Пример #1
0
//=======================================================
int EpetraExt_HypreIJMatrix::RightScale(const Epetra_Vector& X) {
  // First we need to import off-processor values of the vector
  Epetra_Import Importer(RowMatrixColMap(), RowMatrixRowMap());
  Epetra_Vector Import_Vector(RowMatrixColMap(), true);
  EPETRA_CHK_ERR(Import_Vector.Import(X, Importer, Insert, 0));
  
  for(int i = 0; i < NumMyRows_; i++){
    //Vector-scalar mult on ith column
    int num_entries;
    double *values;
    int *indices;
    // Get values and indices of ith row of matrix
    EPETRA_CHK_ERR(HYPRE_ParCSRMatrixGetRow(ParMatrix_,i+MyRowStart_, &num_entries, &indices, &values));
    EPETRA_CHK_ERR(HYPRE_ParCSRMatrixRestoreRow(ParMatrix_,i+MyRowStart_,&num_entries,&indices,&values));
    Teuchos::Array<int> new_indices; new_indices.resize(num_entries);
    Teuchos::Array<double> new_values; new_values.resize(num_entries);
    for(int j = 0; j < num_entries; j++){
      // Multiply column j with jth element
      int index = RowMatrixColMap().LID(indices[j]);
      TEUCHOS_TEST_FOR_EXCEPTION(index < 0, std::logic_error, "Index is negtive.");
      new_values[j] = values[j] * Import_Vector[index];
      new_indices[j] = indices[j];
    }
    // Finally set values of the Matrix for this row
    int rows[1];
    rows[0] = i+MyRowStart_;
    EPETRA_CHK_ERR(HYPRE_IJMatrixSetValues(Matrix_, 1, &num_entries, rows, &new_indices[0], &new_values[0]));
  }
  
  HaveNumericConstants_ = false;
  UpdateFlops(NumGlobalNonzeros());
  return 0;
} //RightScale()
Пример #2
0
int32_t
impl_bHYPRE_IJParCSRMatrix_SetValues(
  /* in */ bHYPRE_IJParCSRMatrix self,
  /* in */ int32_t nrows,
  /* in rarray[nrows] */ int32_t* ncols,
  /* in rarray[nrows] */ int32_t* rows,
  /* in rarray[nnonzeros] */ int32_t* cols,
  /* in rarray[nnonzeros] */ double* values,
  /* in */ int32_t nnonzeros,
  /* out */ sidl_BaseInterface *_ex)
{
  *_ex = 0;
  {
    /* DO-NOT-DELETE splicer.begin(bHYPRE.IJParCSRMatrix.SetValues) */
  /* Insert the implementation of the SetValues method here... */

   int ierr=0;
   struct bHYPRE_IJParCSRMatrix__data * data;
   HYPRE_IJMatrix ij_A;

   data = bHYPRE_IJParCSRMatrix__get_data( self );

   ij_A = data -> ij_A;

   ierr = HYPRE_IJMatrixSetValues( ij_A, nrows,
                                   ncols,
                                   rows,
                                   cols,
                                   values ); 

   return( ierr );

    /* DO-NOT-DELETE splicer.end(bHYPRE.IJParCSRMatrix.SetValues) */
  }
}
Пример #3
0
HYPRE_Int
hypre_ParaSailsBuildIJMatrix(hypre_ParaSails obj, HYPRE_IJMatrix *pij_A)
{
   hypre_ParaSails_struct *internal = (hypre_ParaSails_struct *) obj;
   ParaSails *ps = internal->ps;
   Matrix *mat = internal->ps->M;

   HYPRE_Int *diag_sizes, *offdiag_sizes, local_row, i, j;
   HYPRE_Int size;
   HYPRE_Int *col_inds;
   HYPRE_Real *values;

   HYPRE_IJMatrixCreate( ps->comm, ps->beg_row, ps->end_row,
                         ps->beg_row, ps->end_row,
                         pij_A );

   HYPRE_IJMatrixSetObjectType( *pij_A, HYPRE_PARCSR );

   diag_sizes = hypre_CTAlloc(HYPRE_Int, ps->end_row - ps->beg_row + 1);
   offdiag_sizes = hypre_CTAlloc(HYPRE_Int, ps->end_row - ps->beg_row + 1);
   local_row = 0;
   for (i=ps->beg_row; i<= ps->end_row; i++)
   {
      MatrixGetRow(mat, local_row, &size, &col_inds, &values);
      NumberingLocalToGlobal(ps->numb, size, col_inds, col_inds);

      for (j=0; j < size; j++)
      {
         if (col_inds[j] < ps->beg_row || col_inds[j] > ps->end_row)
            offdiag_sizes[local_row]++;
         else
            diag_sizes[local_row]++;
      }

      local_row++;
   }
   HYPRE_IJMatrixSetDiagOffdSizes( *pij_A, (const HYPRE_Int *) diag_sizes,
                                   (const HYPRE_Int *) offdiag_sizes );
   hypre_TFree(diag_sizes);
   hypre_TFree(offdiag_sizes);

   HYPRE_IJMatrixInitialize( *pij_A );

   local_row = 0;
   for (i=ps->beg_row; i<= ps->end_row; i++)
   {
      MatrixGetRow(mat, local_row, &size, &col_inds, &values);

      HYPRE_IJMatrixSetValues( *pij_A, 1, &size, &i, (const HYPRE_Int *) col_inds,
                               (const HYPRE_Real *) values );

      NumberingGlobalToLocal(ps->numb, size, col_inds, col_inds);

      local_row++;
   }

   HYPRE_IJMatrixAssemble( *pij_A );

   return hypre_error_flag;
}
Пример #4
0
void HypreSolver2D::build_A()
{

	HYPRE_IJMatrixCreate(MPI_COMM_WORLD, ilower, iupper, ilower, iupper, &A);
	HYPRE_IJMatrixSetObjectType(A, HYPRE_PARCSR);
	HYPRE_IJMatrixInitialize(A);

	int nnz;
	double values[5];
	int cols[5];

	for(int i=ilower; i<=iupper; i++)
	{
		nnz = 0;

		// North
		if ((i-N1)>=0)
		{
			cols[nnz] = i-N1;
			values[nnz] = -1.0;
			nnz++;
		}

		// Left
		if (i%N1)
		{
			cols[nnz] = i-1;
			values[nnz] = -1.0;
			nnz++;
		}

		// Center
		cols[nnz] = i;
		values[nnz] = 4.0;
		nnz++;

		// Right
		if ((i+1)%N1)
		{
			cols[nnz] = i+1;
			values[nnz] = -1.0;
			nnz++;
		}

		// South
		if ((i+N1)<N)
		{
			cols[nnz] = i+N1;
			values[nnz] = -1.0;
			nnz++;
		}

		HYPRE_IJMatrixSetValues(A, 1, &nnz, &i, cols, values);
	}

	HYPRE_IJMatrixAssemble(A);
	HYPRE_IJMatrixGetObject(A, (void**) &parcsr_A);

}	
Пример #5
0
HYPRE_Int 
HYPRE_IJMatrixRead( const char     *filename,
                    MPI_Comm        comm,
                    HYPRE_Int       type,
		    HYPRE_IJMatrix *matrix_ptr )
{
   HYPRE_IJMatrix  matrix;
   HYPRE_Int       ilower, iupper, jlower, jupper;
   HYPRE_Int       ncols, I, J;
   HYPRE_Complex   value;
   HYPRE_Int       myid, ret;
   char            new_filename[255];
   FILE           *file;

   hypre_MPI_Comm_rank(comm, &myid);
   
   hypre_sprintf(new_filename,"%s.%05d", filename, myid);

   if ((file = fopen(new_filename, "r")) == NULL)
   {
      hypre_error_in_arg(1);
      return hypre_error_flag;
   }

   hypre_fscanf(file, "%d %d %d %d", &ilower, &iupper, &jlower, &jupper);
   HYPRE_IJMatrixCreate(comm, ilower, iupper, jlower, jupper, &matrix);

   HYPRE_IJMatrixSetObjectType(matrix, type);
   HYPRE_IJMatrixInitialize(matrix);

   /* It is important to ensure that whitespace follows the index value to help
    * catch mistakes in the input file.  See comments in IJVectorRead(). */
   ncols = 1;
   while ( (ret = hypre_fscanf(file, "%d %d%*[ \t]%le", &I, &J, &value)) != EOF )
   {
      if (ret != 3)
      {
         hypre_error_w_msg(HYPRE_ERROR_GENERIC, "Error in IJ matrix input file.");
         return hypre_error_flag;
      }
      if (I < ilower || I > iupper)
         HYPRE_IJMatrixAddToValues(matrix, 1, &ncols, &I, &J, &value);
      else
         HYPRE_IJMatrixSetValues(matrix, 1, &ncols, &I, &J, &value);
   }

   HYPRE_IJMatrixAssemble(matrix);

   fclose(file);

   *matrix_ptr = matrix;

   return hypre_error_flag;
}
Пример #6
0
static void
setup_hypre_mat(MAT *A, HYPRE_IJMatrix *pa)
{
    MAT_ROW *row;
    INT i, j, d, I, n0, n, *cols;

    assert(sizeof(INT) == sizeof(int) && sizeof(FLOAT)==sizeof(double));
    phgMatUnpack(A);

    HYPRE_IJMatrixCreate(A->rmap->comm,
			 A->rmap->partition[A->rmap->rank],
			 A->rmap->partition[A->rmap->rank + 1] - 1,
			 A->cmap->partition[A->cmap->rank],
			 A->cmap->partition[A->cmap->rank + 1] - 1,
			 pa);
    HYPRE_IJMatrixSetObjectType(*pa, HYPRE_PARCSR);
    HYPRE_IJMatrixInitialize(*pa);
    
