void TestSymmetricCipher(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); std::string key = GetDecodedDatum(v, "Key"); std::string ciphertext = GetDecodedDatum(v, "Ciphertext"); std::string plaintext = GetDecodedDatum(v, "Plaintext"); TestDataNameValuePairs pairs(v); if (test == "Encrypt") { std::auto_ptr<SymmetricCipher> encryptor(ObjectFactoryRegistry<SymmetricCipher, ENCRYPTION>::Registry().CreateObject(name.c_str())); encryptor->SetKey((const byte *)key.data(), key.size(), pairs); std::string encrypted; StringSource ss(plaintext, true, new StreamTransformationFilter(*encryptor, new StringSink(encrypted), StreamTransformationFilter::NO_PADDING)); if (encrypted != ciphertext) SignalTestFailure(); } else if (test == "Decrypt") { std::auto_ptr<SymmetricCipher> decryptor(ObjectFactoryRegistry<SymmetricCipher, DECRYPTION>::Registry().CreateObject(name.c_str())); decryptor->SetKey((const byte *)key.data(), key.size(), pairs); std::string decrypted; StringSource ss(ciphertext, true, new StreamTransformationFilter(*decryptor, new StringSink(decrypted), StreamTransformationFilter::NO_PADDING)); if (decrypted != plaintext) SignalTestFailure(); } else { SignalTestError(); assert(false); } }
void TestKeyDerivationFunction(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); if(test == "Skip") return; assert(test == "Verify"); std::string key = GetDecodedDatum(v, "Key"); std::string salt = GetDecodedDatum(v, "Salt"); std::string info = GetDecodedDatum(v, "Info"); std::string derived = GetDecodedDatum(v, "DerivedKey"); std::string t = GetDecodedDatum(v, "DerivedKeyLength"); TestDataNameValuePairs pairs(v); unsigned int length = pairs.GetIntValueWithDefault(Name::DerivedKeyLength(), (int)derived.size()); member_ptr<KeyDerivationFunction> kdf; kdf.reset(ObjectFactoryRegistry<KeyDerivationFunction>::Registry().CreateObject(name.c_str())); std::string calc; calc.resize(length); unsigned int ret = kdf->DeriveKey(reinterpret_cast<byte*>(&calc[0]), calc.size(), reinterpret_cast<const byte*>(key.data()), key.size(), reinterpret_cast<const byte*>(salt.data()), salt.size(), reinterpret_cast<const byte*>(info.data()), info.size()); if(calc != derived || ret != length) SignalTestFailure(); }
void TestDigestOrMAC(TestData &v, bool testDigest) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); member_ptr<MessageAuthenticationCode> mac; member_ptr<HashTransformation> hash; HashTransformation *pHash = NULL; TestDataNameValuePairs pairs(v); if (testDigest) { hash.reset(ObjectFactoryRegistry<HashTransformation>::Registry().CreateObject(name.c_str())); pHash = hash.get(); } else { mac.reset(ObjectFactoryRegistry<MessageAuthenticationCode>::Registry().CreateObject(name.c_str())); pHash = mac.get(); ConstByteArrayParameter iv; if (pairs.GetValue(Name::IV(), iv) && iv.size() != mac->IVSize()) SignalTestFailure(); std::string key = GetDecodedDatum(v, "Key"); mac->SetKey((const byte *)key.c_str(), key.size(), pairs); } if (test == "Verify" || test == "VerifyTruncated" || test == "NotVerify") { int digestSize = pHash->DigestSize(); if (test == "VerifyTruncated") digestSize = atoi(GetRequiredDatum(v, "TruncatedSize").c_str()); TruncatedHashModule thash(*pHash, digestSize); HashVerificationFilter verifierFilter(thash, NULL, HashVerificationFilter::HASH_AT_BEGIN); PutDecodedDatumInto(v, "Digest", verifierFilter); PutDecodedDatumInto(v, "Message", verifierFilter); verifierFilter.MessageEnd(); if (verifierFilter.GetLastResult() == (test == "NotVerify")) SignalTestFailure(); } else { SignalTestError(); assert(false); } }
