/* * Cancel any pending wait for lock, when aborting a transaction, and revert * any strong lock count acquisition for a lock being acquired. * * (Normally, this would only happen if we accept a cancel/die * interrupt while waiting; but an ereport(ERROR) before or during the lock * wait is within the realm of possibility, too.) */ void LockErrorCleanup(void) { LWLock *partitionLock; DisableTimeoutParams timeouts[2]; HOLD_INTERRUPTS(); AbortStrongLockAcquire(); /* Nothing to do if we weren't waiting for a lock */ if (lockAwaited == NULL) { RESUME_INTERRUPTS(); return; } /* * Turn off the deadlock and lock timeout timers, if they are still * running (see ProcSleep). Note we must preserve the LOCK_TIMEOUT * indicator flag, since this function is executed before * ProcessInterrupts when responding to SIGINT; else we'd lose the * knowledge that the SIGINT came from a lock timeout and not an external * source. */ timeouts[0].id = DEADLOCK_TIMEOUT; timeouts[0].keep_indicator = false; timeouts[1].id = LOCK_TIMEOUT; timeouts[1].keep_indicator = true; disable_timeouts(timeouts, 2); /* Unlink myself from the wait queue, if on it (might not be anymore!) */ partitionLock = LockHashPartitionLock(lockAwaited->hashcode); LWLockAcquire(partitionLock, LW_EXCLUSIVE); if (MyProc->links.next != NULL) { /* We could not have been granted the lock yet */ RemoveFromWaitQueue(MyProc, lockAwaited->hashcode); } else { /* * Somebody kicked us off the lock queue already. Perhaps they * granted us the lock, or perhaps they detected a deadlock. If they * did grant us the lock, we'd better remember it in our local lock * table. */ if (MyProc->waitStatus == STATUS_OK) GrantAwaitedLock(); } lockAwaited = NULL; LWLockRelease(partitionLock); RESUME_INTERRUPTS(); }
/* * Cancel any pending wait for lock, when aborting a transaction. * * Returns true if we had been waiting for a lock, else false. * * (Normally, this would only happen if we accept a cancel/die * interrupt while waiting; but an ereport(ERROR) while waiting is * within the realm of possibility, too.) */ bool LockWaitCancel(void) { LWLockId partitionLock; /* Nothing to do if we weren't waiting for a lock */ if (lockAwaited == NULL) return false; /* Turn off the deadlock timer, if it's still running (see ProcSleep) */ disable_sig_alarm(false); /* Unlink myself from the wait queue, if on it (might not be anymore!) */ partitionLock = LockHashPartitionLock(lockAwaited->hashcode); LWLockAcquire(partitionLock, LW_EXCLUSIVE); if (MyProc->links.next != INVALID_OFFSET) { /* We could not have been granted the lock yet */ RemoveFromWaitQueue(MyProc, lockAwaited->hashcode); } else { /* * Somebody kicked us off the lock queue already. Perhaps they * granted us the lock, or perhaps they detected a deadlock. If they * did grant us the lock, we'd better remember it in our local lock * table. */ if (MyProc->waitStatus == STATUS_OK) GrantAwaitedLock(); } lockAwaited = NULL; LWLockRelease(partitionLock); /* * We used to do PGSemaphoreReset() here to ensure that our proc's wait * semaphore is reset to zero. This prevented a leftover wakeup signal * from remaining in the semaphore if someone else had granted us the lock * we wanted before we were able to remove ourselves from the wait-list. * However, now that ProcSleep loops until waitStatus changes, a leftover * wakeup signal isn't harmful, and it seems not worth expending cycles to * get rid of a signal that most likely isn't there. */ /* * Return true even if we were kicked off the lock before we were able to * remove ourselves. */ return true; }
