cats);
	}

	/* Setting number of splines as a function of WE and SN spline steps */
	nsplx = ceil((region.east - region.west) / passWE);
	nsply = ceil((region.north - region.south) / passNS);
	nparam_spl = nsplx * nsply;	/* Total number of splines */

	if (nparam_spl > 22900)
	    G_fatal_error(_("Too many splines (%d x %d). "
			    "Consider changing spline steps \"ew_step=\" \"ns_step=\"."),
			  nsplx, nsply);

	BW = P_get_BandWidth(bilin, nsply);
	/**/
	/*Least Squares system */
	N = G_alloc_matrix(nparam_spl, BW);	/* Normal matrix */
	TN = G_alloc_vector(nparam_spl);	/* vector */
	parVect = G_alloc_vector(nparam_spl);	/* Parameters vector */
	obsVect = G_alloc_matrix(ndata, 3);	/* Observation vector */
	Q = G_alloc_vector(ndata);		/* "a priori" var-cov matrix */

	obs_mean = G_alloc_vector(ndata);
	stat_vect = alloc_Stats(ndata);

	for (lbd = 0; lbd < PARAM_LAMBDA; lbd++) {	/* For each lambda value */

	    G_message(_("Beginning cross validation with "
		        "lambda_i=%.4f ... (%d of %d)"), lambda[lbd],
		      lbd+1, PARAM_LAMBDA);

	    /*
	       How the cross correlation algorithm is done:
	       For each cycle, only the first ndata-1 "observ" elements are considered for the 
	       interpolation. Within every interpolation mean is calculated to lowering edge 
	       errors. The point left out will be used for an estimation. The error between the 
	       estimation and the observation is recorded for further statistics.
	       At the end of the cycle, the last point, that is, the ndata-1 index, and the point 
	       with j index are swapped.
	     */
	    for (j = 0; j < ndata; j++) {	/* Cross Correlation will use all ndata points */
		double out_x, out_y, out_z;	/* This point is left out */

		for (i = 0; i < ndata; i++) {	/* Each time, only the first ndata-1 points */
		    double dval;		/* are considered in the interpolation */

		    /* Setting obsVect vector & Q matrix */
		    Q[i] = 1;	/* Q=I */
		    obsVect[i][0] = observ[i].coordX;
		    obsVect[i][1] = observ[i].coordY;

		    if (bspline_field > 0) {
			int cat, ival, ret;

			/*type = Vect_read_line (Map, points, Cats, observ[i].lineID); */
			/*if ( !(type & GV_POINTS ) ) continue; */

			/*Vect_cat_get ( Cats, bspline_field, &cat ); */
			cat = observ[i].cat;

			if (cat < 0)
			    continue;

			if (ctype == DB_C_TYPE_INT) {
			    ret =
				db_CatValArray_get_value_int(&cvarr, cat,
							     &ival);
			    obsVect[i][2] = ival;
			    obs_mean[i] = ival;
			}
			else {	/* DB_C_TYPE_DOUBLE */
			    ret =
				db_CatValArray_get_value_double(&cvarr, cat,
								&dval);
			    obsVect[i][2] = dval;
			    obs_mean[i] = dval;
			}
			if (ret != DB_OK) {
			    G_warning(_("No record for point (cat = %d)"),
				      cat);
			    continue;
			}
		    }
		    else {
			obsVect[i][2] = observ[i].coordZ;
			obs_mean[i] = observ[i].coordZ;
		    }
		}		/* i index */

		/* Mean calculation for every point less the last one */
		mean_reg = calc_mean(obs_mean, ndata - 1);

		for (i = 0; i < ndata; i++)
		    obsVect[i][2] -= mean_reg;

		/* This is left out */
		out_x = observ[ndata - 1].coordX;
		out_y = observ[ndata - 1].coordY;
		out_z = obsVect[ndata - 1][2];

		if (bilin) {	/* Bilinear interpolation */
		    normalDefBilin(N, TN, Q, obsVect, passWE, passNS, nsplx,
				   nsply, region.west, region.south,
				   ndata - 1, nparam_spl, BW);
		    nCorrectGrad(N, lambda[lbd], nsplx, nsply, passWE,
				 passNS);
		}
		else {		/* Bicubic interpolation */
		    normalDefBicubic(N, TN, Q, obsVect, passWE, passNS, nsplx,
				     nsply, region.west, region.south,
				     ndata - 1, nparam_spl, BW);
		    nCorrectGrad(N, lambda[lbd], nsplx, nsply, passWE,
				 passNS);
		}

		/* 
		   if (bilin) interpolation (&interp, P_BILINEAR);
		   else interpolation (&interp, P_BICUBIC);
		 */
		G_set_verbose(G_verbose_min());
		G_math_solver_cholesky_sband(N, parVect, TN, nparam_spl, BW);
		G_set_verbose(verbosity);

		/* Estimation of j-point */
		if (bilin)
		    stat_vect.estima[j] =
			dataInterpolateBilin(out_x, out_y, passWE, passNS,
					     nsplx, nsply, region.west,
					     region.south, parVect);

		else
		    stat_vect.estima[j] =
			dataInterpolateBilin(out_x, out_y, passWE, passNS,
					     nsplx, nsply, region.west,
					     region.south, parVect);

		/* Difference between estimated and observated i-point */
		stat_vect.error[j] = out_z - stat_vect.estima[j];
		G_debug(1, "CrossCorrelation: stat_vect.error[%d]  =  %lf", j,
			stat_vect.error[j]);

		/* Once the last value is left out, it is swapped with j-value */
		observ = swap(observ, j, ndata - 1);

		G_percent(j, ndata, 2);
	    }

	    mean[lbd] = calc_mean(stat_vect.error, stat_vect.n_points);
	    rms[lbd] =
		calc_root_mean_square(stat_vect.error, stat_vect.n_points);
	    stdev[lbd] =
		calc_standard_deviation(stat_vect.error, stat_vect.n_points);

	    G_message(_("Mean = %.5lf"), mean[lbd]);
	    G_message(_("Root Mean Square (RMS) = %.5lf"),
		      rms[lbd]);
	    G_message("---");
	}			/* ENDFOR each lambda value */

	G_free_matrix(N);
	G_free_vector(TN);
	G_free_vector(Q);
	G_free_matrix(obsVect);
	G_free_vector(parVect);
#ifdef nodef
	/*TODO: if the minimum lambda is wanted, the function declaration must be changed */
	/* At this moment, consider rms only */
	rms_min = find_minimum(rms, &lbd_min);
	stdev_min = find_minimum(stdev, &lbd_min);

	/* Writing some output */
	G_message(_("Different number of splines and lambda_i values have "
		    "been taken for the cross correlation"));
	G_message(_("The minimum value for the test (rms=%lf) was "
		    "obtained with: lambda_i = %.3f"),
		  rms_min,
		  lambda[lbd_min]);

	*lambda_min = lambda[lbd_min];
#endif

	G_message(_("Table of results:"));
	fprintf(stdout, _("    lambda |       mean |        rms |\n"));
	for (lbd = 0; lbd < PARAM_LAMBDA; lbd++) {
	    fprintf(stdout, " %9.5f | %10.4f | %10.4f |\n", lambda[lbd],
		    mean[lbd], rms[lbd]);
	}
	
	G_free_vector(mean);
	G_free_vector(rms);
    }				/* ENDIF (ndata > 0) */
    else
	G_warning(_("No point lies into the current region"));

    G_free(observ);
    return TRUE;
}