void TestDigestOrMAC(TestData &v, bool testDigest) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); const char *digestName = testDigest ? "Digest" : "MAC"; member_ptr<MessageAuthenticationCode> mac; member_ptr<HashTransformation> hash; HashTransformation *pHash = NULL; TestDataNameValuePairs pairs(v); if (testDigest) { hash.reset(ObjectFactoryRegistry<HashTransformation>::Registry().CreateObject(name.c_str())); pHash = hash.get(); } else { mac.reset(ObjectFactoryRegistry<MessageAuthenticationCode>::Registry().CreateObject(name.c_str())); pHash = mac.get(); std::string key = GetDecodedDatum(v, "Key"); mac->SetKey((const byte *)key.c_str(), key.size(), pairs); } if (test == "Verify" || test == "VerifyTruncated" || test == "NotVerify") { int digestSize = -1; if (test == "VerifyTruncated") digestSize = pairs.GetIntValueWithDefault(Name::DigestSize(), digestSize); HashVerificationFilter verifierFilter(*pHash, NULL, HashVerificationFilter::HASH_AT_BEGIN, digestSize); PutDecodedDatumInto(v, digestName, verifierFilter); PutDecodedDatumInto(v, "Message", verifierFilter); verifierFilter.MessageEnd(); if (verifierFilter.GetLastResult() == (test == "NotVerify")) SignalTestFailure(); } else { SignalTestError(); assert(false); } }
void TestAsymmetricCipher(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); member_ptr<PK_Encryptor> encryptor(ObjectFactoryRegistry<PK_Encryptor>::Registry().CreateObject(name.c_str())); member_ptr<PK_Decryptor> decryptor(ObjectFactoryRegistry<PK_Decryptor>::Registry().CreateObject(name.c_str())); std::string keyFormat = GetRequiredDatum(v, "KeyFormat"); if (keyFormat == "DER") { decryptor->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PrivateKey")).Ref()); encryptor->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PublicKey")).Ref()); } else if (keyFormat == "Component") { TestDataNameValuePairs pairs(v); decryptor->AccessMaterial().AssignFrom(pairs); encryptor->AccessMaterial().AssignFrom(pairs); } if (test == "DecryptMatch") { std::string decrypted, expected = GetDecodedDatum(v, "Plaintext"); StringSource ss(GetDecodedDatum(v, "Ciphertext"), true, new PK_DecryptorFilter(GlobalRNG(), *decryptor, new StringSink(decrypted))); if (decrypted != expected) SignalTestFailure(); } else if (test == "KeyPairValidAndConsistent") { TestKeyPairValidAndConsistent(encryptor->AccessMaterial(), decryptor->GetMaterial()); } else { SignalTestError(); assert(false); } }
void PutDecodedDatumInto(const TestData &data, const char *name, BufferedTransformation &target) { std::string s1 = GetRequiredDatum(data, name), s2; ByteQueue q; while (!s1.empty()) { while (s1[0] == ' ') { s1 = s1.substr(1); if (s1.empty()) goto end; // avoid invalid read if s1 is empty } int repeat = 1; if (s1[0] == 'r') { repeat = atoi(s1.c_str()+1); s1 = s1.substr(s1.find(' ')+1); } s2 = ""; // MSVC 6 doesn't have clear(); if (s1[0] == '\"') { s2 = s1.substr(1, s1.find('\"', 1)-1); s1 = s1.substr(s2.length() + 2); } else if (s1.substr(0, 2) == "0x") { StringSource(s1.substr(2, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } else { StringSource(s1.substr(0, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } while (repeat--) { q.Put((const byte *)s2.data(), s2.size()); RandomizedTransfer(q, target, false); } } end: RandomizedTransfer(q, target, true); }
