Пример #1
0
// TODO: This probably is not the best interface.
// Also, we should try to merge this into the similar function in DrawEngineCommon.
bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
	// This is always for the current vertices.
	u16 indexLowerBound = 0;
	u16 indexUpperBound = count - 1;

	if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
		const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
		const u16 *inds16 = (const u16 *)inds;
		const u32 *inds32 = (const u32 *)inds;

		if (inds) {
			GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
			indices.resize(count);
			switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
			case GE_VTYPE_IDX_8BIT:
				for (int i = 0; i < count; ++i) {
					indices[i] = inds[i];
				}
				break;
			case GE_VTYPE_IDX_16BIT:
				for (int i = 0; i < count; ++i) {
					indices[i] = inds16[i];
				}
				break;
			case GE_VTYPE_IDX_32BIT:
				WARN_LOG_REPORT_ONCE(simpleIndexes32, G3D, "SimpleVertices: Decoding 32-bit indexes");
				for (int i = 0; i < count; ++i) {
					// These aren't documented and should be rare.  Let's bounds check each one.
					if (inds32[i] != (u16)inds32[i]) {
						ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, G3D, "SimpleVertices: Index outside 16-bit range");
					}
					indices[i] = (u16)inds32[i];
				}
				break;
			}
		} else {
			indices.clear();
		}
	} else {
		indices.clear();
	}

	static std::vector<u32> temp_buffer;
	static std::vector<SimpleVertex> simpleVertices;
	temp_buffer.resize(65536 * 24 / sizeof(u32));
	simpleVertices.resize(indexUpperBound + 1);

	VertexDecoder vdecoder;
	VertexDecoderOptions options{};
	vdecoder.SetVertexType(gstate.vertType, options);
	DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType);

	float world[16];
	float view[16];
	float worldview[16];
	float worldviewproj[16];
	ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
	ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
	Matrix4ByMatrix4(worldview, world, view);
	Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);

	vertices.resize(indexUpperBound + 1);
	for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
		const SimpleVertex &vert = simpleVertices[i];

		if (gstate.isModeThrough()) {
			if (gstate.vertType & GE_VTYPE_TC_MASK) {
				vertices[i].u = vert.uv[0];
				vertices[i].v = vert.uv[1];
			} else {
				vertices[i].u = 0.0f;
				vertices[i].v = 0.0f;
			}
			vertices[i].x = vert.pos.x;
			vertices[i].y = vert.pos.y;
			vertices[i].z = vert.pos.z;
			if (gstate.vertType & GE_VTYPE_COL_MASK) {
				memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
			} else {
				memset(vertices[i].c, 0, sizeof(vertices[i].c));
			}
		} else {
			float clipPos[4];
			Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj);
			ScreenCoords screenPos = ClipToScreen(clipPos);
			DrawingCoords drawPos = ScreenToDrawing(screenPos);

			if (gstate.vertType & GE_VTYPE_TC_MASK) {
				vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0);
				vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0);
			} else {
				vertices[i].u = 0.0f;
				vertices[i].v = 0.0f;
			}
			vertices[i].x = drawPos.x;
			vertices[i].y = drawPos.y;
			vertices[i].z = drawPos.z;
			if (gstate.vertType & GE_VTYPE_COL_MASK) {
				memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
			} else {
				memset(vertices[i].c, 0, sizeof(vertices[i].c));
			}
		}
	}

	// The GE debugger expects these to be set.
	gstate_c.curTextureWidth = gstate.getTextureWidth(0);
	gstate_c.curTextureHeight = gstate.getTextureHeight(0);

	return true;
}
Пример #2
0
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type)
{
	// TODO: Cache VertexDecoder objects
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	int vtcs_per_prim = 0;
	if (prim_type == GE_PRIM_POINTS) vtcs_per_prim = 1;
	else if (prim_type == GE_PRIM_LINES) vtcs_per_prim = 2;
	else if (prim_type == GE_PRIM_TRIANGLES) vtcs_per_prim = 3;
	else if (prim_type == GE_PRIM_RECTANGLES) vtcs_per_prim = 2;
	else {
		// TODO: Unsupported
	}

	if (prim_type == GE_PRIM_POINTS || prim_type == GE_PRIM_LINES || prim_type == GE_PRIM_TRIANGLES || prim_type == GE_PRIM_RECTANGLES) {
		for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
			VertexData data[max_vtcs_per_prim];