    I = A->rmap->partition[A->rmap->rank];
    n0 = A->cmap->partition[A->cmap->rank];
    n = 0;
    cols = NULL;
    for (i = 0, row = A->rows; i < A->rmap->nlocal; i++, row++, I++) {
	if (row->ncols > 0) {
	    if (n < row->ncols) {
		phgFree(cols);
		cols = phgAlloc((n = row->ncols) * sizeof(*cols));
	    }
	    for (j = 0; j < row->ncols; j++) {
		if ((d = row->cols[j]) < A->cmap->nlocal)
		    cols[j] = d + n0;
		else
		    cols[j] = A->O2Gmap[d - A->cmap->nlocal];
	    }
	    HYPRE_IJMatrixSetValues(*pa, 1, &row->ncols, &I, cols, row->data);
	}
    }
    phgFree(cols);
    HYPRE_IJMatrixAssemble(*pa);
}
Пример #7
0
//=======================================================
int EpetraExt_HypreIJMatrix::LeftScale(const Epetra_Vector& X) {
  for(int i = 0; i < NumMyRows_; i++){
    //Vector-scalar mult on ith row
    int num_entries;
    int *indices;
    double *values;
    EPETRA_CHK_ERR(HYPRE_ParCSRMatrixGetRow(ParMatrix_,i+MyRowStart_, &num_entries, &indices, &values));
    EPETRA_CHK_ERR(HYPRE_ParCSRMatrixRestoreRow(ParMatrix_,i+MyRowStart_, &num_entries, &indices, &values));
    Teuchos::Array<double> new_values; new_values.resize(num_entries);
    Teuchos::Array<int> new_indices; new_indices.resize(num_entries);
    for(int j = 0; j < num_entries; j++){
      // Scale this row with the appropriate values from the vector
      new_values[j] = X[i]*values[j];
      new_indices[j] = indices[j];
    }
    int rows[1];
    rows[0] = i+MyRowStart_;
    EPETRA_CHK_ERR(HYPRE_IJMatrixSetValues(Matrix_, 1, &num_entries, rows, &new_indices[0], &new_values[0]));
    // Finally set values of the Matrix for this row
  }
  HaveNumericConstants_ = false;
  UpdateFlops(NumGlobalNonzeros());
  return 0;
} //LeftScale()
Пример #8
0
int
hypre_SStructUMatrixSetBoxValues( hypre_SStructMatrix *matrix,
                                  int                  part,
                                  hypre_Index          ilower,
                                  hypre_Index          iupper,
                                  int                  var,
                                  int                  nentries,
                                  int                 *entries,
                                  double              *values,
                                  int                  add_to )
{
    HYPRE_IJMatrix        ijmatrix = hypre_SStructMatrixIJMatrix(matrix);
    hypre_SStructGraph   *graph   = hypre_SStructMatrixGraph(matrix);
    hypre_SStructGrid    *grid    = hypre_SStructGraphGrid(graph);
    hypre_SStructStencil *stencil = hypre_SStructGraphStencil(graph, part, var);
    int                  *vars    = hypre_SStructStencilVars(stencil);
    hypre_Index          *shape   = hypre_SStructStencilShape(stencil);
    int                   size    = hypre_SStructStencilSize(stencil);
    hypre_IndexRef        offset;
    hypre_BoxMap         *map;
    hypre_BoxMapEntry   **map_entries;
    int                   nmap_entries;
    hypre_BoxMapEntry   **map_to_entries;
    int                   nmap_to_entries;
    int                   nrows;
    int                  *ncols;
    HYPRE_BigInt         *rows;
    HYPRE_BigInt         *cols;
    double               *ijvalues;
    hypre_Box            *box;
    hypre_Box            *to_box;
    hypre_Box            *map_box;
    hypre_Box            *int_box;
    hypre_Index           index;
    hypre_Index           rs, cs;
    int                   sy, sz;
    HYPRE_BigInt          row_base, col_base;
    int                   val_base;
    int                   e, entry, ii, jj, i, j, k;
    int                   proc, myproc;
    /* GEC1002 the matrix type */
    int                   matrix_type = hypre_SStructMatrixObjectType(matrix);

    box = hypre_BoxCreate();

    /*------------------------------------------
     * all stencil entries
     *------------------------------------------*/

    if (entries[0] < size)
    {
        to_box  = hypre_BoxCreate();
        map_box = hypre_BoxCreate();
        int_box = hypre_BoxCreate();

        hypre_CopyIndex(ilower, hypre_BoxIMin(box));
        hypre_CopyIndex(iupper, hypre_BoxIMax(box));
        /* ZTODO: check that this change fixes multiple-entry problem */
        nrows    = hypre_BoxVolume(box)*nentries;
        ncols    = hypre_CTAlloc(int, nrows);
        for (i = 0; i < nrows; i++)
        {
            ncols[i] = 1;
        }
        rows     = hypre_CTAlloc(HYPRE_BigInt, nrows);
        cols     = hypre_CTAlloc(HYPRE_BigInt, nrows);
        ijvalues = hypre_CTAlloc(double, nrows);

        sy = (hypre_IndexX(iupper) - hypre_IndexX(ilower) + 1);
        sz = (hypre_IndexY(iupper) - hypre_IndexY(ilower) + 1) * sy;

        map = hypre_SStructGridMap(grid, part, var);
        hypre_BoxMapIntersect(map, ilower, iupper, &map_entries, &nmap_entries);

        for (ii = 0; ii < nmap_entries; ii++)
        {
            /* Only Set values if I am the owner process; off-process AddTo and Get
             * values are done by IJ */
            if (!add_to)
            {
                hypre_SStructMapEntryGetProcess(map_entries[ii], &proc);
                MPI_Comm_rank(hypre_SStructGridComm(grid), &myproc);
                if (proc != myproc)
                {
                    continue;
                }
            }

            /* GEC1002 introducing the strides based on the type of the matrix  */
            hypre_SStructMapEntryGetStrides(map_entries[ii], rs, matrix_type);

            hypre_CopyIndex(ilower, hypre_BoxIMin(box));
            hypre_CopyIndex(iupper, hypre_BoxIMax(box));
            hypre_BoxMapEntryGetExtents(map_entries[ii],
                                        hypre_BoxIMin(map_box),
                                        hypre_BoxIMax(map_box));
            hypre_IntersectBoxes(box, map_box, int_box);
            hypre_CopyBox(int_box, box);

            nrows = 0;
            for (e = 0; e < nentries; e++)
            {
                entry = entries[e];

                hypre_CopyBox(box, to_box);

                offset = shape[entry];
                hypre_BoxIMinX(to_box) += hypre_IndexX(offset);
                hypre_BoxIMinY(to_box) += hypre_IndexY(offset);
                hypre_BoxIMinZ(to_box) += hypre_IndexZ(offset);
                hypre_BoxIMaxX(to_box) += hypre_IndexX(offset);
                hypre_BoxIMaxY(to_box) += hypre_IndexY(offset);
                hypre_BoxIMaxZ(to_box) += hypre_IndexZ(offset);

                map = hypre_SStructGridMap(grid, part, vars[entry]);
                hypre_BoxMapIntersect(map, hypre_BoxIMin(to_box),
                                      hypre_BoxIMax(to_box),
                                      &map_to_entries, &nmap_to_entries );

                for (jj = 0; jj < nmap_to_entries; jj++)
                {

                    /* GEC1002 introducing the strides based on the type of the matrix  */

                    hypre_SStructMapEntryGetStrides(map_to_entries[jj], cs, matrix_type);

                    hypre_BoxMapEntryGetExtents(map_to_entries[jj],
                                                hypre_BoxIMin(map_box),
                                                hypre_BoxIMax(map_box));
                    hypre_IntersectBoxes(to_box, map_box, int_box);

                    hypre_CopyIndex(hypre_BoxIMin(int_box), index);

                    /* GEC1002 introducing the rank based on the type of the matrix  */

                    hypre_SStructMapEntryGetGlobalRank(map_to_entries[jj],
                                                       index, &col_base,matrix_type);

                    hypre_IndexX(index) -= hypre_IndexX(offset);
                    hypre_IndexY(index) -= hypre_IndexY(offset);
                    hypre_IndexZ(index) -= hypre_IndexZ(offset);

                    /* GEC1002 introducing the rank based on the type of the matrix  */

                    hypre_SStructMapEntryGetGlobalRank(map_entries[ii],
                                                       index, &row_base,matrix_type);

                    hypre_IndexX(index) -= hypre_IndexX(ilower);
                    hypre_IndexY(index) -= hypre_IndexY(ilower);
                    hypre_IndexZ(index) -= hypre_IndexZ(ilower);
                    val_base = e + (hypre_IndexX(index) +
                                    hypre_IndexY(index)*sy +
                                    hypre_IndexZ(index)*sz) * nentries;

                    for (k = 0; k < hypre_BoxSizeZ(int_box); k++)
                    {
                        for (j = 0; j < hypre_BoxSizeY(int_box); j++)
                        {
                            for (i = 0; i < hypre_BoxSizeX(int_box); i++)
                            {
                                rows[nrows] = row_base + (HYPRE_BigInt)(i*rs[0] + j*rs[1] + k*rs[2]);
                                cols[nrows] = col_base + (HYPRE_BigInt)(i*cs[0] + j*cs[1] + k*cs[2]);
                                ijvalues[nrows] =
                                    values[val_base + (i + j*sy + k*sz)*nentries];
                                nrows++;
                            }
                        }
                    }
                }

                hypre_TFree(map_to_entries);
            }

            /*------------------------------------------
             * set IJ values one stencil entry at a time
             *------------------------------------------*/

            if (add_to > 0)
            {
                HYPRE_IJMatrixAddToValues(ijmatrix, nrows, ncols,
                                          (const HYPRE_BigInt *) rows,
                                          (const HYPRE_BigInt *) cols,
                                          (const double *) ijvalues);
            }
            else if (add_to > -1)
            {
                HYPRE_IJMatrixSetValues(ijmatrix, nrows, ncols,
                                        (const HYPRE_BigInt *) rows,
                                        (const HYPRE_BigInt *) cols,
                                        (const double *) ijvalues);
            }
            else
            {
                HYPRE_IJMatrixGetValues(ijmatrix, nrows, ncols, rows, cols, values);
            }
        }