void PutDecodedDatumInto(const TestData &data, const char *name, BufferedTransformation &target) { std::string s1 = GetRequiredDatum(data, name), s2; while (!s1.empty()) { while (s1[0] == ' ') s1 = s1.substr(1); int repeat = 1; if (s1[0] == 'r') { repeat = atoi(s1.c_str()+1); s1 = s1.substr(s1.find(' ')+1); } s2 = ""; // MSVC 6 doesn't have clear(); if (s1[0] == '\"') { s2 = s1.substr(1, s1.find('\"', 1)-1); s1 = s1.substr(s2.length() + 2); } else if (s1.substr(0, 2) == "0x") { StringSource(s1.substr(2, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } else { StringSource(s1.substr(0, s1.find(' ')), true, new HexDecoder(new StringSink(s2))); s1 = s1.substr(STDMIN(s1.find(' '), s1.length())); } ByteQueue q; while (repeat--) { q.Put((const byte *)s2.data(), s2.size()); if (q.MaxRetrievable() > 4*1024 || repeat == 0) q.TransferTo(target); } } }
void PutDecodedDatumInto(const TestData &data, const char *name, BufferedTransformation &target) { std::string s1 = GetRequiredDatum(data, name), s2; int repeat = 1; if (s1[0] == 'r') { repeat = atoi(s1.c_str()+1); s1 = s1.substr(s1.find(' ')+1); } if (s1[0] == '\"') s2 = s1.substr(1, s1.find('\"', 1)-1); else if (s1.substr(0, 2) == "0x") StringSource(s1.substr(2), true, new HexDecoder(new StringSink(s2))); else StringSource(s1, true, new HexDecoder(new StringSink(s2))); while (repeat--) target.Put((const byte *)s2.data(), s2.size()); }
void TestAuthenticatedSymmetricCipher(TestData &v, const NameValuePairs &overrideParameters) { std::string type = GetRequiredDatum(v, "AlgorithmType"); std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); std::string key = GetDecodedDatum(v, "Key"); std::string plaintext = GetOptionalDecodedDatum(v, "Plaintext"); std::string ciphertext = GetOptionalDecodedDatum(v, "Ciphertext"); std::string header = GetOptionalDecodedDatum(v, "Header"); std::string footer = GetOptionalDecodedDatum(v, "Footer"); std::string mac = GetOptionalDecodedDatum(v, "MAC"); TestDataNameValuePairs testDataPairs(v); CombinedNameValuePairs pairs(overrideParameters, testDataPairs); if (test == "Encrypt" || test == "EncryptXorDigest" || test == "NotVerify") { member_ptr<AuthenticatedSymmetricCipher> asc1, asc2; asc1.reset(ObjectFactoryRegistry<AuthenticatedSymmetricCipher, ENCRYPTION>::Registry().CreateObject(name.c_str())); asc2.reset(ObjectFactoryRegistry<AuthenticatedSymmetricCipher, DECRYPTION>::Registry().CreateObject(name.c_str())); asc1->SetKey((const byte *)key.data(), key.size(), pairs); asc2->SetKey((const byte *)key.data(), key.size(), pairs); std::string encrypted, decrypted; AuthenticatedEncryptionFilter ef(*asc1, new StringSink(encrypted)); bool macAtBegin = !mac.empty() && !GlobalRNG().GenerateBit(); // test both ways randomly AuthenticatedDecryptionFilter df(*asc2, new StringSink(decrypted), macAtBegin ? AuthenticatedDecryptionFilter::MAC_AT_BEGIN : 0); if (asc1->NeedsPrespecifiedDataLengths()) { asc1->SpecifyDataLengths(header.size(), plaintext.size(), footer.size()); asc2->SpecifyDataLengths(header.size(), plaintext.size(), footer.size()); } StringStore sh(header), sp(plaintext), sc(ciphertext), sf(footer), sm(mac); if (macAtBegin) RandomizedTransfer(sm, df, true); sh.CopyTo(df, LWORD_MAX, AAD_CHANNEL); RandomizedTransfer(sc, df, true); sf.CopyTo(df, LWORD_MAX, AAD_CHANNEL); if (!macAtBegin) RandomizedTransfer(sm, df, true); df.MessageEnd(); RandomizedTransfer(sh, ef, true, AAD_CHANNEL); RandomizedTransfer(sp, ef, true); RandomizedTransfer(sf, ef, true, AAD_CHANNEL); ef.MessageEnd(); if (test == "Encrypt" && encrypted != ciphertext+mac) { std::cout << "incorrectly encrypted: "; StringSource xx(encrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(2048); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } if (test == "Encrypt" && decrypted != plaintext) { std::cout << "incorrectly decrypted: "; StringSource xx(decrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(256); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } if (ciphertext.size()+mac.size()-plaintext.size() != asc1->DigestSize()) { std::cout << "bad MAC size\n"; SignalTestFailure(); } if (df.GetLastResult() != (test == "Encrypt")) { std::cout << "MAC incorrectly verified\n"; SignalTestFailure(); } } else { std::cout << "unexpected test name\n"; SignalTestError(); } }
void TestSymmetricCipher(TestData &v, const NameValuePairs &overrideParameters) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); std::string key = GetDecodedDatum(v, "Key"); std::string plaintext = GetDecodedDatum(v, "Plaintext"); TestDataNameValuePairs testDataPairs(v); CombinedNameValuePairs pairs(overrideParameters, testDataPairs); if (test == "Encrypt" || test == "EncryptXorDigest" || test == "Resync" || test == "EncryptionMCT" || test == "DecryptionMCT") { static member_ptr<SymmetricCipher> encryptor, decryptor; static std::string lastName; if (name != lastName) { encryptor.reset(ObjectFactoryRegistry<SymmetricCipher, ENCRYPTION>::Registry().CreateObject(name.c_str())); decryptor.reset(ObjectFactoryRegistry<SymmetricCipher, DECRYPTION>::Registry().CreateObject(name.c_str())); lastName = name; } ConstByteArrayParameter iv; if (pairs.GetValue(Name::IV(), iv) && iv.size() != encryptor->IVSize()) SignalTestFailure(); if (test == "Resync") { encryptor->Resynchronize(iv.begin(), (int)iv.size()); decryptor->Resynchronize(iv.begin(), (int)iv.size()); } else { encryptor->SetKey((const byte *)key.data(), key.size(), pairs); decryptor->SetKey((const byte *)key.data(), key.size(), pairs); } int seek = pairs.GetIntValueWithDefault("Seek", 0); if (seek) { encryptor->Seek(seek); decryptor->Seek(seek); } std::string encrypted, xorDigest, ciphertext, ciphertextXorDigest; if (test == "EncryptionMCT" || test == "DecryptionMCT") { SymmetricCipher *cipher = encryptor.get(); SecByteBlock buf((byte *)plaintext.data(), plaintext.size()), keybuf((byte *)key.data(), key.size()); if (test == "DecryptionMCT") { cipher = decryptor.get(); ciphertext = GetDecodedDatum(v, "Ciphertext"); buf.Assign((byte *)ciphertext.data(), ciphertext.size()); } for (int i=0; i<400; i++) { encrypted.reserve(10000 * plaintext.size()); for (int j=0; j<10000; j++) { cipher->ProcessString(buf.begin(), buf.size()); encrypted.append((char *)buf.begin(), buf.size()); } encrypted.erase(0, encrypted.size() - keybuf.size()); xorbuf(keybuf.begin(), (const byte *)encrypted.data(), keybuf.size()); cipher->SetKey(keybuf, keybuf.size()); } encrypted.assign((char *)buf.begin(), buf.size()); ciphertext = GetDecodedDatum(v, test == "EncryptionMCT" ? "Ciphertext" : "Plaintext"); if (encrypted != ciphertext) { std::cout << "incorrectly encrypted: "; StringSource xx(encrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(256); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } return; } StreamTransformationFilter