			for (int i = 0; i < vtcs_per_prim; ++i) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]);
				else
					vreader.Goto(vtx+i);

				data[i] = ReadVertex(vreader);
				if (outside_range_flag)
					break;
			}
			if (outside_range_flag) {
				outside_range_flag = false;
				continue;
			}


			switch (prim_type) {
			case GE_PRIM_TRIANGLES:
			{
				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if (!gstate.getCullMode())
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				else
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				break;
			}

			case GE_PRIM_RECTANGLES:
				Clipper::ProcessQuad(data[0], data[1]);
				break;
			}
		}
	} else if (prim_type == GE_PRIM_TRIANGLE_STRIP) {
		VertexData data[3];
		unsigned int skip_count = 2; // Don't draw a triangle when loading the first two vertices

		for (int vtx = 0; vtx < vertex_count; ++vtx) {
			if (indices)
				vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
			else
				vreader.Goto(vtx);

			data[vtx % 3] = ReadVertex(vreader);
			if (outside_range_flag) {
				// Drop all primitives containing the current vertex
				skip_count = 2;
				outside_range_flag = false;
				continue;
			}

			if (skip_count) {
				--skip_count;
				continue;
			}

			if (!gstate.isCullEnabled() || gstate.isModeClear()) {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
				// We need to reverse the vertex order for each second primitive,
				// but we additionally need to do that for every primitive if CCW cullmode is used.
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
			}
		}
	} else if (prim_type == GE_PRIM_TRIANGLE_FAN) {
		VertexData data[3];
		unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices

		if (indices)
			vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
		else
			vreader.Goto(0);
		data[0] = ReadVertex(vreader);

		for (int vtx = 1; vtx < vertex_count; ++vtx) {
			if (indices)
				vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
			else
				vreader.Goto(vtx);

			data[2 - (vtx % 2)] = ReadVertex(vreader);
			if (outside_range_flag) {
				// Drop all primitives containing the current vertex
				skip_count = 2;
				outside_range_flag = false;
				continue;
			}

			if (skip_count) {
				--skip_count;
				continue;
			}

			if (!gstate.isCullEnabled() || gstate.isModeClear()) {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
				// We need to reverse the vertex order for each second primitive,
				// but we additionally need to do that for every primitive if CCW cullmode is used.
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
			}
		}
	}
}
Пример #3
0
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, GEPrimitiveType prim_type, int vertex_count, u32 vertex_type, int *bytesRead, SoftwareDrawEngine *drawEngine)
{
	VertexDecoder &vdecoder = *drawEngine->FindVertexDecoder(vertex_type);
	const DecVtxFormat &vtxfmt = vdecoder.GetDecVtxFmt();

	if (bytesRead)
		*bytesRead = vertex_count * vdecoder.VertexSize();

	// Frame skipping.
	if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	IndexConverter idxConv(vertex_type, indices);

	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	static VertexData data[max_vtcs_per_prim];
	// This is the index of the next vert in data (or higher, may need modulus.)
	static int data_index = 0;

	static GEPrimitiveType prev_prim = GE_PRIM_POINTS;
	if (prim_type != GE_PRIM_KEEP_PREVIOUS) {
		data_index = 0;
		prev_prim = prim_type;
	} else {
		prim_type = prev_prim;
	}

	int vtcs_per_prim;
	switch (prim_type) {
	case GE_PRIM_POINTS: vtcs_per_prim = 1; break;
	case GE_PRIM_LINES: vtcs_per_prim = 2; break;
	case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break;
	case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break;
	default: vtcs_per_prim = 0; break;
	}

	// TODO: Do this in two passes - first process the vertices (before indexing/stripping),
	// then resolve the indices. This lets us avoid transforming shared vertices twice.

	switch (prim_type) {
	case GE_PRIM_POINTS:
	case GE_PRIM_LINES:
	case GE_PRIM_TRIANGLES:
	case GE_PRIM_RECTANGLES:
		{
			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices) {
					vreader.Goto(idxConv.convert(vtx) - index_lower_bound);
				} else {
					vreader.Goto(vtx);
				}

				data[data_index++] = ReadVertex(vreader);
				if (data_index < vtcs_per_prim) {
					// Keep reading.  Note: an incomplete prim will stay read for GE_PRIM_KEEP_PREVIOUS.
					continue;
				}