/* * ProcSleep -- put a process to sleep on the specified lock * * Caller must have set MyProc->heldLocks to reflect locks already held * on the lockable object by this process (under all XIDs). * * The lock table's partition lock must be held at entry, and will be held * at exit. * * Result: STATUS_OK if we acquired the lock, STATUS_ERROR if not (deadlock). * * ASSUME: that no one will fiddle with the queue until after * we release the partition lock. * * NOTES: The process queue is now a priority queue for locking. */ int ProcSleep(LOCALLOCK *locallock, LockMethod lockMethodTable) { LOCKMODE lockmode = locallock->tag.mode; LOCK *lock = locallock->lock; PROCLOCK *proclock = locallock->proclock; uint32 hashcode = locallock->hashcode; LWLock *partitionLock = LockHashPartitionLock(hashcode); PROC_QUEUE *waitQueue = &(lock->waitProcs); LOCKMASK myHeldLocks = MyProc->heldLocks; bool early_deadlock = false; bool allow_autovacuum_cancel = true; int myWaitStatus; PGPROC *proc; int i; /* * Determine where to add myself in the wait queue. * * Normally I should go at the end of the queue. However, if I already * hold locks that conflict with the request of any previous waiter, put * myself in the queue just in front of the first such waiter. This is not * a necessary step, since deadlock detection would move me to before that * waiter anyway; but it's relatively cheap to detect such a conflict * immediately, and avoid delaying till deadlock timeout. * * Special case: if I find I should go in front of some waiter, check to * see if I conflict with already-held locks or the requests before that * waiter. If not, then just grant myself the requested lock immediately. * This is the same as the test for immediate grant in LockAcquire, except * we are only considering the part of the wait queue before my insertion * point. */ if (myHeldLocks != 0) { LOCKMASK aheadRequests = 0; proc = (PGPROC *) waitQueue->links.next; for (i = 0; i < waitQueue->size; i++) { /* Must he wait for me? */ if (lockMethodTable->conflictTab[proc->waitLockMode] & myHeldLocks) { /* Must I wait for him ? */ if (lockMethodTable->conflictTab[lockmode] & proc->heldLocks) { /* * Yes, so we have a deadlock. Easiest way to clean up * correctly is to call RemoveFromWaitQueue(), but we * can't do that until we are *on* the wait queue. So, set * a flag to check below, and break out of loop. Also, * record deadlock info for later message. */ RememberSimpleDeadLock(MyProc, lockmode, lock, proc); early_deadlock = true; break; } /* I must go before this waiter. Check special case. */ if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 && LockCheckConflicts(lockMethodTable, lockmode, lock, proclock) == STATUS_OK) { /* Skip the wait and just grant myself the lock. */ GrantLock(lock, proclock, lockmode); GrantAwaitedLock(); return STATUS_OK; } /* Break out of loop to put myself before him */ break; } /* Nope, so advance to next waiter */ aheadRequests |= LOCKBIT_ON(proc->waitLockMode); proc = (PGPROC *) proc->links.next; } /* * If we fall out of loop normally, proc points to waitQueue head, so * we will insert at tail of queue as desired. */ } else { /* I hold no locks, so I can't push in front of anyone. */ proc = (PGPROC *) &(waitQueue->links); } /* * Insert self into queue, ahead of the given proc (or at tail of queue). */ SHMQueueInsertBefore(&(proc->links), &(MyProc->links)); waitQueue->size++; lock->waitMask |= LOCKBIT_ON(lockmode); /* Set up wait information in PGPROC object, too */ MyProc->waitLock = lock; MyProc->waitProcLock = proclock; MyProc->waitLockMode = lockmode; MyProc->waitStatus = STATUS_WAITING; /* * If we detected deadlock, give up without waiting. This must agree with * CheckDeadLock's recovery code, except that we shouldn't release the * semaphore since we haven't tried to lock it yet. */ if (early_deadlock) { RemoveFromWaitQueue(MyProc, hashcode); return STATUS_ERROR; } /* mark that we are waiting for a lock */ lockAwaited = locallock; /* * Release the lock table's partition lock. * * NOTE: this may also cause us to exit critical-section state, possibly * allowing a cancel/die interrupt to be accepted. This is OK because we * have recorded the fact that we are waiting for a lock, and so * LockErrorCleanup will clean up if cancel/die happens. */ LWLockRelease(partitionLock); /* * Also, now that we will successfully clean up after an ereport, it's * safe to check to see if there's a buffer pin deadlock against the * Startup process. Of course, that's only