        hypre_TFree(map_entries);

        hypre_TFree(ncols);
        hypre_TFree(rows);
        hypre_TFree(cols);
        hypre_TFree(ijvalues);

        hypre_BoxDestroy(to_box);
        hypre_BoxDestroy(map_box);
        hypre_BoxDestroy(int_box);
    }
Пример #9
0
int
hypre_SStructUMatrixSetValues( hypre_SStructMatrix *matrix,
                               int                  part,
                               hypre_Index          index,
                               int                  var,
                               int                  nentries,
                               int                 *entries,
                               double              *values,
                               int                  add_to )
{
    HYPRE_IJMatrix        ijmatrix = hypre_SStructMatrixIJMatrix(matrix);
    hypre_SStructGraph   *graph   = hypre_SStructMatrixGraph(matrix);
    hypre_SStructGrid    *grid    = hypre_SStructGraphGrid(graph);
    hypre_SStructStencil *stencil = hypre_SStructGraphStencil(graph, part, var);
    int                  *vars    = hypre_SStructStencilVars(stencil);
    hypre_Index          *shape   = hypre_SStructStencilShape(stencil);
    int                   size    = hypre_SStructStencilSize(stencil);
    hypre_IndexRef        offset;
    hypre_Index           to_index;
    hypre_SStructUVEntry *Uventry;
    hypre_BoxMapEntry    *map_entry;
    hypre_SStructMapInfo *entry_info;
    HYPRE_BigInt          row_coord;
    HYPRE_BigInt         *col_coords;
    int                   ncoeffs;
    double               *coeffs;
    int                   i, entry;
    int                   proc, myproc;
    /* GEC1002 the matrix type */
    int                   matrix_type = hypre_SStructMatrixObjectType(matrix);

    hypre_SStructGridFindMapEntry(grid, part, index, var, &map_entry);
    if (map_entry == NULL)
    {
        hypre_error_in_arg(1);
        hypre_error_in_arg(2);
        hypre_error_in_arg(3);
        /* RDF: This printing shouldn't be on by default */
        printf("Warning: Attempt to set coeffs for point not in grid\n");
        printf("hypre_SStructUMatrixSetValues call aborted for grid point\n");
        printf("    part=%d, var=%d, index=(%d, %d, %d)\n", part, var,
               hypre_IndexD(index,0),
               hypre_IndexD(index,1),
               hypre_IndexD(index,2) );
        return hypre_error_flag;
    }
    else
    {
        hypre_BoxMapEntryGetInfo(map_entry, (void **) &entry_info);
    }

    /* Only Set values if I am the owner process; off-process AddTo and Get
     * values are done by IJ */
    if (!add_to)
    {
        hypre_SStructMapEntryGetProcess(map_entry, &proc);
        MPI_Comm_rank(hypre_SStructGridComm(grid), &myproc);
        if (proc != myproc)
        {
            return hypre_error_flag;
        }
    }

    /* GEC1002 get the rank using the function with the type=matrixtype*/
    hypre_SStructMapEntryGetGlobalRank(map_entry, index, &row_coord, matrix_type);


    col_coords = hypre_SStructMatrixTmpColCoords(matrix);
    coeffs     = hypre_SStructMatrixTmpCoeffs(matrix);
    ncoeffs = 0;
    for (i = 0; i < nentries; i++)
    {
        entry = entries[i];

        if (entry < size)
        {
            /* stencil entries */
            offset = shape[entry];
            hypre_IndexX(to_index) = hypre_IndexX(index) + hypre_IndexX(offset);
            hypre_IndexY(to_index) = hypre_IndexY(index) + hypre_IndexY(offset);
            hypre_IndexZ(to_index) = hypre_IndexZ(index) + hypre_IndexZ(offset);

            hypre_SStructGridFindMapEntry(grid, part, to_index, vars[entry],
                                          &map_entry);

            if (map_entry != NULL)
            {


                hypre_SStructMapEntryGetGlobalRank(map_entry, to_index,
                                                   &col_coords[ncoeffs],matrix_type);


                coeffs[ncoeffs] = values[i];
                ncoeffs++;
            }
        }
        else
        {
            /* non-stencil entries */
            entry -= size;
            hypre_SStructGraphFindUVEntry(graph, part, index, var, &Uventry);

            col_coords[ncoeffs] = hypre_SStructUVEntryRank(Uventry, entry);
            coeffs[ncoeffs] = values[i];
            ncoeffs++;
        }
    }

    if (add_to > 0)
    {
        HYPRE_IJMatrixAddToValues(ijmatrix, 1, &ncoeffs, &row_coord,
                                  (const HYPRE_BigInt *) col_coords,
                                  (const double *) coeffs);
    }
    else if (add_to > -1)
    {
        HYPRE_IJMatrixSetValues(ijmatrix, 1, &ncoeffs, &row_coord,
                                (const HYPRE_BigInt *) col_coords,
                                (const double *) coeffs);
    }
    else
    {
        HYPRE_IJMatrixGetValues(ijmatrix, 1, &ncoeffs, &row_coord,
                                col_coords, values);
    }

    return hypre_error_flag;
}
Пример #10
0
 inline void numfact(unsigned int ncol, int* I, int* loc2glob, int* J, K* C) {
     static_assert(std::is_same<double, K>::value, "Hypre only supports double-precision floating-point real numbers");
     static_assert(S == 'G', "Hypre only supports nonsymmetric matrices");
     HYPRE_IJMatrixCreate(DMatrix::_communicator, loc2glob[0], loc2glob[1], loc2glob[0], loc2glob[1], &_A);
     HYPRE_IJMatrixSetObjectType(_A, HYPRE_PARCSR);
     HYPRE_IJMatrixSetRowSizes(_A, I + 1);
     _local = ncol;
     int* rows = new int[3 * _local]();
     int* diag_sizes = rows + _local;
     int* offdiag_sizes = diag_sizes + _local;
     rows[0] = I[0];
     for(unsigned int i = 0; i < _local; ++i) {
         std::for_each(J + rows[0], J + rows[0] + I[i + 1], [&](int& j) { (j < loc2glob[0] || loc2glob[1] < j) ? ++offdiag_sizes[i] : ++diag_sizes[i]; });
         rows[0] += I[i + 1];
     }
     HYPRE_IJMatrixSetDiagOffdSizes(_A, diag_sizes, offdiag_sizes);
     HYPRE_IJMatrixSetMaxOffProcElmts(_A, 0);
     HYPRE_IJMatrixInitialize(_A);
     std::iota(rows, rows + _local, loc2glob[0]);
     HYPRE_IJMatrixSetValues(_A, _local, I + 1, rows, J, C);
     HYPRE_IJMatrixAssemble(_A);
     HYPRE_IJVectorCreate(DMatrix::_communicator, loc2glob[0], loc2glob[1], &_b);
     HYPRE_IJVectorSetObjectType(_b, HYPRE_PARCSR);
     HYPRE_IJVectorInitialize(_b);
     HYPRE_IJVectorCreate(DMatrix::_communicator, loc2glob[0], loc2glob[1], &_x);
     HYPRE_IJVectorSetObjectType(_x, HYPRE_PARCSR);
     HYPRE_IJVectorInitialize(_x);
     delete [] rows;
     delete [] I;
     delete [] loc2glob;
     HYPRE_BoomerAMGCreate(_strategy == 1 ? &_solver : &_precond);
     HYPRE_BoomerAMGSetCoarsenType(_strategy == 1 ? _solver : _precond, 6); /* Falgout coarsening */
     HYPRE_BoomerAMGSetRelaxType(_strategy == 1 ? _solver : _precond, 6);   /* G-S/Jacobi hybrid relaxation */
     HYPRE_BoomerAMGSetNumSweeps(_strategy == 1 ? _solver : _precond, 1);   /* sweeps on each level */
     HYPRE_BoomerAMGSetMaxLevels(_strategy == 1 ? _solver : _precond, 10);  /* maximum number of levels */
     HYPRE_ParCSRMatrix parcsr_A;
     HYPRE_IJMatrixGetObject(_A, reinterpret_cast<void**>(&parcsr_A));
     HYPRE_ParVector par_b;
     HYPRE_IJVectorGetObject(_b, reinterpret_cast<void**>(&par_b));
     HYPRE_ParVector par_x;
     HYPRE_IJVectorGetObject(_x, reinterpret_cast<void**>(&par_x));
     if(_strategy == 1) {
         HYPRE_BoomerAMGSetTol(_solver, 1.0e-8);
         HYPRE_BoomerAMGSetMaxIter(_solver, 1000);
         HYPRE_BoomerAMGSetPrintLevel(_solver, 1);
         HYPRE_BoomerAMGSetup(_solver, parcsr_A, nullptr, nullptr);
     }
     else {
         HYPRE_BoomerAMGSetTol(_precond, 0.0);
         HYPRE_BoomerAMGSetMaxIter(_precond, 1);
         HYPRE_BoomerAMGSetPrintLevel(_precond, 1);
         if(_strategy == 2) {
             HYPRE_ParCSRPCGCreate(DMatrix::_communicator, &_solver);
             HYPRE_PCGSetMaxIter(_solver, 500);
             HYPRE_PCGSetTol(_solver, 1.0e-8);
             HYPRE_PCGSetTwoNorm(_solver, 1);
             HYPRE_PCGSetPrintLevel(_solver, 1);
             HYPRE_PCGSetLogging(_solver, 1);
             HYPRE_PCGSetPrecond(_solver, reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSolve), reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSetup), _precond);
             HYPRE_ParCSRPCGSetup(_solver, parcsr_A, par_b, par_x);
         }
         else {
             HYPRE_ParCSRFlexGMRESCreate(DMatrix::_communicator, &_solver);
             HYPRE_FlexGMRESSetKDim(_solver, 50);
             HYPRE_FlexGMRESSetMaxIter(_solver, 500);
             HYPRE_FlexGMRESSetTol(_solver, 1.0e-8);
             HYPRE_FlexGMRESSetPrintLevel(_solver, 1);
             HYPRE_FlexGMRESSetLogging(_solver, 1);
             HYPRE_FlexGMRESSetPrecond(_solver, reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSolve), reinterpret_cast<HYPRE_PtrToSolverFcn>(HYPRE_BoomerAMGSetup), _precond);
             HYPRE_ParCSRFlexGMRESSetup(_solver, parcsr_A, par_b, par_x);
         }
     }
 }
Пример #11
0
int main (int argc, char *argv[])
{
   HYPRE_Int i;
   int myid, num_procs;
   int N, n;