				// Okay, we've got enough verts.  Reset the index for next time.
				data_index = 0;
				if (outside_range_flag) {
					// Cull the prim if it was outside, and move to the next prim.
					outside_range_flag = false;
					continue;
				}

				switch (prim_type) {
				case GE_PRIM_TRIANGLES:
				{
					if (!gstate.isCullEnabled() || gstate.isModeClear()) {
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					} else if (!gstate.getCullMode()) {
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					} else {
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
					}
					break;
				}

				case GE_PRIM_RECTANGLES:
					Clipper::ProcessRect(data[0], data[1]);
					break;

				case GE_PRIM_LINES:
					Clipper::ProcessLine(data[0], data[1]);
					break;

				case GE_PRIM_POINTS:
					Clipper::ProcessPoint(data[0]);
					break;

				default:
					_dbg_assert_msg_(G3D, false, "Unexpected prim type: %d", prim_type);
				}
			}
			break;
		}

	case GE_PRIM_LINE_STRIP:
		{
			// Don't draw a line when loading the first vertex.
			// If data_index is 1 or 2, etc., it means we're continuing a line strip.
			int skip_count = data_index == 0 ? 1 : 0;
			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices) {
					vreader.Goto(idxConv.convert(vtx) - index_lower_bound);
				} else {
					vreader.Goto(vtx);
				}

				data[(data_index++) & 1] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
				} else {
					// We already incremented data_index, so data_index & 1 is previous one.
					Clipper::ProcessLine(data[data_index & 1], data[(data_index & 1) ^ 1]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_STRIP:
		{
			// Don't draw a triangle when loading the first two vertices.
			int skip_count = data_index >= 2 ? 0 : 2 - data_index;

			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices) {
					vreader.Goto(idxConv.convert(vtx) - index_lower_bound);
				} else {
					vreader.Goto(vtx);
				}

				data[(data_index++) % 3] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ ((data_index - 1) % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_FAN:
		{
			// Don't draw a triangle when loading the first two vertices.
			// (this doesn't count the central one.)
			int skip_count = data_index <= 1 ? 1 : 0;
			int start_vtx = 0;

			// Only read the central vertex if we're not continuing.
			if (data_index == 0) {
				if (indices) {
					vreader.Goto(idxConv.convert(0) - index_lower_bound);
				} else {
					vreader.Goto(0);
				}
				data[0] = ReadVertex(vreader);
				data_index++;
				start_vtx = 1;
			}

			for (int vtx = start_vtx; vtx < vertex_count; ++vtx) {
				if (indices) {
					vreader.Goto(idxConv.convert(vtx) - index_lower_bound);
				} else {
					vreader.Goto(vtx);
				}

				data[2 - ((data_index++) % 2)] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ ((data_index - 1) % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}

	default:
		ERROR_LOG(G3D, "Unexpected prim type: %d", prim_type);
		break;
	}

	GPUDebug::NotifyDraw();
}
Пример #4
0
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead)
{
	// TODO: Cache VertexDecoder objects
	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;
	vdecoder.SetVertexType(vertex_type, options);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	if (bytesRead)
		*bytesRead = vertex_count * vdecoder.VertexSize();

	// Frame skipping.
	if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT;
	u8 *indices8 = (u8 *)indices;
	u16 *indices16 = (u16 *)indices;
	u32 *indices32 = (u32 *)indices;
	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	int vtcs_per_prim = 0;

	switch (prim_type) {
	case GE_PRIM_POINTS: vtcs_per_prim = 1; break;
	case GE_PRIM_LINES: vtcs_per_prim = 2; break;
	case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break;
	case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break;
	}

	VertexData data[max_vtcs_per_prim];

	// TODO: Do this in two passes - first process the vertices (before indexing/stripping),
	// then resolve the indices. This lets us avoid transforming shared vertices twice.

