Пример #1
0
static void
ar9285WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	freqIndex = 2;
	if (IEEE80211_IS_CHAN_HT40(chan))
		modesIndex = 3;
	else if (IEEE80211_IS_CHAN_108G(chan))
		modesIndex = 5;
	else
		modesIndex = 4;

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes,
	    modesIndex, regWrites);
	if (AR_SREV_KITE_12_OR_LATER(ah)) {
		regWrites = ath_hal_ini_write(ah, &AH9285(ah)->ah_ini_txgain,
		    modesIndex, regWrites);
	}
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common,
	    1, regWrites);
}
Пример #2
0
/*
 * ADC GAIN/DC offset calibration is for calibrating two ADCs that
 * are acting as one by interleaving incoming symbols. This isn't
 * relevant for 2.4GHz 20MHz wide modes because, as far as I can tell,
 * the secondary ADC is never enabled. It is enabled however for
 * 5GHz modes.
 *
 * It hasn't been confirmed whether doing this calibration is needed
 * at all in the above modes and/or whether it's actually harmful.
 * So for now, let's leave it enabled and just remember to get
 * confirmation that it needs to be clarified.
 *
 * See US Patent No: US 7,541,952 B1:
 *  " Method and Apparatus for Offset and Gain Compensation for
 *    Analog-to-Digital Converters."
 */
static OS_INLINE HAL_BOOL
ar5416IsCalSupp(struct ath_hal *ah, const struct ieee80211_channel *chan,
	HAL_CAL_TYPE calType) 
{
	struct ar5416PerCal *cal = &AH5416(ah)->ah_cal;

	switch (calType & cal->suppCals) {
	case IQ_MISMATCH_CAL:
		/* Run IQ Mismatch for non-CCK only */
		return !IEEE80211_IS_CHAN_B(chan);
	case ADC_GAIN_CAL:
	case ADC_DC_CAL:
		/*
		 * Run ADC Gain Cal for either 5ghz any or 2ghz HT40.
		 *
		 * Don't run ADC calibrations for 5ghz fast clock mode
		 * in HT20 - only one ADC is used.
		 */
		if (IEEE80211_IS_CHAN_HT20(chan) &&
		    (IS_5GHZ_FAST_CLOCK_EN(ah, chan)))
			return AH_FALSE;
		if (IEEE80211_IS_CHAN_5GHZ(chan))
			return AH_TRUE;
		if (IEEE80211_IS_CHAN_HT40(chan))
			return AH_TRUE;
		return AH_FALSE;
	}
	return AH_FALSE;
}
Пример #3
0
static void
r12a_tx_set_sgi(struct rtwn_softc *sc, void *buf, struct ieee80211_node *ni)
{
	struct r12a_tx_desc *txd = (struct r12a_tx_desc *)buf;
	struct ieee80211vap *vap = ni->ni_vap;

	if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) &&	/* HT20 */
	    (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20))
		txd->txdw5 |= htole32(R12A_TXDW5_DATA_SHORT);
	else if (ni->ni_chan != IEEE80211_CHAN_ANYC &&		/* HT40 */
	    IEEE80211_IS_CHAN_HT40(ni->ni_chan) &&
	    (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) &&
	    (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40))
		txd->txdw5 |= htole32(R12A_TXDW5_DATA_SHORT);
}
Пример #4
0
/*
 * Enable radar check.  Return 1 if the driver should
 * enable radar PHY errors, or 0 if not.
 */
int
ath_dfs_radar_enable(struct ath_softc *sc, struct ieee80211_channel *chan)
{
#if 0
    HAL_PHYERR_PARAM pe;

    /* Check if the hardware supports radar reporting */
    /* XXX TODO: migrate HAL_CAP_RADAR/HAL_CAP_AR to somewhere public! */
    if (ath_hal_getcapability(sc->sc_ah,
                              HAL_CAP_PHYDIAG, 0, NULL) != HAL_OK)
        return (0);

    /* Check if the current channel is radar-enabled */
    if (! IEEE80211_IS_CHAN_DFS(chan))
        return (0);

    /* Fetch the default parameters */
    memset(&pe, '\0', sizeof(pe));
    if (! ath_hal_getdfsdefaultthresh(sc->sc_ah, &pe))
        return (0);

    /* Enable radar PHY error reporting */
    sc->sc_dodfs = 1;