   HYPRE_Int ilower, iupper;
   HYPRE_Int local_size, extra;

   int solver_id;
   int print_solution, print_system;

   double h, h2;

   HYPRE_IJMatrix A;
   HYPRE_ParCSRMatrix parcsr_A;
   HYPRE_IJVector b;
   HYPRE_ParVector par_b;
   HYPRE_IJVector x;
   HYPRE_ParVector par_x;

   HYPRE_Solver solver, precond;

   /* Initialize MPI */
   MPI_Init(&argc, &argv);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

   /* Default problem parameters */
   n = 33;
   solver_id = 0;
   print_solution  = 0;
   print_system = 0;


   /* Parse command line */
   {
      int arg_index = 0;
      int print_usage = 0;

      while (arg_index < argc)
      {
         if ( strcmp(argv[arg_index], "-n") == 0 )
         {
            arg_index++;
            n = atoi(argv[arg_index++]);
         }
         else if ( strcmp(argv[arg_index], "-solver") == 0 )
         {
            arg_index++;
            solver_id = atoi(argv[arg_index++]);
         }
         else if ( strcmp(argv[arg_index], "-print_solution") == 0 )
         {
            arg_index++;
            print_solution = 1;
         }
         else if ( strcmp(argv[arg_index], "-print_system") == 0 )
         {
            arg_index++;
            print_system = 1;
         }


         else if ( strcmp(argv[arg_index], "-help") == 0 )
         {
            print_usage = 1;
            break;
         }
         else
         {
            arg_index++;
         }
      }

      if ((print_usage) && (myid == 0))
      {
         printf("\n");
         printf("Usage: %s [<options>]\n", argv[0]);
         printf("\n");
         printf("  -n <n>              : problem size in each direction (default: 33)\n");
         printf("  -solver <ID>        : solver ID\n");
         printf("                        0  - AMG (default) \n");
         printf("                        1  - AMG-PCG\n");
         printf("                        8  - ParaSails-PCG\n");
         printf("                        50 - PCG\n");
         printf("                        61 - AMG-FlexGMRES\n");
         printf("  -print_solution     : print the solution vector\n");
         printf("  -print_system       : print the matrix and rhs\n");
         printf("\n");
      }

      if (print_usage)
      {
         MPI_Finalize();
         return (0);
      }
   }

   /* Preliminaries: want at least one processor per row */
   if (n*n < num_procs) n = sqrt(num_procs) + 1;
   N = n*n; /* global number of rows */
   h = 1.0/(n+1); /* mesh size*/
   h2 = h*h;

   /* Each processor knows only of its own rows - the range is denoted by ilower
      and upper.  Here we partition the rows. We account for the fact that
      N may not divide evenly by the number of processors. */
   local_size = N/num_procs;
   extra = N - local_size*num_procs;

   ilower = local_size*myid;
   ilower += hypre_min(myid, extra);

   iupper = local_size*(myid+1);
   iupper += hypre_min(myid+1, extra);
   iupper = iupper - 1;

   /* How many rows do I have? */
   local_size = iupper - ilower + 1;

   /* Create the matrix.
      Note that this is a square matrix, so we indicate the row partition
      size twice (since number of rows = number of cols) */
   HYPRE_IJMatrixCreate(MPI_COMM_WORLD, ilower, iupper, ilower, iupper, &A);

   /* Choose a parallel csr format storage (see the User's Manual) */
   HYPRE_IJMatrixSetObjectType(A, HYPRE_PARCSR);

   /* Initialize before setting coefficients */
   HYPRE_IJMatrixInitialize(A);

   /* Now go through my local rows and set the matrix entries.
      Each row has at most 5 entries. For example, if n=3:

      A = [M -I 0; -I M -I; 0 -I M]
      M = [4 -1 0; -1 4 -1; 0 -1 4]

      Note that here we are setting one row at a time, though
      one could set all the rows together (see the User's Manual).
   */
   {
      HYPRE_Int nnz;
      double values[5];
      HYPRE_Int cols[5];

      for (i = ilower; i <= iupper; i++)
      {
         nnz = 0;

         /* The left identity block:position i-n */
         if ((i-n)>=0)
         {
            cols[nnz] = i-n;
            values[nnz] = -1.0;
            nnz++;
         }

         /* The left -1: position i-1 */
         if (i%n)
         {
            cols[nnz] = i-1;
            values[nnz] = -1.0;
            nnz++;
         }

         /* Set the diagonal: position i */
         cols[nnz] = i;
         values[nnz] = 4.0;
         nnz++;

         /* The right -1: position i+1 */
         if ((i+1)%n)
         {
            cols[nnz] = i+1;
            values[nnz] = -1.0;
            nnz++;
         }

         /* The right identity block:position i+n */
         if ((i+n)< N)
         {
            cols[nnz] = i+n;
            values[nnz] = -1.0;
            nnz++;
         }

         /* Set the values for row i */
         HYPRE_IJMatrixSetValues(A, 1, &nnz, &i, cols, values);
      }
   }

   /* Assemble after setting the coefficients */
   HYPRE_IJMatrixAssemble(A);

   /* Note: for the testing of small problems, one may wish to read
      in a matrix in IJ format (for the format, see the output files
      from the -print_system option).
      In this case, one would use the following routine:
      HYPRE_IJMatrixRead( <filename>, MPI_COMM_WORLD,
                          HYPRE_PARCSR, &A );
      <filename>  = IJ.A.out to read in what has been printed out
      by -print_system (processor numbers are omitted).
      A call to HYPRE_IJMatrixRead is an *alternative* to the
      following sequence of HYPRE_IJMatrix calls:
      Create, SetObjectType, Initialize, SetValues, and Assemble
   */


   /* Get the parcsr matrix object to use */
   HYPRE_IJMatrixGetObject(A, (void**) &parcsr_A);


   /* Create the rhs and solution */
   HYPRE_IJVectorCreate(MPI_COMM_WORLD, ilower, iupper,&b);
   HYPRE_IJVectorSetObjectType(b, HYPRE_PARCSR);
   HYPRE_IJVectorInitialize(b);

   HYPRE_IJVectorCreate(MPI_COMM_WORLD, ilower, iupper,&x);
   HYPRE_IJVectorSetObjectType(x, HYPRE_PARCSR);
   HYPRE_IJVectorInitialize(x);

   /* Set the rhs values to h^2 and the solution to zero */
   {
      double *rhs_values, *x_values;
      HYPRE_Int *rows;

      rhs_values = calloc(local_size, sizeof(double));
      x_values = calloc(local_size, sizeof(double));
      rows = calloc(local_size, sizeof(HYPRE_Int));

      for (i=0; i<local_size; i++)
      {
         rhs_values[i] = h2;
         x_values[i] = 0.0;
         rows[i] = ilower + i;
      }

      HYPRE_IJVectorSetValues(b, local_size, rows, rhs_values);
      HYPRE_IJVectorSetValues(x, local_size, rows, x_values);

      free(x_values);
      free(rhs_values);
      free(rows);
   }


   HYPRE_IJVectorAssemble(b);
   /*  As with the matrix, for testing purposes, one may wish to read in a rhs:
       HYPRE_IJVectorRead( <filename>, MPI_COMM_WORLD,
                                 HYPRE_PARCSR, &b );
       as an alternative to the
       following sequence of HYPRE_IJVectors calls:
       Create, SetObjectType, Initialize, SetValues, and Assemble
   */
   HYPRE_IJVectorGetObject(b, (void **) &par_b);

   HYPRE_IJVectorAssemble(x);
   HYPRE_IJVectorGetObject(x, (void **) &par_x);


  /*  Print out the system  - files names will be IJ.out.A.XXXXX
       and IJ.out.b.XXXXX, where XXXXX = processor id */
   if (print_system)
   {
      HYPRE_IJMatrixPrint(A, "IJ.out.A");
      HYPRE_IJVectorPrint(b, "IJ.out.b");
   }


   /* Choose a solver and solve the system */

   /* AMG */
   if (solver_id == 0)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;

      /* Create solver */
      HYPRE_BoomerAMGCreate(&solver);

      /* Set some parameters (See Reference Manual for more parameters) */
      HYPRE_BoomerAMGSetPrintLevel(solver, 3);  /* print solve info + parameters */
      HYPRE_BoomerAMGSetCoarsenType(solver, 6); /* Falgout coarsening */
      HYPRE_BoomerAMGSetRelaxType(solver, 3);   /* G-S/Jacobi hybrid relaxation */
      HYPRE_BoomerAMGSetNumSweeps(solver, 1);   /* Sweeeps on each level */
      HYPRE_BoomerAMGSetMaxLevels(solver, 20);  /* maximum number of levels */
      HYPRE_BoomerAMGSetTol(solver, 1e-7);      /* conv. tolerance */

      /* Now setup and solve! */
      HYPRE_BoomerAMGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_BoomerAMGSolve(solver, parcsr_A, par_b, par_x);