	switch (prim_type) {
	case GE_PRIM_POINTS:
	case GE_PRIM_LINES:
	case GE_PRIM_TRIANGLES:
	case GE_PRIM_RECTANGLES:
		{
			for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
				for (int i = 0; i < vtcs_per_prim; ++i) {
					if (indices) {
						if (indices_32bit) {
							vreader.Goto(indices32[vtx + i]);
						} else if (indices_16bit) {
							vreader.Goto(indices16[vtx + i]);
						} else {
							vreader.Goto(indices8[vtx + i]);
						}
					} else {
						vreader.Goto(vtx+i);
					}

					data[i] = ReadVertex(vreader);
					if (outside_range_flag)
						break;
				}
				if (outside_range_flag) {
					outside_range_flag = false;
					continue;
				}

				switch (prim_type) {
				case GE_PRIM_TRIANGLES:
				{
					if (!gstate.isCullEnabled() || gstate.isModeClear()) {
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					} else if (!gstate.getCullMode())
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					else
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
					break;
				}

				case GE_PRIM_RECTANGLES:
					Clipper::ProcessRect(data[0], data[1]);
					break;

				case GE_PRIM_LINES:
					Clipper::ProcessLine(data[0], data[1]);
					break;

				case GE_PRIM_POINTS:
					Clipper::ProcessPoint(data[0]);
					break;
				}
			}
			break;
		}

	case GE_PRIM_LINE_STRIP:
		{
			int skip_count = 1; // Don't draw a line when loading the first vertex
			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx & 1] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
				} else {
					Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_STRIP:
		{
			int skip_count = 2; // Don't draw a triangle when loading the first two vertices

			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx % 3] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_FAN:
		{
			unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices

			if (indices)
				vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
			else
				vreader.Goto(0);
			data[0] = ReadVertex(vreader);

			for (int vtx = 1; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[2 - (vtx % 2)] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}
	}

	host->GPUNotifyDraw();
}
Пример #5
0
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type)
{
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	// TODO: Do something less idiotic to manage this buffer
	SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v];

	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			SplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
                if (indices)
                    vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]);
                else
                    vreader.Goto(idx);

				patch.points[point] = ReadVertex(vreader);
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		SplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				VertexData v0 = patch.points[point_index];
				VertexData v1 = patch.points[point_index+1];
				VertexData v2 = patch.points[point_index+4];
				VertexData v3 = patch.points[point_index+5];

				// TODO: Backface culling etc
				Clipper::ProcessTriangle(v0, v1, v2);
				Clipper::ProcessTriangle(v2, v1, v0);
				Clipper::ProcessTriangle(v2, v1, v3);
				Clipper::ProcessTriangle(v3, v1, v2);
			}
		}
	}
	delete[] patches;
}
Пример #6
0
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType) {
	PROFILE_THIS_SCOPE("bezier");

	DispatchFlush();

	// TODO: Verify correct functionality with < 4.
	if (count_u < 4 || count_v < 4)
		return;

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
			patch.index = patch_v * num_patches_u + patch_u;
			patch.primType = prim_type;
			patch.computeNormals = computeNormals;
			patch.patchFacing = patchFacing;
		}
	}

	int count = 0;
	u8 *dest = splineBuffer;

	// Simple approximation of the real tesselation factor.
	// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
	// like the splines, so we subdivide across the whole "mega-patch".
	if (num_patches_u == 0) num_patches_u = 1;
	if (num_patches_v == 0) num_patches_v = 1;
	if (tess_u < 4) tess_u = 4;
	if (tess_v < 4) tess_v = 4;

	u16 *inds = quadIndices_;
	int maxVertices = SPLINE_BUFFER_SIZE / vertexSize;
	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType, maxVertices);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	int bytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeWithIndex16, &bytesRead);

	DispatchFlush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #7
0
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) {
	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;
	vdecoder.SetVertexType(vertex_type, options);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT;
	u8 *indices8 = (u8 *)indices;
	u16 *indices16 = (u16 *)indices;
	u32 *indices32 = (u32 *)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	if (patchBufferSize_ < num_patches_u * num_patches_v) {
		if (patchBuffer_) {
			FreeAlignedMemory(patchBuffer_);
		}
		patchBuffer_ = (SplinePatch *)AllocateAlignedMemory(num_patches_u * num_patches_v, 16);
		patchBufferSize_ = num_patches_u * num_patches_v;
	}
	SplinePatch *patches = patchBuffer_;

	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			SplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
				if (indices) {
					if (indices_32bit) {
						vreader.Goto(indices32[idx]);
					} else if (indices_16bit) {
						vreader.Goto(indices16[idx]);
					} else {
						vreader.Goto(indices8[idx]);
					}
				} else {
					vreader.Goto(idx);
				}

				patch.points[point] = ReadVertex(vreader);
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		SplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				VertexData v0 = patch.points[point_index];
				VertexData v1 = patch.points[point_index+1];
				VertexData v2 = patch.points[point_index+4];
				VertexData v3 = patch.points[point_index+5];