encFilter(*encryptor, new StringSink(encrypted), StreamTransformationFilter::NO_PADDING); RandomizedTransfer(StringStore(plaintext).Ref(), encFilter, true); encFilter.MessageEnd(); /*{ std::string z; encryptor->Seek(seek); StringSource ss(plaintext, false, new StreamTransformationFilter(*encryptor, new StringSink(z), StreamTransformationFilter::NO_PADDING)); while (ss.Pump(64)) {} ss.PumpAll(); for (int i=0; i<z.length(); i++) assert(encrypted[i] == z[i]); }*/ if (test != "EncryptXorDigest") ciphertext = GetDecodedDatum(v, "Ciphertext"); else { ciphertextXorDigest = GetDecodedDatum(v, "CiphertextXorDigest"); xorDigest.append(encrypted, 0, 64); for (size_t i=64; i<encrypted.size(); i++) xorDigest[i%64] ^= encrypted[i]; } if (test != "EncryptXorDigest" ? encrypted != ciphertext : xorDigest != ciphertextXorDigest) { std::cout << "incorrectly encrypted: "; StringSource xx(encrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(2048); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } std::string decrypted; StreamTransformationFilter decFilter(*decryptor, new StringSink(decrypted), StreamTransformationFilter::NO_PADDING); RandomizedTransfer(StringStore(encrypted).Ref(), decFilter, true); decFilter.MessageEnd(); if (decrypted != plaintext) { std::cout << "incorrectly decrypted: "; StringSource xx(decrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(256); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } } else { std::cout << "unexpected test name\n"; SignalTestError(); } }
void TestSignatureScheme(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); member_ptr<PK_Signer> signer(ObjectFactoryRegistry<PK_Signer>::Registry().CreateObject(name.c_str())); member_ptr<PK_Verifier> verifier(ObjectFactoryRegistry<PK_Verifier>::Registry().CreateObject(name.c_str())); TestDataNameValuePairs pairs(v); if (test == "GenerateKey") { signer->AccessPrivateKey().GenerateRandom(GlobalRNG(), pairs); verifier->AccessPublicKey().AssignFrom(signer->AccessPrivateKey()); } else { std::string keyFormat = GetRequiredDatum(v, "KeyFormat"); if (keyFormat == "DER") verifier->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PublicKey")).Ref()); else if (keyFormat == "Component") verifier->AccessMaterial().AssignFrom(pairs); if (test == "Verify" || test == "NotVerify") { VerifierFilter verifierFilter(*verifier, NULL, VerifierFilter::SIGNATURE_AT_BEGIN); PutDecodedDatumInto(v, "Signature", verifierFilter); PutDecodedDatumInto(v, "Message", verifierFilter); verifierFilter.MessageEnd(); if (verifierFilter.GetLastResult() == (test == "NotVerify")) SignalTestFailure(); return; } else if (test == "PublicKeyValid") { if (!verifier->GetMaterial().Validate(GlobalRNG(), 3)) SignalTestFailure(); return; } if (keyFormat == "DER") signer->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PrivateKey")).Ref()); else if (keyFormat == "Component") signer->AccessMaterial().AssignFrom(pairs); } if (test == "GenerateKey" || test == "KeyPairValidAndConsistent") { TestKeyPairValidAndConsistent(verifier->AccessMaterial(), signer->GetMaterial()); VerifierFilter verifierFilter(*verifier, NULL, VerifierFilter::THROW_EXCEPTION); verifierFilter.Put((const byte *)"abc", 3); StringSource ss("abc", true, new SignerFilter(GlobalRNG(), *signer, new Redirector(verifierFilter))); } else if (test == "Sign") { SignerFilter f(GlobalRNG(), *signer, new