    /* Tell the hardware to enable radar reporting */
    pe.pe_enabled = 1;

    /* Flip on extension channel events only if doing HT40 */
    if (IEEE80211_IS_CHAN_HT40(chan))
        pe.pe_extchannel = 1;
    else
        pe.pe_extchannel = 0;

    ath_hal_enabledfs(sc->sc_ah, &pe);

    /*
     * Disable strong signal fast diversity - needed for
     * AR5212 and similar PHYs for reliable short pulse
     * duration.
     */
    (void) ath_hal_setcapability(sc->sc_ah, HAL_CAP_DIVERSITY, 2, 0, NULL);

    return (1);
#else
    return (0);
#endif
}
Пример #5
0
static void
r12a_tx_set_ht40(struct rtwn_softc *sc, void *buf, struct ieee80211_node *ni)
{
	struct r12a_tx_desc *txd = (struct r12a_tx_desc *)buf;

	/* XXX 80 Mhz */
	if (ni->ni_chan != IEEE80211_CHAN_ANYC &&
	    IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
		int prim_chan;

		prim_chan = r12a_get_primary_channel(sc, ni->ni_chan);
		txd->txdw5 |= htole32(SM(R12A_TXDW5_DATA_BW,
		    R12A_TXDW5_DATA_BW40));
		txd->txdw5 |= htole32(SM(R12A_TXDW5_DATA_PRIM_CHAN,
		    prim_chan));
	}
}
Пример #6
0
void
r92c_set_chan(struct rtwn_softc *sc, struct ieee80211_channel *c)
{
	struct r92c_softc *rs = sc->sc_priv;
	u_int chan;
	int i;

	chan = rtwn_chan2centieee(c);

	/* Set Tx power for this new channel. */
	r92c_set_txpower(sc, c);

	for (i = 0; i < sc->nrxchains; i++) {
		rtwn_rf_write(sc, i, R92C_RF_CHNLBW,
		    RW(rs->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
	}
	if (IEEE80211_IS_CHAN_HT40(c))
		r92c_set_bw40(sc, chan, IEEE80211_IS_CHAN_HT40U(c));
	else
		rtwn_r92c_set_bw20(sc, chan);
}
Пример #7
0
HAL_BOOL
ar9300_reset_freebsd(struct ath_hal *ah, HAL_OPMODE opmode,
    struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
    HAL_STATUS *status)
{
	HAL_BOOL r;
	HAL_HT_MACMODE macmode;
	struct ath_hal_private  *ap  = AH_PRIVATE(ah);

	macmode =
	    IEEE80211_IS_CHAN_HT40(chan) ?
	        HAL_HT_MACMODE_2040 : HAL_HT_MACMODE_20;

	r = ar9300_reset(ah, opmode, chan, macmode,
	    ap->ah_caps.halTxChainMask,
	    ap->ah_caps.halRxChainMask,
	    HAL_HT_EXTPROTSPACING_20, /* always 20Mhz channel spacing */
	    bChannelChange,
	    status,
	    AH_FALSE);       /* XXX should really extend ath_hal_reset() */

	return (r);
}
Пример #8
0
/* XXX recheck */
void
r92c_get_txpower(struct rtwn_softc *sc, int chain,
    struct ieee80211_channel *c, uint16_t power[RTWN_RIDX_COUNT])
{
	struct r92c_softc *rs = sc->sc_priv;
	struct rtwn_r92c_txpwr *rt = rs->rs_txpwr;
	const struct rtwn_r92c_txagc *base = rs->rs_txagc;
	uint8_t ofdmpow, htpow, diff, max;
	int max_mcs, ridx, group;

	/* Determine channel group. */
	group = r92c_get_power_group(sc, c);
	if (group == -1) {	/* shouldn't happen */
		device_printf(sc->sc_dev, "%s: incorrect channel\n", __func__);
		return;
	}