				// TODO: Backface culling etc
				Clipper::ProcessTriangle(v0, v1, v2);
				Clipper::ProcessTriangle(v2, v1, v0);
				Clipper::ProcessTriangle(v2, v1, v3);
				Clipper::ProcessTriangle(v3, v1, v2);
			}
		}
	}

	host->GPUNotifyDraw();
}
Пример #8
0
// TODO: This probably is not the best interface.
bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
	// This is always for the current vertices.
	u16 indexLowerBound = 0;
	u16 indexUpperBound = count - 1;

	if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
		const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
		const u16 *inds16 = (const u16 *)inds;

		if (inds) {
			GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
			indices.resize(count);
			switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
			case GE_VTYPE_IDX_16BIT:
				for (int i = 0; i < count; ++i) {
					indices[i] = inds16[i];
				}
				break;
			case GE_VTYPE_IDX_8BIT:
				for (int i = 0; i < count; ++i) {
					indices[i] = inds[i];
				}
				break;
			default:
				return false;
			}
		} else {
			indices.clear();
		}
	} else {
		indices.clear();
	}

	static std::vector<u32> temp_buffer;
	static std::vector<SimpleVertex> simpleVertices;
	temp_buffer.resize(65536 * 24 / sizeof(u32));
	simpleVertices.resize(indexUpperBound + 1);

	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;  // TODO: True should be fine here
	vdecoder.SetVertexType(gstate.vertType, options);
	DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType);

	float world[16];
	float view[16];
	float worldview[16];
	float worldviewproj[16];
	ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
	ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
	Matrix4ByMatrix4(worldview, world, view);
	Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);

	vertices.resize(indexUpperBound + 1);
	for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
		const SimpleVertex &vert = simpleVertices[i];

		if (gstate.isModeThrough()) {
			if (gstate.vertType & GE_VTYPE_TC_MASK) {
				vertices[i].u = vert.uv[0];
				vertices[i].v = vert.uv[1];
			} else {
				vertices[i].u = 0.0f;
				vertices[i].v = 0.0f;
			}
			vertices[i].x = vert.pos.x;
			vertices[i].y = vert.pos.y;
			vertices[i].z = vert.pos.z;
			if (gstate.vertType & GE_VTYPE_COL_MASK) {
				memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
			} else {
				memset(vertices[i].c, 0, sizeof(vertices[i].c));
			}
		} else {
			float clipPos[4];
			Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj);
			ScreenCoords screenPos = ClipToScreen(clipPos);
			DrawingCoords drawPos = ScreenToDrawing(screenPos);

			if (gstate.vertType & GE_VTYPE_TC_MASK) {
				vertices[i].u = vert.uv[0];
				vertices[i].v = vert.uv[1];
			} else {
				vertices[i].u = 0.0f;
				vertices[i].v = 0.0f;
			}
			vertices[i].x = drawPos.x;
			vertices[i].y = drawPos.y;
			vertices[i].z = 1.0;
			if (gstate.vertType & GE_VTYPE_COL_MASK) {
				memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
			} else {
				memset(vertices[i].c, 0, sizeof(vertices[i].c));
			}
		}
	}

	return true;
}
Пример #9
0
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType) {
	PROFILE_THIS_SCOPE("spline");
	DispatchFlush();

	// TODO: Verify correct functionality with < 4.
	if (count_u < 4 || count_v < 4)
		return;

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	// TODO: Do something less idiotic to manage this buffer
	SimpleVertex **points = new SimpleVertex *[count_u * count_v];

	// Make an array of pointers to the control points, to get rid of indices.
	for (int idx = 0; idx < count_u * count_v; idx++) {
		if (indices)
			points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
		else
			points[idx] = simplified_control_points + idx;
	}

	int count = 0;

	u8 *dest = splineBuffer;

	SplinePatchLocal patch;
	patch.tess_u = tess_u;
	patch.tess_v = tess_v;
	patch.type_u = type_u;
	patch.type_v = type_v;
	patch.count_u = count_u;
	patch.count_v = count_v;
	patch.points = points;
	patch.computeNormals = computeNormals;
	patch.primType = prim_type;
	patch.patchFacing = patchFacing;

	int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize;
	TesselateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount);

	delete[] points;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	int bytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeWithIndex16, &bytesRead);

	DispatchFlush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #10
0
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;
	