HexEncoder(new FileSink(cout))); StringSource ss(GetDecodedDatum(v, "Message"), true, new Redirector(f)); SignalTestFailure(); } else if (test == "DeterministicSign") { // This test is specialized for RFC 6979. The RFC is a drop-in replacement // for DSA and ECDSA, and access to the seed or secret is not needed. If // additional determinsitic signatures are added, then the test harness will // likely need to be extended. string signature; SignerFilter f(GlobalRNG(), *signer, new HexEncoder(new StringSink(signature))); StringSource ss(GetDecodedDatum(v, "Message"), true, new Redirector(f)); if (GetDecodedDatum(v, "Signature") != signature) SignalTestFailure(); return; } else if (test == "RandomSign") { SignalTestError(); assert(false); // TODO: implement } else { SignalTestError(); assert(false); } }
void TestDataFile(const std::string &filename, unsigned int &totalTests, unsigned int &failedTests) { std::ifstream file(filename.c_str()); if (!file.good()) throw Exception(Exception::OTHER_ERROR, "Can not open file " + filename + " for reading"); TestData v; s_currentTestData = &v; std::string name, value, lastAlgName; while (file) { while (file.peek() == '#') file.ignore(INT_MAX, '\n'); if (file.peek() == '\n') v.clear(); if (!GetField(file, name, value)) break; v[name] = value; if (name == "Test") { bool failed = true; std::string algType = GetRequiredDatum(v, "AlgorithmType"); if (lastAlgName != GetRequiredDatum(v, "Name")) { lastAlgName = GetRequiredDatum(v, "Name"); cout << "\nTesting " << algType.c_str() << " algorithm " << lastAlgName.c_str() << ".\n"; } try { if (algType == "Signature") TestSignatureScheme(v); else if (algType == "SymmetricCipher") TestSymmetricCipher(v); else if (algType == "AsymmetricCipher") TestAsymmetricCipher(v); else if (algType == "MessageDigest") TestDigestOrMAC(v, true); else if (algType == "MAC") TestDigestOrMAC(v, false); else if (algType == "FileList") TestDataFile(GetRequiredDatum(v, "Test"), totalTests, failedTests); else SignalTestError(); failed = false; } catch (TestFailure &) { cout << "\nTest failed.\n"; } catch (CryptoPP::Exception &e) { cout << "\nCryptoPP::Exception caught: " << e.what() << endl; } catch (std::exception &e) { cout << "\nstd::exception caught: " << e.what() << endl; } if (failed) { cout << "Skipping to next test.\n"; failedTests++; } else cout << "." << flush; totalTests++; } } }
void TestSignatureScheme(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); std::auto_ptr<PK_Signer> signer(ObjectFactoryRegistry<PK_Signer>::Registry().CreateObject(name.c_str())); std::auto_ptr<PK_Verifier> verifier(ObjectFactoryRegistry<PK_Verifier>::Registry().CreateObject(name.c_str())); TestDataNameValuePairs pairs(v); std::string keyFormat = GetRequiredDatum(v, "KeyFormat"); if (keyFormat == "DER") verifier->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PublicKey")).Ref()); else if (keyFormat == "Component") verifier->AccessMaterial().AssignFrom(pairs); if (test == "Verify" || test == "NotVerify") { VerifierFilter verifierFilter(*verifier, NULL, VerifierFilter::SIGNATURE_AT_BEGIN); PutDecodedDatumInto(v, "Signature", verifierFilter); PutDecodedDatumInto(v, "Message", verifierFilter); verifierFilter.MessageEnd(); if (verifierFilter.GetLastResult() == (test == "NotVerify")) SignalTestFailure(); } else if (test == "PublicKeyValid") { if (!verifier->GetMaterial().Validate(GlobalRNG(), 