      /* Run info - needed logging turned on */
      HYPRE_BoomerAMGGetNumIterations(solver, &num_iterations);
      HYPRE_BoomerAMGGetFinalRelativeResidualNorm(solver, &final_res_norm);
      if (myid == 0)
      {
         printf("\n");
         printf("Iterations = %lld\n", num_iterations);
         printf("Final Relative Residual Norm = %e\n", final_res_norm);
         printf("\n");
      }

      /* Destroy solver */
      HYPRE_BoomerAMGDestroy(solver);
   }
   /* PCG */
   else if (solver_id == 50)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;

      /* Create solver */
      HYPRE_ParCSRPCGCreate(MPI_COMM_WORLD, &solver);

      /* Set some parameters (See Reference Manual for more parameters) */
      HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */
      HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */
      HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */
      HYPRE_PCGSetPrintLevel(solver, 2); /* prints out the iteration info */
      HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */

      /* Now setup and solve! */
      HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x);

      /* Run info - needed logging turned on */
      HYPRE_PCGGetNumIterations(solver, &num_iterations);
      HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm);
      if (myid == 0)
      {
         printf("\n");
         printf("Iterations = %lld\n", num_iterations);
         printf("Final Relative Residual Norm = %e\n", final_res_norm);
         printf("\n");
      }

      /* Destroy solver */
      HYPRE_ParCSRPCGDestroy(solver);
   }
   /* PCG with AMG preconditioner */
   else if (solver_id == 1)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;

      /* Create solver */
      HYPRE_ParCSRPCGCreate(MPI_COMM_WORLD, &solver);

      /* Set some parameters (See Reference Manual for more parameters) */
      HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */
      HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */
      HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */
      HYPRE_PCGSetPrintLevel(solver, 2); /* print solve info */
      HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */

      /* Now set up the AMG preconditioner and specify any parameters */
      HYPRE_BoomerAMGCreate(&precond);
      HYPRE_BoomerAMGSetPrintLevel(precond, 1); /* print amg solution info */
      HYPRE_BoomerAMGSetCoarsenType(precond, 6);
      HYPRE_BoomerAMGSetRelaxType(precond, 6); /* Sym G.S./Jacobi hybrid */
      HYPRE_BoomerAMGSetNumSweeps(precond, 1);
      HYPRE_BoomerAMGSetTol(precond, 0.0); /* conv. tolerance zero */
      HYPRE_BoomerAMGSetMaxIter(precond, 1); /* do only one iteration! */

      /* Set the PCG preconditioner */
      HYPRE_PCGSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSolve,
                          (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSetup, precond);

      /* Now setup and solve! */
      HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x);

      /* Run info - needed logging turned on */
      HYPRE_PCGGetNumIterations(solver, &num_iterations);
      HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm);
      if (myid == 0)
      {
         printf("\n");
         printf("Iterations = %lld\n", num_iterations);
         printf("Final Relative Residual Norm = %e\n", final_res_norm);
         printf("\n");
      }

      /* Destroy solver and preconditioner */
      HYPRE_ParCSRPCGDestroy(solver);
      HYPRE_BoomerAMGDestroy(precond);
   }
   /* PCG with Parasails Preconditioner */
   else if (solver_id == 8)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;

      int      sai_max_levels = 1;
      double   sai_threshold = 0.1;
      double   sai_filter = 0.05;
      int      sai_sym = 1;

      /* Create solver */
      HYPRE_ParCSRPCGCreate(MPI_COMM_WORLD, &solver);

      /* Set some parameters (See Reference Manual for more parameters) */
      HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */
      HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */
      HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */
      HYPRE_PCGSetPrintLevel(solver, 2); /* print solve info */
      HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */

      /* Now set up the ParaSails preconditioner and specify any parameters */
      HYPRE_ParaSailsCreate(MPI_COMM_WORLD, &precond);

      /* Set some parameters (See Reference Manual for more parameters) */
      HYPRE_ParaSailsSetParams(precond, sai_threshold, sai_max_levels);
      HYPRE_ParaSailsSetFilter(precond, sai_filter);
      HYPRE_ParaSailsSetSym(precond, sai_sym);
      HYPRE_ParaSailsSetLogging(precond, 3);

      /* Set the PCG preconditioner */
      HYPRE_PCGSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_ParaSailsSolve,
                          (HYPRE_PtrToSolverFcn) HYPRE_ParaSailsSetup, precond);

      /* Now setup and solve! */
      HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x);


      /* Run info - needed logging turned on */
      HYPRE_PCGGetNumIterations(solver, &num_iterations);
      HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm);
      if (myid == 0)
      {
         printf("\n");
         printf("Iterations = %lld\n", num_iterations);
         printf("Final Relative Residual Norm = %e\n", final_res_norm);
         printf("\n");
      }

      /* Destory solver and preconditioner */
      HYPRE_ParCSRPCGDestroy(solver);
      HYPRE_ParaSailsDestroy(precond);
   }
   /* Flexible GMRES with  AMG Preconditioner */
   else if (solver_id == 61)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;
      int    restart = 30;
      int    modify = 1;


      /* Create solver */
      HYPRE_ParCSRFlexGMRESCreate(MPI_COMM_WORLD, &solver);

      /* Set some parameters (See Reference Manual for more parameters) */
      HYPRE_FlexGMRESSetKDim(solver, restart);
      HYPRE_FlexGMRESSetMaxIter(solver, 1000); /* max iterations */
      HYPRE_FlexGMRESSetTol(solver, 1e-7); /* conv. tolerance */
      HYPRE_FlexGMRESSetPrintLevel(solver, 2); /* print solve info */
      HYPRE_FlexGMRESSetLogging(solver, 1); /* needed to get run info later */


      /* Now set up the AMG preconditioner and specify any parameters */
      HYPRE_BoomerAMGCreate(&precond);
      HYPRE_BoomerAMGSetPrintLevel(precond, 1); /* print amg solution info */
      HYPRE_BoomerAMGSetCoarsenType(precond, 6);
      HYPRE_BoomerAMGSetRelaxType(precond, 6); /* Sym G.S./Jacobi hybrid */
      HYPRE_BoomerAMGSetNumSweeps(precond, 1);
      HYPRE_BoomerAMGSetTol(precond, 0.0); /* conv. tolerance zero */
      HYPRE_BoomerAMGSetMaxIter(precond, 1); /* do only one iteration! */

      /* Set the FlexGMRES preconditioner */
      HYPRE_FlexGMRESSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSolve,
                          (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSetup, precond);


      if (modify)
      /* this is an optional call  - if you don't call it, hypre_FlexGMRESModifyPCDefault
         is used - which does nothing.  Otherwise, you can define your own, similar to
         the one used here */
         HYPRE_FlexGMRESSetModifyPC( solver,
                                     (HYPRE_PtrToModifyPCFcn) hypre_FlexGMRESModifyPCAMGExample);


      /* Now setup and solve! */
      HYPRE_ParCSRFlexGMRESSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_ParCSRFlexGMRESSolve(solver, parcsr_A, par_b, par_x);

      /* Run info - needed logging turned on */
      HYPRE_FlexGMRESGetNumIterations(solver, &num_iterations);
      HYPRE_FlexGMRESGetFinalRelativeResidualNorm(solver, &final_res_norm);
      if (myid == 0)
      {
         printf("\n");
         printf("Iterations = %lld\n", num_iterations);
         printf("Final Relative Residual Norm = %e\n", final_res_norm);
         printf("\n");
      }

      /* Destory solver and preconditioner */
      HYPRE_ParCSRFlexGMRESDestroy(solver);
      HYPRE_BoomerAMGDestroy(precond);

   }
   else
   {
      if (myid ==0) printf("Invalid solver id specified.\n");
   }

   /* Print the solution */
   if (print_solution)
      HYPRE_IJVectorPrint(x, "ij.out.x");

   /* Clean up */
   HYPRE_IJMatrixDestroy(A);
   HYPRE_IJVectorDestroy(b);
   HYPRE_IJVectorDestroy(x);

   /* Finalize MPI*/
   MPI_Finalize();

   return(0);
}
Пример #12
0
HYPRE_Int main (HYPRE_Int argc, char *argv[])
{
   HYPRE_Int i;
   HYPRE_Int myid, num_procs;
   HYPRE_Int N, n;

   HYPRE_Int ilower, iupper;
   HYPRE_Int local_size, extra;

   HYPRE_Int solver_id;
   HYPRE_Int print_solution;

   double h, h2;

#ifdef HYPRE_FORTRAN
   hypre_F90_Obj A;
   hypre_F90_Obj parcsr_A;
   hypre_F90_Obj b;
   hypre_F90_Obj par_b;
   hypre_F90_Obj x;
   hypre_F90_Obj par_x;

   hypre_F90_Obj solver, precond;

   hypre_F90_Obj long_temp_COMM;
        HYPRE_Int temp_COMM;
        HYPRE_Int precond_id;

        HYPRE_Int one = 1;
        HYPRE_Int two = 2;
        HYPRE_Int three = 3;
        HYPRE_Int six = 6;
        HYPRE_Int twenty = 20;
        HYPRE_Int thousand = 1000;
        HYPRE_Int hypre_type = HYPRE_PARCSR;

     double oo1 = 1.e-3;
     double tol = 1.e-7;
#else
   HYPRE_IJMatrix A;
   HYPRE_ParCSRMatrix parcsr_A;
   HYPRE_IJVector b;
   HYPRE_ParVector par_b;
   HYPRE_IJVector x;
   HYPRE_ParVector par_x;

   HYPRE_Solver solver, precond;
#endif

   /* Initialize MPI */
   hypre_MPI_Init(&argc, &argv);
   hypre_MPI_Comm_rank(hypre_MPI_COMM_WORLD, &myid);
   hypre_MPI_Comm_size(hypre_MPI_COMM_WORLD, &num_procs);