	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// TODO: Do something less idiotic to manage this buffer
	SimpleVertex **points = new SimpleVertex *[count_u * count_v];

	// Make an array of pointers to the control points, to get rid of indices.
	for (int idx = 0; idx < count_u * count_v; idx++) {
		if (indices)
			points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
		else
			points[idx] = simplified_control_points + idx;
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	SplinePatchLocal patch;
	patch.type_u = type_u;
	patch.type_v = type_v;
	patch.count_u = count_u;
	patch.count_v = count_v;
	patch.points = points;

	TesselateSplinePatch(dest, count, patch, origVertType);

	delete[] points;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}
	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);

	Flush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #11
0
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
		}
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	// Simple approximation of the real tesselation factor.
	// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
	// like the splines, so we subdivide across the whole "mega-patch".
	if (num_patches_u == 0) num_patches_u = 1;
	if (num_patches_v == 0) num_patches_v = 1;
	int tess_u = gstate.getPatchDivisionU() / num_patches_u;
	int tess_v = gstate.getPatchDivisionV() / num_patches_v;
	if (tess_u < 4) tess_u = 4;
	if (tess_v < 4) tess_v = 4;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, count, tess_u, tess_v, patch, origVertType);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);
	Flush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #12
0
// TODO: This probably is not the best interface.
bool DrawEngineCommon::GetCurrentSimpleVertices(int count, std::vector<GPUDebugVertex> &vertices, std::vector<u16> &indices) {
	// This is always for the current vertices.
	u16 indexLowerBound = 0;
	u16 indexUpperBound = count - 1;

	if (!Memory::IsValidAddress(gstate_c.vertexAddr))
		return false;

	bool savedVertexFullAlpha = gstate_c.vertexFullAlpha;

	if ((gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) {
		const u8 *inds = Memory::GetPointer(gstate_c.indexAddr);
		const u16 *inds16 = (const u16 *)inds;

		if (inds) {
			GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound);
			indices.resize(count);
			switch (gstate.vertType & GE_VTYPE_IDX_MASK) {
			case GE_VTYPE_IDX_16BIT:
				for (int i = 0; i < count; ++i) {
					indices[i] = inds16[i];
				}
				break;
			case GE_VTYPE_IDX_8BIT:
				for (int i = 0; i < count; ++i) {
					indices[i] = inds[i];
				}
				break;
			default:
				return false;
			}
		} else {
			indices.clear();
		}
	} else {
		indices.clear();
	}

	static std::vector<u32> temp_buffer;
	static std::vector<SimpleVertex> simpleVertices;
	temp_buffer.resize(std::max((int)indexUpperBound, 8192) * 128 / sizeof(u32));
	simpleVertices.resize(indexUpperBound + 1);
	NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), indexLowerBound, indexUpperBound, gstate.vertType);

	float world[16];
	float view[16];
	float worldview[16];
	float worldviewproj[16];
	ConvertMatrix4x3To4x4(world, gstate.worldMatrix);
	ConvertMatrix4x3To4x4(view, gstate.viewMatrix);
	Matrix4ByMatrix4(worldview, world, view);
	Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix);

	vertices.resize(indexUpperBound + 1);
	for (int i = indexLowerBound; i <= indexUpperBound; ++i) {
		const SimpleVertex &vert = simpleVertices[i];

		if (gstate.isModeThrough()) {
			if (gstate.vertType & GE_VTYPE_TC_MASK) {
				vertices[i].u = vert.uv[0];
				vertices[i].v = vert.uv[1];
			} else {
				vertices[i].u = 0.0f;
				vertices[i].v = 0.0f;
			}
			vertices[i].x = vert.pos.x;
			vertices[i].y = vert.pos.y;
			vertices[i].z = vert.pos.z;
			if (gstate.vertType & GE_VTYPE_COL_MASK) {
				memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
			} else {
				memset(vertices[i].c, 0, sizeof(vertices[i].c));
			}
		} else {
			float clipPos[4];
			Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj);
			Vec3f screenPos = ClipToScreen(clipPos);
			Vec3f drawPos = ScreenToDrawing(screenPos);

			if (gstate.vertType & GE_VTYPE_TC_MASK) {
				vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0);
				vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0);
			} else {
				vertices[i].u = 0.0f;
				vertices[i].v = 0.0f;
			}
			vertices[i].x = drawPos.x;
			vertices[i].y = drawPos.y;
			vertices[i].z = drawPos.z;
			if (gstate.vertType & GE_VTYPE_COL_MASK) {
				memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c));
			} else {
				memset(vertices[i].c, 0, sizeof(vertices[i].c));
			}
		}
	}

	gstate_c.vertexFullAlpha = savedVertexFullAlpha;

	return true;
}
Пример #13
0
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
	PROFILE_THIS_SCOPE("bezier");