	/* XXX net80211 regulatory */

	max_mcs = RTWN_RIDX_MCS(sc->ntxchains * 8 - 1);
	KASSERT(max_mcs <= RTWN_RIDX_COUNT, ("increase ridx limit\n"));

	memset(power, 0, max_mcs * sizeof(power[0]));
	if (rs->regulatory == 0) {
		for (ridx = RTWN_RIDX_CCK1; ridx <= RTWN_RIDX_CCK11; ridx++)
			power[ridx] = base[chain].pwr[0][ridx];
	}
	for (ridx = RTWN_RIDX_OFDM6; ridx < RTWN_RIDX_COUNT; ridx++) {
		if (rs->regulatory == 3) {
			power[ridx] = base[chain].pwr[0][ridx];
			/* Apply vendor limits. */
			if (IEEE80211_IS_CHAN_HT40(c))
				max = rt->ht40_max_pwr[chain][group];
			else
				max = rt->ht20_max_pwr[chain][group];
			if (power[ridx] > max)
				power[ridx] = max;
		} else if (rs->regulatory == 1) {
			if (!IEEE80211_IS_CHAN_HT40(c))
				power[ridx] = base[chain].pwr[group][ridx];
		} else if (rs->regulatory != 2)
			power[ridx] = base[chain].pwr[0][ridx];
	}

	/* Compute per-CCK rate Tx power. */
	for (ridx = RTWN_RIDX_CCK1; ridx <= RTWN_RIDX_CCK11; ridx++)
		power[ridx] += rt->cck_tx_pwr[chain][group];

	htpow = rt->ht40_1s_tx_pwr[chain][group];
	if (sc->ntxchains > 1) {
		/* Apply reduction for 2 spatial streams. */
		diff = rt->ht40_2s_tx_pwr_diff[chain][group];
		htpow = (htpow > diff) ? htpow - diff : 0;
	}

	/* Compute per-OFDM rate Tx power. */
	diff = rt->ofdm_tx_pwr_diff[chain][group];
	ofdmpow = htpow + diff;	/* HT->OFDM correction. */
	for (ridx = RTWN_RIDX_OFDM6; ridx <= RTWN_RIDX_OFDM54; ridx++)
		power[ridx] += ofdmpow;

	/* Compute per-MCS Tx power. */
	if (!IEEE80211_IS_CHAN_HT40(c)) {
		diff = rt->ht20_tx_pwr_diff[chain][group];
		htpow += diff;	/* HT40->HT20 correction. */
	}
	for (ridx = RTWN_RIDX_MCS(0); ridx <= max_mcs; ridx++)
		power[ridx] += htpow;

	/* Apply max limit. */
	for (ridx = RTWN_RIDX_CCK1; ridx <= max_mcs; ridx++) {
		if (power[ridx] > R92C_MAX_TX_PWR)
			power[ridx] = R92C_MAX_TX_PWR;
	}
}
Пример #9
0
/*
 * Fill in 802.11 available channel set, mark
 * all available channels as active, and pick
 * a default channel if not already specified.
 */
static void
ieee80211_chan_init(struct ieee80211com *ic)
{
#define	DEFAULTRATES(m, def) do { \
	if (ic->ic_sup_rates[m].rs_nrates == 0) \
		ic->ic_sup_rates[m] = def; \
} while (0)
	struct ieee80211_channel *c;
	int i;

	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
		("invalid number of channels specified: %u", ic->ic_nchans));
	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
	for (i = 0; i < ic->ic_nchans; i++) {
		c = &ic->ic_channels[i];
		KASSERT(c->ic_flags != 0, ("channel with no flags"));
		/*
		 * Help drivers that work only with frequencies by filling
		 * in IEEE channel #'s if not already calculated.  Note this
		 * mimics similar work done in ieee80211_setregdomain when
		 * changing regulatory state.
		 */
		if (c->ic_ieee == 0)
			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
			    c->ic_flags);
		/* default max tx power to max regulatory */
		if (c->ic_maxpower == 0)
			c->ic_maxpower = 2*c->ic_maxregpower;
		setbit(ic->ic_chan_avail, c->ic_ieee);
		/*
		 * Identify mode capabilities.
		 */
		if (IEEE80211_IS_CHAN_A(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
		if (IEEE80211_IS_CHAN_B(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
		if (IEEE80211_IS_CHAN_ANYG(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
		if (IEEE80211_IS_CHAN_FHSS(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
		if (IEEE80211_IS_CHAN_108A(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
		if (IEEE80211_IS_CHAN_108G(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
		if (IEEE80211_IS_CHAN_ST(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
		if (IEEE80211_IS_CHAN_HALF(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
		if (IEEE80211_IS_CHAN_QUARTER(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
		if (IEEE80211_IS_CHAN_HTA(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
		if (IEEE80211_IS_CHAN_HTG(c))
			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
	}
	/* initialize candidate channels to all available */
	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
		sizeof(ic->ic_chan_avail));