   /* Default problem parameters */
   n = 33;
   solver_id = 0;
   print_solution  = 0;

   /* Parse command line */
   {
      HYPRE_Int arg_index = 0;
      HYPRE_Int print_usage = 0;

      while (arg_index < argc)
      {
         if ( strcmp(argv[arg_index], "-n") == 0 )
         {
            arg_index++;
            n = atoi(argv[arg_index++]);
         }
         else if ( strcmp(argv[arg_index], "-solver") == 0 )
         {
            arg_index++;
            solver_id = atoi(argv[arg_index++]);
         }
         else if ( strcmp(argv[arg_index], "-print_solution") == 0 )
         {
            arg_index++;
            print_solution = 1;
         }
         else if ( strcmp(argv[arg_index], "-help") == 0 )
         {
            print_usage = 1;
            break;
         }
         else
         {
            arg_index++;
         }
      }

      if ((print_usage) && (myid == 0))
      {
         hypre_printf("\n");
         hypre_printf("Usage: %s [<options>]\n", argv[0]);
         hypre_printf("\n");
         hypre_printf("  -n <n>              : problem size in each direction (default: 33)\n");
         hypre_printf("  -solver <ID>        : solver ID\n");
         hypre_printf("                        0  - AMG (default) \n");
         hypre_printf("                        1  - AMG-PCG\n");
         hypre_printf("                        8  - ParaSails-PCG\n");
         hypre_printf("                        50 - PCG\n");
         hypre_printf("  -print_solution     : print the solution vector\n");
         hypre_printf("\n");
      }

      if (print_usage)
      {
         hypre_MPI_Finalize();
         return (0);
      }
   }

   /* Preliminaries: want at least one processor per row */
   if (n*n < num_procs) n = sqrt(num_procs) + 1;
   N = n*n; /* global number of rows */
   h = 1.0/(n+1); /* mesh size*/
   h2 = h*h;

   /* Each processor knows only of its own rows - the range is denoted by ilower
      and upper.  Here we partition the rows. We account for the fact that
      N may not divide evenly by the number of processors. */
   local_size = N/num_procs;
   extra = N - local_size*num_procs;

   ilower = local_size*myid;
   ilower += hypre_min(myid, extra);

   iupper = local_size*(myid+1);
   iupper += hypre_min(myid+1, extra);
   iupper = iupper - 1;

   /* How many rows do I have? */
   local_size = iupper - ilower + 1;

   /* Create the matrix.
      Note that this is a square matrix, so we indicate the row partition
      size twice (since number of rows = number of cols) */
#ifdef HYPRE_FORTRAN
   long_temp_COMM = (hypre_F90_Obj) hypre_MPI_COMM_WORLD;
   temp_COMM = (HYPRE_Int) hypre_MPI_COMM_WORLD;
   HYPRE_IJMatrixCreate(&long_temp_COMM, &ilower, &iupper, &ilower, &iupper, &A);
#else
   HYPRE_IJMatrixCreate(hypre_MPI_COMM_WORLD, ilower, iupper, ilower, iupper, &A);
#endif

   /* Choose a parallel csr format storage (see the User's Manual) */
#ifdef HYPRE_FORTRAN
   HYPRE_IJMatrixSetObjectType(&A, &hypre_type);
#else
   HYPRE_IJMatrixSetObjectType(A, HYPRE_PARCSR);
#endif

   /* Initialize before setting coefficients */
#ifdef HYPRE_FORTRAN
   HYPRE_IJMatrixInitialize(&A);
#else
   HYPRE_IJMatrixInitialize(A);
#endif

   /* Now go through my local rows and set the matrix entries.
      Each row has at most 5 entries. For example, if n=3:

      A = [M -I 0; -I M -I; 0 -I M]
      M = [4 -1 0; -1 4 -1; 0 -1 4]

      Note that here we are setting one row at a time, though
      one could set all the rows together (see the User's Manual).
   */
   {
      HYPRE_Int nnz;
      double values[5];
      HYPRE_Int cols[5];

      for (i = ilower; i <= iupper; i++)
      {
         nnz = 0;

         /* The left identity block:position i-n */
         if ((i-n)>=0)
         {
	    cols[nnz] = i-n;
	    values[nnz] = -1.0;
	    nnz++;
         }

         /* The left -1: position i-1 */
         if (i%n)
         {
            cols[nnz] = i-1;
            values[nnz] = -1.0;
            nnz++;
         }

         /* Set the diagonal: position i */
         cols[nnz] = i;
         values[nnz] = 4.0;
         nnz++;

         /* The right -1: position i+1 */
         if ((i+1)%n)
         {
            cols[nnz] = i+1;
            values[nnz] = -1.0;
            nnz++;
         }

         /* The right identity block:position i+n */
         if ((i+n)< N)
         {
            cols[nnz] = i+n;
            values[nnz] = -1.0;
            nnz++;
         }

         /* Set the values for row i */
#ifdef HYPRE_FORTRAN
         HYPRE_IJMatrixSetValues(&A, &one, &nnz, &i, &cols[0], &values[0]);
#else
         HYPRE_IJMatrixSetValues(A, 1, &nnz, &i, cols, values);
#endif
      }
   }

   /* Assemble after setting the coefficients */
#ifdef HYPRE_FORTRAN
   HYPRE_IJMatrixAssemble(&A);
#else
   HYPRE_IJMatrixAssemble(A);
#endif
   /* Get the parcsr matrix object to use */
#ifdef HYPRE_FORTRAN
   HYPRE_IJMatrixGetObject(&A, &parcsr_A);
   HYPRE_IJMatrixGetObject(&A, &parcsr_A);
#else
   HYPRE_IJMatrixGetObject(A, (void**) &parcsr_A);
   HYPRE_IJMatrixGetObject(A, (void**) &parcsr_A);
#endif

   /* Create the rhs and solution */
#ifdef HYPRE_FORTRAN
   HYPRE_IJVectorCreate(&temp_COMM, &ilower, &iupper, &b);
   HYPRE_IJVectorSetObjectType(&b, &hypre_type);
   HYPRE_IJVectorInitialize(&b);
#else
   HYPRE_IJVectorCreate(hypre_MPI_COMM_WORLD, ilower, iupper,&b);
   HYPRE_IJVectorSetObjectType(b, HYPRE_PARCSR);
   HYPRE_IJVectorInitialize(b);
#endif

#ifdef HYPRE_FORTRAN
   HYPRE_IJVectorCreate(&temp_COMM, &ilower, &iupper, &x);
   HYPRE_IJVectorSetObjectType(&x, &hypre_type);
   HYPRE_IJVectorInitialize(&x);
#else
   HYPRE_IJVectorCreate(hypre_MPI_COMM_WORLD, ilower, iupper,&x);
   HYPRE_IJVectorSetObjectType(x, HYPRE_PARCSR);
   HYPRE_IJVectorInitialize(x);
#endif

   /* Set the rhs values to h^2 and the solution to zero */
   {
      double *rhs_values, *x_values;
      HYPRE_Int    *rows;

      rhs_values = calloc(local_size, sizeof(double));
      x_values = calloc(local_size, sizeof(double));
      rows = calloc(local_size, sizeof(HYPRE_Int));

      for (i=0; i<local_size; i++)
      {
         rhs_values[i] = h2;
         x_values[i] = 0.0;
         rows[i] = ilower + i;
      }
#ifdef HYPRE_FORTRAN
      HYPRE_IJVectorSetValues(&b, &local_size, &rows[0], &rhs_values[0]);
      HYPRE_IJVectorSetValues(&x, &local_size, &rows[0], &x_values[0]);
#else
      HYPRE_IJVectorSetValues(b, local_size, rows, rhs_values);
      HYPRE_IJVectorSetValues(x, local_size, rows, x_values);
#endif

      free(x_values);
      free(rhs_values);
      free(rows);
   }

#ifdef HYPRE_FORTRAN
   HYPRE_IJVectorAssemble(&b);
   HYPRE_IJVectorGetObject(&b, &par_b);
#else
   HYPRE_IJVectorAssemble(b);
   HYPRE_IJVectorGetObject(b, (void **) &par_b);
#endif

#ifdef HYPRE_FORTRAN
   HYPRE_IJVectorAssemble(&x);
   HYPRE_IJVectorGetObject(&x, &par_x);
#else
   HYPRE_IJVectorAssemble(x);
   HYPRE_IJVectorGetObject(x, (void **) &par_x);
#endif

   /* Choose a solver and solve the system */

   /* AMG */
   if (solver_id == 0)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;

      /* Create solver */
#ifdef HYPRE_FORTRAN
      HYPRE_BoomerAMGCreate(&solver);
#else
      HYPRE_BoomerAMGCreate(&solver);
#endif

      /* Set some parameters (See Reference Manual for more parameters) */
#ifdef HYPRE_FORTRAN
      HYPRE_BoomerAMGSetPrintLevel(&solver, &three);  /* print solve info + parameters */
      HYPRE_BoomerAMGSetCoarsenType(&solver, &six); /* Falgout coarsening */
      HYPRE_BoomerAMGSetRelaxType(&solver, &three);   /* G-S/Jacobi hybrid relaxation */
      HYPRE_BoomerAMGSetNumSweeps(&solver, &one);   /* Sweeeps on each level */
      HYPRE_BoomerAMGSetMaxLevels(&solver, &twenty);  /* maximum number of levels */
      HYPRE_BoomerAMGSetTol(&solver, &tol);      /* conv. tolerance */
#else
      HYPRE_BoomerAMGSetPrintLevel(solver, 3);  /* print solve info + parameters */
      HYPRE_BoomerAMGSetCoarsenType(solver, 6); /* Falgout coarsening */
      HYPRE_BoomerAMGSetRelaxType(solver, 3);   /* G-S/Jacobi hybrid relaxation */
      HYPRE_BoomerAMGSetNumSweeps(solver, 1);   /* Sweeeps on each level */
      HYPRE_BoomerAMGSetMaxLevels(solver, 20);  /* maximum number of levels */
      HYPRE_BoomerAMGSetTol(solver, 1e-7);      /* conv. tolerance */
#endif