necessary if we're doing Hot * Standby and are not the Startup process ourselves. */ if (RecoveryInProgress() && !InRecovery) CheckRecoveryConflictDeadlock(); /* Reset deadlock_state before enabling the timeout handler */ deadlock_state = DS_NOT_YET_CHECKED; got_deadlock_timeout = false; /* * Set timer so we can wake up after awhile and check for a deadlock. If a * deadlock is detected, the handler releases the process's semaphore and * sets MyProc->waitStatus = STATUS_ERROR, allowing us to know that we * must report failure rather than success. * * By delaying the check until we've waited for a bit, we can avoid * running the rather expensive deadlock-check code in most cases. * * If LockTimeout is set, also enable the timeout for that. We can save a * few cycles by enabling both timeout sources in one call. */ if (LockTimeout > 0) { EnableTimeoutParams timeouts[2]; timeouts[0].id = DEADLOCK_TIMEOUT; timeouts[0].type = TMPARAM_AFTER; timeouts[0].delay_ms = DeadlockTimeout; timeouts[1].id = LOCK_TIMEOUT; timeouts[1].type = TMPARAM_AFTER; timeouts[1].delay_ms = LockTimeout; enable_timeouts(timeouts, 2); } else enable_timeout_after(DEADLOCK_TIMEOUT, DeadlockTimeout); /* * If somebody wakes us between LWLockRelease and WaitLatch, the latch * will not wait. But a set latch does not necessarily mean that the lock * is free now, as there are many other sources for latch sets than * somebody releasing the lock. * * We process interrupts whenever the latch has been set, so cancel/die * interrupts are processed quickly. This means we must not mind losing * control to a cancel/die interrupt here. We don't, because we have no * shared-state-change work to do after being granted the lock (the * grantor did it all). We do have to worry about canceling the deadlock * timeout and updating the locallock table, but if we lose control to an * error, LockErrorCleanup will fix that up. */ do { WaitLatch(MyLatch, WL_LATCH_SET, 0); ResetLatch(MyLatch); /* check for deadlocks first, as that's probably log-worthy */ if (got_deadlock_timeout) { CheckDeadLock(); got_deadlock_timeout = false; } CHECK_FOR_INTERRUPTS(); /* * waitStatus could change from STATUS_WAITING to something else * asynchronously. Read it just once per loop to prevent surprising * behavior (such as missing log messages). */ myWaitStatus = *((volatile int *) &MyProc->waitStatus); /* * If we are not deadlocked, but are waiting on an autovacuum-induced * task, send a signal to interrupt it. */ if (deadlock_state == DS_BLOCKED_BY_AUTOVACUUM && allow_autovacuum_cancel) { PGPROC *autovac = GetBlockingAutoVacuumPgproc(); PGXACT *autovac_pgxact = &ProcGlobal->allPgXact[autovac->pgprocno]; LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE); /* * Only do it if the worker is not working to protect against Xid * wraparound. */ if ((autovac_pgxact->vacuumFlags & PROC_IS_AUTOVACUUM) && !(autovac_pgxact->vacuumFlags & PROC_VACUUM_FOR_WRAPAROUND)) { int pid = autovac->pid; StringInfoData locktagbuf; StringInfoData logbuf; /* errdetail for server log */ initStringInfo(&locktagbuf); initStringInfo(&logbuf); DescribeLockTag(&locktagbuf, &lock->tag); appendStringInfo(&logbuf, _("Process %d waits for %s on %s."), MyProcPid, GetLockmodeName(lock->tag.locktag_lockmethodid, lockmode), locktagbuf.data); /* release lock as quickly as possible */ LWLockRelease(ProcArrayLock); ereport(LOG, (errmsg("sending cancel to blocking autovacuum PID %d", pid), errdetail_log("%s", logbuf.data))); pfree(logbuf.data); pfree(locktagbuf.data); /* send the autovacuum worker Back to Old Kent Road */ if (kill(pid, SIGINT) < 0) { /* Just a warning to allow multiple callers */ ereport(WARNING, (errmsg("could not send signal to process %d: %m", pid))); } } else LWLockRelease(ProcArrayLock); /* prevent signal from being resent more than once */ allow_autovacuum_cancel = false; } /* * If awoken after the deadlock check interrupt has run, and * log_lock_waits is on, then report about the wait. */ if (log_lock_waits && deadlock_state != DS_NOT_YET_CHECKED) { StringInfoData