	/* sort channel table to allow lookup optimizations */
	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);

	/* invalidate any previous state */
	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
	ic->ic_prevchan = NULL;
	ic->ic_csa_newchan = NULL;
	/* arbitrarily pick the first channel */
	ic->ic_curchan = &ic->ic_channels[0];
	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);

	/* fillin well-known rate sets if driver has not specified */
	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);

	/*
	 * Set auto mode to reset active channel state and any desired channel.
	 */
	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
#undef DEFAULTRATES
}
Пример #10
0
/*
 * rt2872_rf_set_chan
 */
static void 
rt2872_rf_set_chan(struct rt2860_softc *sc,
	struct ieee80211_channel *c)
{
	struct ifnet *ifp;
	struct ieee80211com *ic;
	const struct rt2860_rf_prog *prog;
	uint32_t r1, r2, r3, r4;
	uint32_t r6, r7, r12, r13, r23, r24;
	int8_t txpow1, txpow2;
	int i, chan;

	ifp = sc->ifp;
	ic = ifp->if_l2com;
	prog = rt2860_rf_2850;

	/* get central channel position */

	chan = ieee80211_chan2ieee(ic, c);

	if (IEEE80211_IS_CHAN_HT40U(c))
		chan += 2;
	else if (IEEE80211_IS_CHAN_HT40D(c))
		chan -= 2;

	RT2860_DPRINTF(sc, RT2860_DEBUG_CHAN,
		"%s: RF set channel: channel=%u, HT%s%s\n",
		device_get_nameunit(sc->dev),
		ieee80211_chan2ieee(ic, c),
		!IEEE80211_IS_CHAN_HT(c) ? " disabled" :
			IEEE80211_IS_CHAN_HT20(c) ? "20":
				IEEE80211_IS_CHAN_HT40U(c) ? "40U" : "40D",
		(ic->ic_flags & IEEE80211_F_SCAN) ? ", scanning" : "");

	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
		return;

	for (i = 0; prog[i].chan != chan; i++);

	r1 = prog[i].r1;
	r2 = prog[i].r2;
	r3 = prog[i].r3;
	r4 = prog[i].r4;

	txpow1 = sc->txpow1[i];
	txpow2 = sc->txpow2[i];

	for (i = 0; rt2860_rf_fi3020[i].channel != chan; i++);

	/* Programm channel parameters */
	r2 = rt2860_rf_fi3020[i].n;
	rt2860_io_rf_write(sc, 2 , r2 );
	r3 = rt2860_rf_fi3020[i].k;
	rt2860_io_rf_write(sc, 3 , r3 );

	r6 = (rt3052_rf_default[6] & 0xFC) | (rt2860_rf_fi3020[i].r & 0x03);
	rt2860_io_rf_write(sc, 6 , r6 );

	/* Set Tx Power */
	r12 = (rt3052_rf_default[12] & 0xE0) | (txpow1 & 0x1f);
	rt2860_io_rf_write(sc, 12, r12);

	/* Set Tx1 Power */
	r13 = (rt3052_rf_default[13] & 0xE0) | (txpow2 & 0x1f);
	rt2860_io_rf_write(sc, 13, r13);

	/* Set RF offset */
	r23 = (rt3052_rf_default[23] & 0x80) | (sc->rf_freq_off);
	rt2860_io_rf_write(sc, 23, r23);

	/* Set BW */
	r24 = (rt3052_rf_default[24] & 0xDF);
	if (!(ic->ic_flags & IEEE80211_F_SCAN) && IEEE80211_IS_CHAN_HT40(c))
	    r24 |= 0x20;
	rt2860_io_rf_write(sc, 24, r24);

	/* Enable RF tuning */
	r7 = (rt3052_rf_default[7]) | 1;
	rt2860_io_rf_write(sc, 7 , r7 );

	/* Antenna */
	r1 = (rt3052_rf_default[1] & 0xab) | ((sc->nrxpath == 1)?0x10:0) |
	    ((sc->ntxpath == 1)?0x20:0);
	rt2860_io_rf_write(sc, 1 , r1 );

	DELAY(200);

	rt2860_rf_select_chan_group(sc, c);