      /* Now setup and solve! */
#ifdef HYPRE_FORTRAN
      HYPRE_BoomerAMGSetup(&solver, &parcsr_A, &par_b, &par_x);
      HYPRE_BoomerAMGSolve(&solver, &parcsr_A, &par_b, &par_x);
#else
      HYPRE_BoomerAMGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_BoomerAMGSolve(solver, parcsr_A, par_b, par_x);
#endif

      /* Run info - needed logging turned on */
#ifdef HYPRE_FORTRAN
      HYPRE_BoomerAMGGetNumIterations(&solver, &num_iterations);
      HYPRE_BoomerAMGGetFinalRelativeResidualNorm(&solver, &final_res_norm);
#else
      HYPRE_BoomerAMGGetNumIterations(solver, &num_iterations);
      HYPRE_BoomerAMGGetFinalRelativeResidualNorm(solver, &final_res_norm);
#endif
      if (myid == 0)
      {
         hypre_printf("\n");
         hypre_printf("Iterations = %d\n", num_iterations);
         hypre_printf("Final Relative Residual Norm = %e\n", final_res_norm);
         hypre_printf("\n");
      }

      /* Destroy solver */
#ifdef HYPRE_FORTRAN
      HYPRE_BoomerAMGDestroy(&solver);
#else
      HYPRE_BoomerAMGDestroy(solver);
#endif
   }
   /* PCG */
   else if (solver_id == 50)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;

      /* Create solver */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGCreate(&temp_COMM, &solver);
#else
      HYPRE_ParCSRPCGCreate(hypre_MPI_COMM_WORLD, &solver);
#endif

      /* Set some parameters (See Reference Manual for more parameters) */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGSetMaxIter(&solver, &thousand); /* max iterations */
      HYPRE_ParCSRPCGSetTol(&solver, &tol); /* conv. tolerance */
      HYPRE_ParCSRPCGSetTwoNorm(&solver, &one); /* use the two norm as the stopping criteria */
      HYPRE_ParCSRPCGSetPrintLevel(&solver, &two); /* prints out the iteration info */
#else
      HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */
      HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */
      HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */
      HYPRE_PCGSetPrintLevel(solver, 2); /* prints out the iteration info */
      HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */
#endif

      /* Now setup and solve! */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGSetup(&solver, &parcsr_A, &par_b, &par_x);
      HYPRE_ParCSRPCGSolve(&solver, &parcsr_A, &par_b, &par_x);
#else
      HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x);
#endif

      /* Run info - needed logging turned on */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGGetNumIterations(&solver, &num_iterations);
      HYPRE_ParCSRPCGGetFinalRelativeResidualNorm(&solver, &final_res_norm);
#else
      HYPRE_PCGGetNumIterations(solver, &num_iterations);
      HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm);
#endif
      if (myid == 0)
      {
         hypre_printf("\n");
         hypre_printf("Iterations = %d\n", num_iterations);
         hypre_printf("Final Relative Residual Norm = %e\n", final_res_norm);
         hypre_printf("\n");
      }

      /* Destroy solver */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGDestroy(&solver);
#else
      HYPRE_ParCSRPCGDestroy(solver);
#endif
   }
   /* PCG with AMG preconditioner */
   else if (solver_id == 1)
   {
      HYPRE_Int num_iterations;
      double final_res_norm;

      /* Create solver */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGCreate(&temp_COMM, &solver);
#else
      HYPRE_ParCSRPCGCreate(hypre_MPI_COMM_WORLD, &solver);
#endif

      /* Set some parameters (See Reference Manual for more parameters) */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGSetMaxIter(&solver, &thousand); /* max iterations */
      HYPRE_ParCSRPCGSetTol(&solver, &tol); /* conv. tolerance */
      HYPRE_ParCSRPCGSetTwoNorm(&solver, &one); /* use the two norm as the stopping criteria */
      HYPRE_ParCSRPCGSetPrintLevel(&solver, &two); /* print solve info */
#else
      HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */
      HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */
      HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */
      HYPRE_PCGSetPrintLevel(solver, 2); /* print solve info */
      HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */
#endif

      /* Now set up the AMG preconditioner and specify any parameters */
#ifdef HYPRE_FORTRAN
      HYPRE_BoomerAMGCreate(&precond);
      HYPRE_BoomerAMGSetPrintLevel(&precond, &one); /* print amg solution info*/
      HYPRE_BoomerAMGSetCoarsenType(&precond, &six);
      HYPRE_BoomerAMGSetRelaxType(&precond, &three);
      HYPRE_BoomerAMGSetNumSweeps(&precond, &one);
      HYPRE_BoomerAMGSetTol(&precond, &oo1);
#else
      HYPRE_BoomerAMGCreate(&precond);
      HYPRE_BoomerAMGSetPrintLevel(precond, 1); /* print amg solution info*/
      HYPRE_BoomerAMGSetCoarsenType(precond, 6);
      HYPRE_BoomerAMGSetRelaxType(precond, 3);
      HYPRE_BoomerAMGSetNumSweeps(precond, 1);
      HYPRE_BoomerAMGSetTol(precond, 1e-3);
#endif

      /* Set the PCG preconditioner */
#ifdef HYPRE_FORTRAN
      precond_id = 2;
      HYPRE_ParCSRPCGSetPrecond(&solver, &precond_id, &precond);
#else
      HYPRE_PCGSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSolve,
                          (HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSetup, precond);
#endif

      /* Now setup and solve! */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGSetup(&solver, &parcsr_A, &par_b, &par_x);
      HYPRE_ParCSRPCGSolve(&solver, &parcsr_A, &par_b, &par_x);
#else
      HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x);
#endif

      /* Run info - needed logging turned on */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGGetNumIterations(&solver, &num_iterations);
      HYPRE_ParCSRPCGGetFinalRelativeResidualNorm(&solver, &final_res_norm);
#else
      HYPRE_PCGGetNumIterations(solver, &num_iterations);
      HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm);
#endif
      if (myid == 0)
      {
         hypre_printf("\n");
         hypre_printf("Iterations = %d\n", num_iterations);
         hypre_printf("Final Relative Residual Norm = %e\n", final_res_norm);
         hypre_printf("\n");
      }

      /* Destroy solver and preconditioner */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGDestroy(&solver);
      HYPRE_BoomerAMGDestroy(&precond);
#else
      HYPRE_ParCSRPCGDestroy(solver);
      HYPRE_BoomerAMGDestroy(precond);
#endif
   }
   /* PCG with Parasails Preconditioner */
   else if (solver_id == 8)
   {
      HYPRE_Int    num_iterations;
      double final_res_norm;

      HYPRE_Int      sai_max_levels = 1;
      double   sai_threshold = 0.1;
      double   sai_filter = 0.05;
      HYPRE_Int      sai_sym = 1;

      /* Create solver */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGCreate(&temp_COMM, &solver);
#else
      HYPRE_ParCSRPCGCreate(hypre_MPI_COMM_WORLD, &solver);
#endif

      /* Set some parameters (See Reference Manual for more parameters) */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGSetMaxIter(&solver, &thousand); /* max iterations */
      HYPRE_ParCSRPCGSetTol(&solver, &tol); /* conv. tolerance */
      HYPRE_ParCSRPCGSetTwoNorm(&solver, &one); /* use the two norm as the stopping criteria */
      HYPRE_ParCSRPCGSetPrintLevel(&solver, &two); /* print solve info */
#else
      HYPRE_PCGSetMaxIter(solver, 1000); /* max iterations */
      HYPRE_PCGSetTol(solver, 1e-7); /* conv. tolerance */
      HYPRE_PCGSetTwoNorm(solver, 1); /* use the two norm as the stopping criteria */
      HYPRE_PCGSetPrintLevel(solver, 2); /* print solve info */
      HYPRE_PCGSetLogging(solver, 1); /* needed to get run info later */
#endif

      /* Now set up the ParaSails preconditioner and specify any parameters */
#ifdef HYPRE_FORTRAN
      HYPRE_ParaSailsCreate(&temp_COMM, &precond);
#else
      HYPRE_ParaSailsCreate(hypre_MPI_COMM_WORLD, &precond);
#endif

      /* Set some parameters (See Reference Manual for more parameters) */
#ifdef HYPRE_FORTRAN
      HYPRE_ParaSailsSetParams(&precond, &sai_threshold, &sai_max_levels);
      HYPRE_ParaSailsSetFilter(&precond, &sai_filter);
      HYPRE_ParaSailsSetSym(&precond, &sai_sym);
      HYPRE_ParaSailsSetLogging(&precond, &three);
#else
      HYPRE_ParaSailsSetParams(precond, sai_threshold, sai_max_levels);
      HYPRE_ParaSailsSetFilter(precond, sai_filter);
      HYPRE_ParaSailsSetSym(precond, sai_sym);
      HYPRE_ParaSailsSetLogging(precond, 3);
#endif

      /* Set the PCG preconditioner */
#ifdef HYPRE_FORTRAN
      precond_id = 4;
      HYPRE_ParCSRPCGSetPrecond(&solver, &precond_id, &precond);
#else
      HYPRE_PCGSetPrecond(solver, (HYPRE_PtrToSolverFcn) HYPRE_ParaSailsSolve,
                          (HYPRE_PtrToSolverFcn) HYPRE_ParaSailsSetup, precond);
#endif

      /* Now setup and solve! */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGSetup(&solver, &parcsr_A, &par_b, &par_x);
      HYPRE_ParCSRPCGSolve(&solver, &parcsr_A, &par_b, &par_x);
#else
      HYPRE_ParCSRPCGSetup(solver, parcsr_A, par_b, par_x);
      HYPRE_ParCSRPCGSolve(solver, parcsr_A, par_b, par_x);
#endif