3)) SignalTestFailure(); } else goto privateKeyTests; return; privateKeyTests: if (keyFormat == "DER") signer->AccessMaterial().Load(StringStore(GetDecodedDatum(v, "PrivateKey")).Ref()); else if (keyFormat == "Component") signer->AccessMaterial().AssignFrom(pairs); if (test == "KeyPairValidAndConsistent") { TestKeyPairValidAndConsistent(verifier->AccessMaterial(), signer->GetMaterial()); } else if (test == "Sign") { SignerFilter f(GlobalRNG(), *signer, new HexEncoder(new FileSink(cout))); StringSource ss(GetDecodedDatum(v, "Message"), true, new Redirector(f)); SignalTestFailure(); } else if (test == "DeterministicSign") { SignalTestError(); assert(false); // TODO: implement } else if (test == "RandomSign") { SignalTestError(); assert(false); // TODO: implement } else if (test == "GenerateKey") { SignalTestError(); assert(false); } else { SignalTestError(); assert(false); } }
void TestSymmetricCipher(TestData &v) { std::string name = GetRequiredDatum(v, "Name"); std::string test = GetRequiredDatum(v, "Test"); std::string key = GetDecodedDatum(v, "Key"); std::string plaintext = GetDecodedDatum(v, "Plaintext"); TestDataNameValuePairs pairs(v); if (test == "Encrypt" || test == "EncryptXorDigest") { std::auto_ptr<SymmetricCipher> encryptor(ObjectFactoryRegistry<SymmetricCipher, ENCRYPTION>::Registry().CreateObject(name.c_str())); std::auto_ptr<SymmetricCipher> decryptor(ObjectFactoryRegistry<SymmetricCipher, DECRYPTION>::Registry().CreateObject(name.c_str())); ConstByteArrayParameter iv; if (pairs.GetValue(Name::IV(), iv) && iv.size() != encryptor->IVSize()) SignalTestFailure(); encryptor->SetKey((const byte *)key.data(), key.size(), pairs); decryptor->SetKey((const byte *)key.data(), key.size(), pairs); int seek = pairs.GetIntValueWithDefault("Seek", 0); if (seek) { encryptor->Seek(seek); decryptor->Seek(seek); } std::string encrypted, xorDigest, ciphertext, ciphertextXorDigest; StringSource ss(plaintext, false, new StreamTransformationFilter(*encryptor, new StringSink(encrypted), StreamTransformationFilter::NO_PADDING)); ss.Pump(plaintext.size()/2 + 1); ss.PumpAll(); /*{ std::string z; encryptor->Seek(seek); StringSource ss(plaintext, false, new StreamTransformationFilter(*encryptor, new StringSink(z), StreamTransformationFilter::NO_PADDING)); while (ss.Pump(64)) {} ss.PumpAll(); for (int i=0; i<z.length(); i++) assert(encrypted[i] == z[i]); }*/ if (test == "Encrypt") ciphertext = GetDecodedDatum(v, "Ciphertext"); else { ciphertextXorDigest = GetDecodedDatum(v, "CiphertextXorDigest"); xorDigest.append(encrypted, 0, 64); for (size_t i=64; i<encrypted.size(); i++) xorDigest[i%64] ^= encrypted[i]; } if (test == "Encrypt" ? encrypted != ciphertext : xorDigest != ciphertextXorDigest) { std::cout << "incorrectly encrypted: "; StringSource xx(encrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(256); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } std::string decrypted; StringSource dd(encrypted, false, new StreamTransformationFilter(*decryptor, new StringSink(decrypted), StreamTransformationFilter::NO_PADDING)); dd.Pump(plaintext.size()/2 + 1); dd.PumpAll(); if (decrypted != plaintext) { std::cout << "incorrectly decrypted: "; StringSource xx(decrypted, false, new HexEncoder(new FileSink(std::cout))); xx.Pump(256); xx.Flush(false); std::cout << "\n"; SignalTestFailure(); } } else if (test == "Decrypt") { } else { SignalTestError(); assert(false); } }