	DELAY(1000);
}
Пример #11
0
static void
ar9280WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;
	int i;
	const HAL_INI_ARRAY *ia;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex = 2;
		if (IEEE80211_IS_CHAN_HT40(chan))
			modesIndex = 3;
		else if (IEEE80211_IS_CHAN_108G(chan))
			modesIndex = 5;
		else
			modesIndex = 4;
	} else {
		freqIndex = 1;
		if (IEEE80211_IS_CHAN_HT40(chan) ||
		    IEEE80211_IS_CHAN_TURBO(chan))
			modesIndex = 2;
		else
			modesIndex = 1;
	}

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);

	/*
	 * This is unwound because at the moment, there's a requirement
	 * for Merlin (and later, perhaps) to have a specific bit fixed
	 * in the AR_AN_TOP2 register before writing it.
	 */
	ia = &AH5212(ah)->ah_ini_modes;
#if 0
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes,
	    modesIndex, regWrites);
#endif
	HALASSERT(modesIndex < ia->cols);
	for (i = 0; i < ia->rows; i++) {
		uint32_t reg = HAL_INI_VAL(ia, i, 0);
		uint32_t val = HAL_INI_VAL(ia, i, modesIndex);

		if (reg == AR_AN_TOP2 && AH5416(ah)->ah_need_an_top2_fixup)
			val &= ~AR_AN_TOP2_PWDCLKIND;

		OS_REG_WRITE(ah, reg, val);

		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
		if (reg >= 0x7800 && reg < 0x7900)
			OS_DELAY(100);

		DMA_YIELD(regWrites);
	}

	if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
		    modesIndex, regWrites);
		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
		    modesIndex, regWrites);
	}
	/* XXX Merlin 100us delay for shift registers */
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common,
	    1, regWrites);

	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
		/* 5GHz channels w/ Fast Clock use different modal values */
		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
		    modesIndex, regWrites);
	}
}
Пример #12
0
void
ar9280SpurMitigate(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
    static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
                AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
    static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
                AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
    static int inc[4] = { 0, 100, 0, 0 };

    int bb_spur = AR_NO_SPUR;
    int freq;
    int bin, cur_bin;
    int bb_spur_off, spur_subchannel_sd;
    int spur_freq_sd;
    int spur_delta_phase;
    int denominator;
    int upper, lower, cur_vit_mask;
    int tmp, newVal;
    int i;
    CHAN_CENTERS centers;

    int8_t mask_m[123];
    int8_t mask_p[123];
    int8_t mask_amt;
    int tmp_mask;
    int cur_bb_spur;
    HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);

    OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
    OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);

    ar5416GetChannelCenters(ah, chan, &centers);
    freq = centers.synth_center;

    /*
     * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
     * otherwise spur is out-of-band and can be ignored.
     */
    for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
        cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
        /* Get actual spur freq in MHz from EEPROM read value */ 
        if (is2GHz) {
            cur_bb_spur =  (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
        } else {
            cur_bb_spur =  (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
        }

        if (AR_NO_SPUR == cur_bb_spur)
            break;
        cur_bb_spur = cur_bb_spur - freq;

        if (IEEE80211_IS_CHAN_HT40(chan)) {
            if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && 
                (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
                bb_spur = cur_bb_spur;
                break;
            }
        } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
                   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
            bb_spur = cur_bb_spur;
            break;
        }
    }

    if (AR_NO_SPUR == bb_spur) {
#if 1
        /*
         * MRC CCK can interfere with beacon detection and cause deaf/mute.
         * Disable MRC CCK for now.
         */
        OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
#else
        /* Enable MRC CCK if no spur is found in this channel. */
        OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
#endif
        return;
    } else {
        /* 
         * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
         * is found in this channel.
         */
        OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
    }

    bin = bb_spur * 320;

    tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));

    newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
        AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
        AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
        AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
    OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);

    newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
        AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
        AR_PHY_SPUR_REG_MASK_RATE_SELECT |
        AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
        SM(AR5416_SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
    OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);

    /* Pick control or extn channel to cancel the spur */
    if (IEEE80211_IS_CHAN_HT40(chan)) {
        if (bb_spur < 0) {
            spur_subchannel_sd = 1;
            bb_spur_off = bb_spur + 10;
        } else {
            spur_subchannel_sd = 0;
            bb_spur_off = bb_spur - 10;
        }
    } else {
        spur_subchannel_sd = 0;
        bb_spur_off = bb_spur;
    }