	DispatchFlush();

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	IndexConverter idxConv(vertType, indices);
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
	*bytesRead = count_u * count_v * origVDecoder->VertexSize();

	// Real hardware seems to draw nothing when given < 4 either U or V.
	// This would result in num_patches_u / num_patches_v being 0.
	if (count_u < 4 || count_v < 4) {
		return;
	}

	// Simplify away bones and morph before proceeding
	// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	float *pos = (float*)(decoded + 65536 * 18); // Size 4 float
	float *tex = pos + count_u * count_v * 4; // Size 4 float
	float *col = tex + count_u * count_v * 4; // Size 4 float
	const bool hasColor = (origVertType & GE_VTYPE_COL_MASK) != 0;
	const bool hasTexCoords = (origVertType & GE_VTYPE_TC_MASK) != 0;

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch *patches = nullptr;
	if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) {
		int posStride, texStride, colStride;
		tessDataTransfer->PrepareBuffers(pos, tex, col, posStride, texStride, colStride, count_u * count_v, hasColor, hasTexCoords);
		float *p = pos;
		float *t = tex;
		float *c = col;
		for (int idx = 0; idx < count_u * count_v; idx++) {
			SimpleVertex *point = simplified_control_points + (indices ? idxConv.convert(idx) : idx);
			memcpy(p, point->pos.AsArray(), 3 * sizeof(float));
			p += posStride;
			if (hasTexCoords) {
				memcpy(t, point->uv, 2 * sizeof(float));
				t += texStride;
			}
			if (hasColor) {
				memcpy(c, Vec4f::FromRGBA(point->color_32).AsArray(), 4 * sizeof(float));
				c += colStride;
			}
		}
		if (!hasColor) {
			SimpleVertex *point = simplified_control_points + (indices ? idxConv.convert(0) : 0);
			memcpy(col, Vec4f::FromRGBA(point->color_32).AsArray(), 4 * sizeof(float));
		}
	} else {
		patches = new BezierPatch[num_patches_u * num_patches_v];
		for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
			for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
				BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
				for (int point = 0; point < 16; ++point) {
					int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * count_u;
					patch.points[point] = simplified_control_points + (indices ? idxConv.convert(idx) : idx);
				}
				patch.u_index = patch_u * 3;
				patch.v_index = patch_v * 3;
				patch.index = patch_v * num_patches_u + patch_u;
				patch.primType = prim_type;
				patch.computeNormals = computeNormals;
				patch.patchFacing = patchFacing;
			}
		}
	}

	int count = 0;
	u8 *dest = splineBuffer;

	// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
	// like the splines, so we subdivide across the whole "mega-patch".

	// If specified as 0, uses 1.
	if (tess_u < 1) {
		tess_u = 1;
	}
	if (tess_v < 1) {
		tess_v = 1;
	}

	u16 *inds = quadIndices_;
	if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) {
		tessDataTransfer->SendDataToShader(pos, tex, col, count_u * count_v, hasColor, hasTexCoords);
		TessellateBezierPatchHardware(dest, inds, count, tess_u, tess_v, prim_type);
		numPatches = num_patches_u * num_patches_v;
	} else {
		int maxVertices = SPLINE_BUFFER_SIZE / vertexSize;
		// Downsample until it fits, in case crazy tessellation factors are sent.
		while ((tess_u + 1) * (tess_v + 1) * num_patches_u * num_patches_v > maxVertices) {
			tess_u /= 2;
			tess_v /= 2;
		}
		for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
			const BezierPatch &patch = patches[patch_idx];
			TessellateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType);
		}
		delete[] patches;
	}

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (origVertType & GE_VTYPE_TC_MASK) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
	int generatedBytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeID, &generatedBytesRead);

	DispatchFlush();

	if (origVertType & GE_VTYPE_TC_MASK) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #14
0
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
	PROFILE_THIS_SCOPE("spline");
	DispatchFlush();

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	IndexConverter idxConv(vertType, indices);
	if (indices)
		GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound);

	VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
	*bytesRead = count_u * count_v * origVDecoder->VertexSize();

	// Real hardware seems to draw nothing when given < 4 either U or V.
	if (count_u < 4 || count_v < 4) {
		return;
	}

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	// TODO: Do something less idiotic to manage this buffer
	SimpleVertex **points = new SimpleVertex *[count_u * count_v];

	// Make an array of pointers to the control points, to get rid of indices.
	for (int idx = 0; idx < count_u * count_v; idx++) {
		points[idx] = simplified_control_points + (indices ? idxConv.convert(idx) : idx);
	}

	int count = 0;

	u8 *dest = splineBuffer;

	SplinePatchLocal patch;
	patch.tess_u = tess_u;
	patch.tess_v = tess_v;
	patch.type_u = type_u;
	patch.type_v = type_v;
	patch.count_u = count_u;
	patch.count_v = count_v;
	patch.points = points;
	patch.computeNormals = computeNormals;
	patch.primType = prim_type;
	patch.patchFacing = patchFacing;

	if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) {
	
		float *pos = (float*)(decoded + 65536 * 18); // Size 4 float
		float *tex = pos + count_u * count_v * 4; // Size 4 float
		float *col = tex + count_u * count_v * 4; // Size 4 float
		const bool hasColor = (origVertType & GE_VTYPE_COL_MASK) != 0;
		const bool hasTexCoords = (origVertType & GE_VTYPE_TC_MASK) != 0;

		int posStride, texStride, colStride;
		tessDataTransfer->PrepareBuffers(pos, tex, col, posStride, texStride, colStride, count_u * count_v, hasColor, hasTexCoords);
		float *p = pos;
		float *t = tex;
		float *c = col;
		for (int idx = 0; idx < count_u * count_v; idx++) {
			memcpy(p, points[idx]->pos.AsArray(), 3 * sizeof(float));
			p += posStride;
			if (hasTexCoords) {
				memcpy(t, points[idx]->uv, 2 * sizeof(float));
				t += texStride;
			}
			if (hasColor) {
				memcpy(c, Vec4f::FromRGBA(points[idx]->color_32).AsArray(), 4 * sizeof(float));
				c += colStride;
			}
		}
		if (!hasColor)
			memcpy(col, Vec4f::FromRGBA(points[0]->color_32).AsArray(), 4 * sizeof(float));

		tessDataTransfer->SendDataToShader(pos, tex, col, count_u * count_v, hasColor, hasTexCoords);
		TessellateSplinePatchHardware(dest, quadIndices_, count, patch);
		numPatches = (count_u - 3) * (count_v - 3);
	} else {
		int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize;
		TessellateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount);
	}
	delete[] points;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0.0f;
		gstate_c.uv.vOff = 0.0f;
	}

	uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());

	int generatedBytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeID, &generatedBytesRead);

	DispatchFlush();

	if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
		gstate_c.uv = prevUVScale;
	}
}
Пример #15
0
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
		}
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, count, patch, origVertType);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, -1, 0);
	Flush();
}
Пример #16
0
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, u32 prim_type, u32 vertex_type)
{
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	// We're not actually going to decode, only reshuffle.
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);

	int undecodedVertexSize = vdecoder.VertexSize();

	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	// TODO: Do something less idiotic to manage this buffer
	HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
				if (indices)
					patch.points[point] = (u8 *)control_points + undecodedVertexSize * (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = (u8 *)control_points + undecodedVertexSize * idx;
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	u8 *decoded2 = decoded + 65536 * 24;

	int count = 0;
	u8 *dest = decoded2;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		HWSplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				u8 *v0 = patch.points[point_index];
				u8 *v1 = patch.points[point_index+1];
				u8 *v2 = patch.points[point_index+4];
				u8 *v3 = patch.points[point_index+5];

				// TODO: Insert UVs where applicable. Actually subdivide.
				CopyTriangle(dest, v0, v1, v2, undecodedVertexSize);
				CopyTriangle(dest, v2, v1, v0, undecodedVertexSize);
				CopyTriangle(dest, v2, v1, v3, undecodedVertexSize);
				CopyTriangle(dest, v3, v1, v2, undecodedVertexSize);
				count += 12;
			}
		}
	}
	delete[] patches;

	u32 vertTypeWithoutIndex = vertex_type & ~GE_VTYPE_IDX_MASK;

	SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0);
	Flush();
}