buf, lock_waiters_sbuf, lock_holders_sbuf; const char *modename; long secs; int usecs; long msecs; SHM_QUEUE *procLocks; PROCLOCK *proclock; bool first_holder = true, first_waiter = true; int lockHoldersNum = 0; initStringInfo(&buf); initStringInfo(&lock_waiters_sbuf); initStringInfo(&lock_holders_sbuf); DescribeLockTag(&buf, &locallock->tag.lock); modename = GetLockmodeName(locallock->tag.lock.locktag_lockmethodid, lockmode); TimestampDifference(get_timeout_start_time(DEADLOCK_TIMEOUT), GetCurrentTimestamp(), &secs, &usecs); msecs = secs * 1000 + usecs / 1000; usecs = usecs % 1000; /* * we loop over the lock's procLocks to gather a list of all * holders and waiters. Thus we will be able to provide more * detailed information for lock debugging purposes. * * lock->procLocks contains all processes which hold or wait for * this lock. */ LWLockAcquire(partitionLock, LW_SHARED); procLocks = &(lock->procLocks); proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks, offsetof(PROCLOCK, lockLink)); while (proclock) { /* * we are a waiter if myProc->waitProcLock == proclock; we are * a holder if it is NULL or something different */ if (proclock->tag.myProc->waitProcLock == proclock) { if (first_waiter) { appendStringInfo(&lock_waiters_sbuf, "%d", proclock->tag.myProc->pid); first_waiter = false; } else appendStringInfo(&lock_waiters_sbuf, ", %d", proclock->tag.myProc->pid); } else { if (first_holder) { appendStringInfo(&lock_holders_sbuf, "%d", proclock->tag.myProc->pid); first_holder = false; } else appendStringInfo(&lock_holders_sbuf, ", %d", proclock->tag.myProc->pid); lockHoldersNum++; } proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink, offsetof(PROCLOCK, lockLink)); } LWLockRelease(partitionLock); if (deadlock_state == DS_SOFT_DEADLOCK) ereport(LOG, (errmsg("process %d avoided deadlock for %s on %s by rearranging queue order after %ld.%03d ms", MyProcPid, modename, buf.data, msecs, usecs), (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.", "Processes holding the lock: %s. Wait queue: %s.", lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data)))); else if (deadlock_state == DS_HARD_DEADLOCK) { /* * This message is a bit redundant with the error that will be * reported subsequently, but in some cases the error report * might not make it to the log (eg, if it's caught by an * exception handler), and we want to ensure all long-wait * events get logged. */ ereport(LOG, (errmsg("process %d detected deadlock while waiting for %s on %s after %ld.%03d ms", MyProcPid, modename, buf.data, msecs, usecs), (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.", "Processes holding the lock: %s. Wait queue: %s.", lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data)))); } if (myWaitStatus == STATUS_WAITING) ereport(LOG, (errmsg("process %d still waiting for %s on %s after %ld.%03d ms", MyProcPid, modename, buf.data, msecs, usecs), (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.", "Processes holding the lock: %s. Wait queue: %s.", lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data)))); else if (myWaitStatus == STATUS_OK) ereport(LOG, (errmsg("process %d acquired %s on %s after %ld.%03d ms", MyProcPid, modename, buf.data, msecs, usecs))); else { Assert(myWaitStatus == STATUS_ERROR); /* * Currently, the deadlock checker always kicks its own * process, which means that we'll only see STATUS_ERROR when * deadlock_state == DS_HARD_DEADLOCK, and there's no need to * print redundant messages. But for completeness and * future-proofing, print a message if it looks like someone * else kicked us off the lock. */ if (deadlock_state != DS_HARD_DEADLOCK) ereport(LOG, (errmsg("process %d failed to acquire %s on %s after %ld.