    /*
     * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
     * /80 for dyn2040.
     */
    if (IEEE80211_IS_CHAN_HT40(chan))
        spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;    
    else
        spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;

    /*
     * in 11A mode the denominator of spur_freq_sd should be 40 and
     * it should be 44 in 11G
     */
    denominator = IEEE80211_IS_CHAN_2GHZ(chan) ? 44 : 40;
    spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;

    newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
        SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
        SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
    OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);

    /* Choose to cancel between control and extension channels */
    newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
    OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);

    /*
     * ============================================
     * Set Pilot and Channel Masks
     *
     * pilot mask 1 [31:0] = +6..-26, no 0 bin
     * pilot mask 2 [19:0] = +26..+7
     *
     * channel mask 1 [31:0] = +6..-26, no 0 bin
     * channel mask 2 [19:0] = +26..+7
     */
    cur_bin = -6000;
    upper = bin + 100;
    lower = bin - 100;

    for (i = 0; i < 4; i++) {
        int pilot_mask = 0;
        int chan_mask  = 0;
        int bp         = 0;
        for (bp = 0; bp < 30; bp++) {
            if ((cur_bin > lower) && (cur_bin < upper)) {
                pilot_mask = pilot_mask | 0x1 << bp;
                chan_mask  = chan_mask | 0x1 << bp;
            }
            cur_bin += 100;
        }
        cur_bin += inc[i];
        OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
        OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
    }

    /* =================================================
     * viterbi mask 1 based on channel magnitude
     * four levels 0-3
     *  - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
     *      [1 2 2 1] for -9.6 or [1 2 1] for +16
     *  - enable_mask_ppm, all bins move with freq
     *
     *  - mask_select,    8 bits for rates (reg 67,0x990c)
     *  - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
     *      choose which mask to use mask or mask2
     */

    /*
     * viterbi mask 2  2nd set for per data rate puncturing
     * four levels 0-3
     *  - mask_select, 8 bits for rates (reg 67)
     *  - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
     *      [1 2 2 1] for -9.6 or [1 2 1] for +16
     */
    cur_vit_mask = 6100;
    upper        = bin + 120;
    lower        = bin - 120;

    for (i = 0; i < 123; i++) {
        if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
            if ((abs(cur_vit_mask - bin)) < 75) {
                mask_amt = 1;
            } else {
                mask_amt = 0;
            }
            if (cur_vit_mask < 0) {
                mask_m[abs(cur_vit_mask / 100)] = mask_amt;
            } else {
                mask_p[cur_vit_mask / 100] = mask_amt;
            }
        }
        cur_vit_mask -= 100;
    }

    tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
          | (mask_m[48] << 26) | (mask_m[49] << 24)
          | (mask_m[50] << 22) | (mask_m[51] << 20)
          | (mask_m[52] << 18) | (mask_m[53] << 16)
          | (mask_m[54] << 14) | (mask_m[55] << 12)
          | (mask_m[56] << 10) | (mask_m[57] <<  8)
          | (mask_m[58] <<  6) | (mask_m[59] <<  4)
          | (mask_m[60] <<  2) | (mask_m[61] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);

    tmp_mask =             (mask_m[31] << 28)
          | (mask_m[32] << 26) | (mask_m[33] << 24)
          | (mask_m[34] << 22) | (mask_m[35] << 20)
          | (mask_m[36] << 18) | (mask_m[37] << 16)
          | (mask_m[48] << 14) | (mask_m[39] << 12)
          | (mask_m[40] << 10) | (mask_m[41] <<  8)
          | (mask_m[42] <<  6) | (mask_m[43] <<  4)
          | (mask_m[44] <<  2) | (mask_m[45] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);

    tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
          | (mask_m[18] << 26) | (mask_m[18] << 24)
          | (mask_m[20] << 22) | (mask_m[20] << 20)
          | (mask_m[22] << 18) | (mask_m[22] << 16)
          | (mask_m[24] << 14) | (mask_m[24] << 12)
          | (mask_m[25] << 10) | (mask_m[26] <<  8)
          | (mask_m[27] <<  6) | (mask_m[28] <<  4)
          | (mask_m[29] <<  2) | (mask_m[30] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);

    tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
          | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
          | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
          | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
          | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
          | (mask_m[10] << 10) | (mask_m[11] <<  8)
          | (mask_m[12] <<  6) | (mask_m[13] <<  4)
          | (mask_m[14] <<  2) | (mask_m[15] <<  0);
    OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);

    tmp_mask =             (mask_p[15] << 28)
          | (mask_p[14] << 26) | (mask_p[13] << 24)
          | (mask_p[12] << 22) | (mask_p[11] << 20)
          | (mask_p[10] << 18) | (mask_p[ 9] << 16)
          | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
          | (mask_p[ 6] << 10) | (mask_p[ 5] <<  8)
          | (mask_p[ 4] <<  6) | (mask_p[ 3] <<  4)
          | (mask_p[ 2] <<  2) | (mask_p[ 1] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);

    tmp_mask =             (mask_p[30] << 28)
          | (mask_p[29] << 26) | (mask_p[28] << 24)
          | (mask_p[27] << 22) | (mask_p[26] << 20)
          | (mask_p[25] << 18) | (mask_p[24] << 16)
          | (mask_p[23] << 14) | (mask_p[22] << 12)
          | (mask_p[21] << 10) | (mask_p[20] <<  8)
          | (mask_p[19] <<  6) | (mask_p[18] <<  4)
          | (mask_p[17] <<  2) | (mask_p[16] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);

    tmp_mask =             (mask_p[45] << 28)
          | (mask_p[44] << 26) | (mask_p[43] << 24)
          | (mask_p[42] << 22) | (mask_p[41] << 20)
          | (mask_p[40] << 18) | (mask_p[39] << 16)
          | (mask_p[38] << 14) | (mask_p[37] << 12)
          | (mask_p[36] << 10) | (mask_p[35] <<  8)
          | (mask_p[34] <<  6) | (mask_p[33] <<  4)
          | (mask_p[32] <<  2) | (mask_p[31] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);

    tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
          | (mask_p[59] << 26) | (mask_p[58] << 24)
          | (mask_p[57] << 22) | (mask_p[56] << 20)
          | (mask_p[55] << 18) | (mask_p[54] << 16)
          | (mask_p[53] << 14) | (mask_p[52] << 12)
          | (mask_p[51] << 10) | (mask_p[50] <<  8)
          | (mask_p[49] <<  6) | (mask_p[48] <<  4)
          | (mask_p[47] <<  2) | (mask_p[46] <<  0);
    OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
    OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
Пример #13
0
static void
ar9287AniSetup(struct ath_hal *ah)
{
	/*
	 * These are the parameters from the AR5416 ANI code;
	 * they likely need quite a bit of adjustment for the
	 * AR9280.
	 */
        static const struct ar5212AniParams aniparams = {
                .maxNoiseImmunityLevel  = 4,    /* levels 0..4 */
                .totalSizeDesired       = { -55, -55, -55, -55, -62 },
                .coarseHigh             = { -14, -14, -14, -14, -12 },
                .coarseLow              = { -64, -64, -64, -64, -70 },
                .firpwr                 = { -78, -78, -78, -78, -80 },
                .maxSpurImmunityLevel   = 2,
                .cycPwrThr1             = { 2, 4, 6 },
                .maxFirstepLevel        = 2,    /* levels 0..2 */
                .firstep                = { 0, 4, 8 },
                .ofdmTrigHigh           = 500,
                .ofdmTrigLow            = 200,
                .cckTrigHigh            = 200,
                .cckTrigLow             = 100,
                .rssiThrHigh            = 40,
                .rssiThrLow             = 7,
                .period                 = 100,
        };
	/* NB: disable ANI noise immmunity for reliable RIFS rx */
	AH5416(ah)->ah_ani_function &= ~ HAL_ANI_NOISE_IMMUNITY_LEVEL;

        /* NB: ANI is not enabled yet */
        ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

/*
 * Attach for an AR9287 part.
 */
static struct ath_hal *
ar9287Attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_STATUS *status)
{
	struct ath_hal_9287 *ahp9287;
	struct ath_hal_5212 *ahp;
	struct ath_hal *ah;
	uint32_t val;
	HAL_STATUS ecode;
	HAL_BOOL rfStatus;
	int8_t pwr_table_offset;

	HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
	    __func__, sc, (void*) st, (void*) sh);