      /* Run info - needed logging turned on */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGGetNumIterations(&solver, &num_iterations);
      HYPRE_ParCSRPCGGetFinalRelativeResidualNorm(&solver, &final_res_norm);
#else
      HYPRE_PCGGetNumIterations(solver, &num_iterations);
      HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm);
#endif
      if (myid == 0)
      {
         hypre_printf("\n");
         hypre_printf("Iterations = %d\n", num_iterations);
         hypre_printf("Final Relative Residual Norm = %e\n", final_res_norm);
         hypre_printf("\n");
      }

      /* Destory solver and preconditioner */
#ifdef HYPRE_FORTRAN
      HYPRE_ParCSRPCGDestroy(&solver);
      HYPRE_ParaSailsDestroy(&precond);
#else
      HYPRE_ParCSRPCGDestroy(solver);
      HYPRE_ParaSailsDestroy(precond);
#endif
   }
   else
   {
      if (myid ==0) hypre_printf("Invalid solver id specified.\n");
   }

   /* Print the solution */
#ifdef HYPRE_FORTRAN
   if (print_solution)
      HYPRE_IJVectorPrint(&x, "ij.out.x");
#else
   if (print_solution)
      HYPRE_IJVectorPrint(x, "ij.out.x");
#endif

   /* Clean up */
#ifdef HYPRE_FORTRAN
   HYPRE_IJMatrixDestroy(&A);
   HYPRE_IJVectorDestroy(&b);
   HYPRE_IJVectorDestroy(&x);
#else
   HYPRE_IJMatrixDestroy(A);
   HYPRE_IJVectorDestroy(b);
   HYPRE_IJVectorDestroy(x);
#endif

   /* Finalize MPI*/
   hypre_MPI_Finalize();

   return(0);
}
Пример #13
0
void HypreSolver3D::build_A()
{

	HYPRE_IJMatrixCreate(MPI_COMM_WORLD, ilower, iupper, ilower, iupper, &A);
	HYPRE_IJMatrixSetObjectType(A, HYPRE_PARCSR);
	HYPRE_IJMatrixInitialize(A);

	const int N12  = N1*N2;
	const int N012 = N0*N1*N2;

	int nnz;
	double values[7];
	int cols[7];

	int i;
	for(int j=ilower; j<=iupper; j++)
	{
		nnz = 0;
		i = j%N12;//*((int)(j/(N12)));

		// North
		if ((i-N2)>=0)
		{
			cols[nnz] = j-N2;
			values[nnz] = -1.0;
			nnz++;
		}

		// Left
		if (i%N2)
		{
			cols[nnz] = j-1;
			values[nnz] = -1.0;
			nnz++;
		}

		// Center
		cols[nnz] = j;
		values[nnz] = 6.0;
		nnz++;

		// Right
		if ((i+1)%N2)
		{
			cols[nnz] = j+1;
			values[nnz] = -1.0;
			nnz++;
		}

		// South
		if ((i+N2)<N12)
		{
			cols[nnz] = j+N2;
			values[nnz] = -1.0;
			nnz++;
		}

		// Top
		if ((j+N12)<N012)
		{
			cols[nnz] = j+N12;
			values[nnz] = -1.0;
			nnz++;
		}

		// Bottom
		if ((j-N12)>=0)
		{
			cols[nnz] = j-N12;
			values[nnz] = -1.0;
			nnz++;
		}

		HYPRE_IJMatrixSetValues(A, 1, &nnz, &j, cols, values);
	}

	HYPRE_IJMatrixAssemble(A);
	HYPRE_IJMatrixGetObject(A, (void**) &parcsr_A);

}	
Пример #14
0
int main(int argc, char *argv[])
{
  int ierr = 0, i, forierr = 0;
#ifdef EPETRA_MPI

  // Initialize MPI

  MPI_Init(&argc,&argv);
  int rank; // My process ID

  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  Epetra_MpiComm Comm( MPI_COMM_WORLD );

#else

  int rank = 0;
  Epetra_SerialComm Comm;

#endif

  bool verbose = false;

  // Check if we should print results to standard out
  if (argc>1) if (argv[1][0]=='-' && argv[1][1]=='v') verbose = true;

  int verbose_int = verbose ? 1 : 0;
  Comm.Broadcast(&verbose_int, 1, 0);
  verbose = verbose_int==1 ? true : false;


  //  char tmp;
  //  if (rank==0) cout << "Press any key to continue..."<< endl;
  //  if (rank==0) cin >> tmp;
  //  Comm.Barrier();

  Comm.SetTracebackMode(0); // This should shut down any error traceback reporting
  int MyPID = Comm.MyPID();
  int NumProc = Comm.NumProc();

  if(verbose && MyPID==0)
    cout << Epetra_Version() << endl << endl;

  if (verbose) cout << "Processor "<<MyPID<<" of "<< NumProc
		    << " is alive."<<endl;

  // Redefine verbose to only print on PE 0
  if(verbose && rank!=0) 
		verbose = false;

  int NumMyEquations = 10000;
  int NumGlobalEquations = (NumMyEquations * NumProc) + EPETRA_MIN(NumProc,3);
  if(MyPID < 3) 
    NumMyEquations++;

  // Construct a Map that puts approximately the same Number of equations on each processor

  Epetra_Map Map(NumGlobalEquations, NumMyEquations, 0, Comm);
  
  // Get update list and number of local equations from newly created Map
  vector<int> MyGlobalElements(Map.NumMyElements());
  Map.MyGlobalElements(&MyGlobalElements[0]);

  // Create an integer vector NumNz that is used to build the Petra Matrix.
  // NumNz[i] is the Number of OFF-DIAGONAL term for the ith global equation on this processor

  vector<int> NumNz(NumMyEquations);

  // We are building a tridiagonal matrix where each row has (-1 2 -1)
  // So we need 2 off-diagonal terms (except for the first and last equation)

  for(i = 0; i < NumMyEquations; i++)
    if((MyGlobalElements[i] == 0) || (MyGlobalElements[i] == NumGlobalEquations - 1))
      NumNz[i] = 1;
    else
      NumNz[i] = 2;

  // Create a Epetra_Matrix

  Epetra_CrsMatrix A(Copy, Map, &NumNz[0]);
  EPETRA_TEST_ERR(A.IndicesAreGlobal(),ierr);
  EPETRA_TEST_ERR(A.IndicesAreLocal(),ierr);
  
  // Add  rows one-at-a-time
  // Need some vectors to help
  // Off diagonal Values will always be -1


  vector<double> Values(2);
  Values[0] = -1.0; 
	Values[1] = -1.0;
	vector<int> Indices(2);
  double two = 2.0;
  int NumEntries;

  forierr = 0;
  for(i = 0; i < NumMyEquations; i++) {
    if(MyGlobalElements[i] == 0) {
			Indices[0] = 1;
			NumEntries = 1;
		}
    else if (MyGlobalElements[i] == NumGlobalEquations-1) {
			Indices[0] = NumGlobalEquations-2;
			NumEntries = 1;
		}
    else {
			Indices[0] = MyGlobalElements[i]-1;
			Indices[1] = MyGlobalElements[i]+1;
			NumEntries = 2;
		}
		forierr += !(A.InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0])==0);
		forierr += !(A.InsertGlobalValues(MyGlobalElements[i], 1, &two, &MyGlobalElements[i])>0); // Put in the diagonal entry
  }
  EPETRA_TEST_ERR(forierr,ierr);

  // Finish up
  A.FillComplete();
  A.OptimizeStorage();

  HYPRE_IJMatrix Matrix;
  int ilower = Map.MinMyGID();
  int iupper = Map.MaxMyGID();

  //printf("Proc[%d], ilower = %d, iupper = %d.\n", MyPID, ilower, iupper);
  HYPRE_IJMatrixCreate(MPI_COMM_WORLD, ilower, iupper, ilower, iupper, &Matrix);
  HYPRE_IJMatrixSetObjectType(Matrix, HYPRE_PARCSR);
  HYPRE_IJMatrixInitialize(Matrix);
  
  for(i = 0; i < A.NumMyRows(); i++){
    int numElements;
    A.NumMyRowEntries(i, numElements);
    vector<int> my_indices; my_indices.resize(numElements);
    vector<double> my_values; my_values.resize(numElements);
    int numEntries;
    A.ExtractMyRowCopy(i, numElements, numEntries, &my_values[0], &my_indices[0]);
    for(int j = 0; j < numEntries; j++) {
      my_indices[j] = A.GCID(my_indices[j]);
    }
    int GlobalRow[1];
    GlobalRow[0] = A.GRID(i);
    HYPRE_IJMatrixSetValues(Matrix, 1, &numEntries, GlobalRow, &my_indices[0], &my_values[0]);
  } 
  HYPRE_IJMatrixAssemble(Matrix);

  EpetraExt_HypreIJMatrix JadA(Matrix);
 
  JadA.SetMaps(JadA.RowMatrixRowMap(), A.RowMatrixColMap());
  // Create vectors for Power method

  Epetra_Vector q(Map);
  Epetra_Vector z(Map); z.Random();
  Epetra_Vector resid(Map);

  Epetra_Flops flopcounter;
  A.SetFlopCounter(flopcounter);
  q.SetFlopCounter(A);
  z.SetFlopCounter(A);
  resid.SetFlopCounter(A);
  JadA.SetFlopCounter(A);

  if (verbose) cout << "=======================================" << endl
		    << "Testing Jad using CrsMatrix as input..." << endl
		    << "=======================================" << endl;

  A.ResetFlops();
  powerMethodTests(A, JadA, Map, q, z, resid, verbose);

#ifdef EPETRA_MPI
  MPI_Finalize() ;
#endif

return ierr ;
}