%03d ms", MyProcPid, modename, buf.data, msecs, usecs), (errdetail_log_plural("Process holding the lock: %s. Wait queue: %s.", "Processes holding the lock: %s. Wait queue: %s.", lockHoldersNum, lock_holders_sbuf.data, lock_waiters_sbuf.data)))); } /* * At this point we might still need to wait for the lock. Reset * state so we don't print the above messages again. */ deadlock_state = DS_NO_DEADLOCK; pfree(buf.data); pfree(lock_holders_sbuf.data); pfree(lock_waiters_sbuf.data); } } while (myWaitStatus == STATUS_WAITING); /* * Disable the timers, if they are still running. As in LockErrorCleanup, * we must preserve the LOCK_TIMEOUT indicator flag: if a lock timeout has * already caused QueryCancelPending to become set, we want the cancel to * be reported as a lock timeout, not a user cancel. */ if (LockTimeout > 0) { DisableTimeoutParams timeouts[2]; timeouts[0].id = DEADLOCK_TIMEOUT; timeouts[0].keep_indicator = false; timeouts[1].id = LOCK_TIMEOUT; timeouts[1].keep_indicator = true; disable_timeouts(timeouts, 2); } else disable_timeout(DEADLOCK_TIMEOUT, false); /* * Re-acquire the lock table's partition lock. We have to do this to hold * off cancel/die interrupts before we can mess with lockAwaited (else we * might have a missed or duplicated locallock update). */ LWLockAcquire(partitionLock, LW_EXCLUSIVE); /* * We no longer want LockErrorCleanup to do anything. */ lockAwaited = NULL; /* * If we got the lock, be sure to remember it in the locallock table. */ if (MyProc->waitStatus == STATUS_OK) GrantAwaitedLock(); /* * We don't have to do anything else, because the awaker did all the * necessary update of the lock table and MyProc. */ return MyProc->waitStatus; }
/* * ProcSleep -- put a process to sleep on the specified lock * * Caller must have set MyProc->heldLocks to reflect locks already held * on the lockable object by this process (under all XIDs). * * The lock table's partition lock must be held at entry, and will be held * at exit. * * Result: STATUS_OK if we acquired the lock, STATUS_ERROR if not (deadlock). * * ASSUME: that no one will fiddle with the queue until after * we release the partition lock. * * NOTES: The process queue is now a priority queue for locking. * * P() on the semaphore should put us to sleep. The process * semaphore is normally zero, so when we try to acquire it, we sleep. */ int ProcSleep(LOCALLOCK *locallock, LockMethod lockMethodTable) { LOCKMODE lockmode = locallock->tag.mode; LOCK *lock = locallock->lock; PROCLOCK *proclock = locallock->proclock; uint32 hashcode = locallock->hashcode; LWLockId partitionLock = LockHashPartitionLock(hashcode); PROC_QUEUE *waitQueue = &(lock->waitProcs); LOCKMASK myHeldLocks = MyProc->heldLocks; bool early_deadlock = false; PGPROC *proc; int i; /* * Determine where to add myself in the wait queue. * * Normally I should go at the end of the queue. However, if I already * hold locks that conflict with the request of any previous waiter, put * myself in the queue just in front of the first such waiter. This is not * a necessary step, since deadlock detection would move me to before that * waiter anyway; but it's relatively cheap to detect such a conflict * immediately, and avoid delaying till deadlock timeout. * * Special case: if I find I should go in front of some waiter, check to * see if I conflict with already-held locks or the requests before that * waiter. If not, then just grant myself the requested lock immediately. * This is the same as the test for immediate grant in LockAcquire, except * we are only considering the part of the wait queue before my insertion * point. */ if (myHeldLocks != 0) { LOCKMASK aheadRequests = 0; proc = (PGPROC *) MAKE_PTR(waitQueue->links.next); for (i = 0; i < waitQueue->size; i++) { /* Must he wait for me? */ if (lockMethodTable->conflictTab[proc->waitLockMode] & myHeldLocks) { /* Must I wait for him ? */ if (lockMethodTable->conflictTab[lockmode] & proc->heldLocks) { /* * Yes, so we have a deadlock. Easiest way to clean up * correctly is to call RemoveFromWaitQueue(), but we * can't do that until we are *on* the wait queue. So, set * a flag to check below, and break out of loop. Also, * record deadlock info for later message. */ RememberSimpleDeadLock(MyProc, lockmode, lock, proc); early_deadlock = true; break; } /* I must go before this waiter. Check special case. */ if ((lockMethodTable->conflictTab[lockmode] & aheadRequests) == 0 && LockCheckConflicts(lockMethodTable, lockmode, lock, proclock, MyProc) == STATUS_OK) { /* Skip the wait and just grant myself the lock. */ GrantLock(lock, proclock, lockmode); GrantAwaitedLock(); return STATUS_OK; } /* Break out of loop to put myself before him */ break; } /* Nope, so advance to next waiter */ aheadRequests |= LOCKBIT_ON(proc->waitLockMode); proc = (PGPROC *) MAKE_PTR(proc->links.next); } /* * If we fall out of loop normally, proc points to waitQueue head, so * we will insert at tail of queue as desired. */ } else { /* I hold no locks, so I can't push in front of anyone. */ proc = (PGPROC *) &(waitQueue->links); } /* * Insert self into queue, ahead of the given proc (or at tail of queue). */ SHMQueueInsertBefore(&(proc->links), &(MyProc->links)); waitQueue->size++; lock->waitMask |= LOCKBIT_ON(lockmode); /* Set up wait information in PGPROC object, too */ MyProc->waitLock = lock; MyProc->waitProcLock = proclock; MyProc->waitLockMode = lockmode; MyProc->waitStatus = STATUS_WAITING; /* * If we detected deadlock, give up without waiting. This must agree with * CheckDeadLock's recovery code, except that we shouldn't release the * semaphore since we haven't tried to lock it yet. */ if (early_deadlock) { RemoveFromWaitQueue(MyProc, hashcode); return STATUS_ERROR; } /* mark that we are waiting for a lock */ lockAwaited = locallock; /* * Release the lock table's partition lock. * * NOTE: this may also cause us to exit critical-section state, possibly * allowing a cancel/die interrupt to be accepted. This is OK because we * have recorded the fact that we are waiting for a lock, and so * LockWaitCancel will clean up if cancel/die happens. */ LWLockRelease(partitionLock); /* * Set timer so we can wake up after awhile and check for a deadlock. If a * deadlock is detected, the handler releases the process's semaphore and * sets MyProc->waitStatus = STATUS_ERROR, allowing us to know that we * must report failure rather than success. * * By delaying the check until we've waited for a bit, we can avoid * running the rather expensive deadlock-check code in most cases. */ if (!enable_sig_alarm(DeadlockTimeout, false)) elog(FATAL, "could not set timer for process wakeup"); /* * If someone wakes us between LWLockRelease and PGSemaphoreLock, * PGSemaphoreLock will not block. The wakeup is "saved" by the semaphore * implementation. While this is normally good, there are cases where a * saved wakeup might be leftover from a previous operation (for example, * we aborted ProcWaitForSignal just before someone did ProcSendSignal). * So, loop to wait again if the waitStatus shows we haven't been granted * nor denied the lock yet. * * We pass interruptOK = true, which eliminates a window in which * cancel/die interrupts would be held off undesirably. This is a promise * that we don't mind losing control to a cancel/die interrupt here. We * don't, because we have no shared-state-change work to do after being * granted the lock (the grantor did it all). We do have to worry about * updating the locallock table, but if we lose control to an error, * LockWaitCancel will fix that up. */ do { PGSemaphoreLock(&MyProc->sem, true); } while (MyProc->waitStatus == STATUS_WAITING); /* * Disable the timer, if it's still running */ if (!disable_sig_alarm(false)) elog(FATAL, "could not disable timer for process wakeup"); /* * Re-acquire the lock table's partition lock. We have to do this to hold * off cancel/die interrupts before we can mess with lockAwaited (else we * might have a missed or duplicated locallock update). */ LWLockAcquire(partitionLock, LW_EXCLUSIVE); /* * We no longer want LockWaitCancel to do anything. */ lockAwaited = NULL; /* * If we got the lock, be sure to remember it in the locallock table. */ if (MyProc->waitStatus == STATUS_OK) GrantAwaitedLock(); /* * We don't have to do anything else, because the awaker did all the * necessary update of the lock table and MyProc. */ return MyProc->waitStatus; }