	/* NB: memory is returned zero'd */
	ahp9287 = ath_hal_malloc(sizeof (struct ath_hal_9287));
	if (ahp9287 == AH_NULL) {
		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
		    "%s: cannot allocate memory for state block\n", __func__);
		*status = HAL_ENOMEM;
		return AH_NULL;
	}
	ahp = AH5212(ahp9287);
	ah = &ahp->ah_priv.h;

	ar5416InitState(AH5416(ah), devid, sc, st, sh, status);

	/* XXX override with 9280 specific state */
	/* override 5416 methods for our needs */
	AH5416(ah)->ah_initPLL = ar9280InitPLL;

	ah->ah_setAntennaSwitch		= ar9287SetAntennaSwitch;
	ah->ah_configPCIE		= ar9287ConfigPCIE;

	AH5416(ah)->ah_cal.iqCalData.calData = &ar9287_iq_cal;
	AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9287_adc_gain_cal;
	AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9287_adc_dc_cal;
	AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9287_adc_init_dc_cal;
	/* Better performance without ADC Gain Calibration */
	AH5416(ah)->ah_cal.suppCals = ADC_DC_CAL | IQ_MISMATCH_CAL;

	AH5416(ah)->ah_spurMitigate	= ar9280SpurMitigate;
	AH5416(ah)->ah_writeIni		= ar9287WriteIni;

	ah->ah_setTxPower		= ar9287SetTransmitPower;
	ah->ah_setBoardValues		= ar9287SetBoardValues;

	AH5416(ah)->ah_olcInit		= ar9287olcInit;
	AH5416(ah)->ah_olcTempCompensation = ar9287olcTemperatureCompensation;
	//AH5416(ah)->ah_setPowerCalTable	= ar9287SetPowerCalTable;
	AH5416(ah)->ah_cal_initcal	= ar9287InitCalHardware;
	AH5416(ah)->ah_cal_pacal	= ar9287PACal;

	/* XXX NF calibration */
	/* XXX Ini override? (IFS vars - since the kiwi mac clock is faster?) */
	/* XXX what else is kiwi-specific in the radio/calibration pathway? */

	AH5416(ah)->ah_rx_chainmask	= AR9287_DEFAULT_RXCHAINMASK;
	AH5416(ah)->ah_tx_chainmask	= AR9287_DEFAULT_TXCHAINMASK;

	if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
		/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}
	/* Read Revisions from Chips before taking out of reset */
	val = OS_REG_READ(ah, AR_SREV);
	HALDEBUG(ah, HAL_DEBUG_ATTACH,
	    "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
	    __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
	    MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
	/* NB: include chip type to differentiate from pre-Sowl versions */
	AH_PRIVATE(ah)->ah_macVersion =
	    (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
	AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
	AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

	/* Don't support Kiwi < 1.2; those are pre-release chips */
	if (! AR_SREV_KIWI_12_OR_LATER(ah)) {
		ath_hal_printf(ah, "[ath]: Kiwi < 1.2 is not supported\n");
		ecode = HAL_EIO;
		goto bad;
	}

	/* setup common ini data; rf backends handle remainder */
	HAL_INI_INIT(&ahp->ah_ini_modes, ar9287Modes_9287_1_1, 6);
	HAL_INI_INIT(&ahp->ah_ini_common, ar9287Common_9287_1_1, 2);

	/* If pcie_clock_req */
	HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
	    ar9287PciePhy_clkreq_always_on_L1_9287_1_1, 2);

	/* XXX WoW ini values */

	/* Else */
#if 0
	HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
	    ar9287PciePhy_clkreq_off_L1_9287_1_1, 2);
#endif

	/* Initialise Japan arrays */
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirNormal,
	    ar9287Common_normal_cck_fir_coeff_9287_1_1, 2);
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirJapan2484,
	    ar9287Common_japan_2484_cck_fir_coeff_9287_1_1, 2);

	ar5416AttachPCIE(ah);

	ecode = ath_hal_9287EepromAttach(ah);
	if (ecode != HAL_OK)
		goto bad;

	if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

	if (!ar5212ChipTest(ah)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
		    __func__);
		ecode = HAL_ESELFTEST;
		goto bad;
	}

	/*
	 * Set correct Baseband to analog shift
	 * setting to access analog chips.
	 */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	/* Read Radio Chip Rev Extract */
	AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
	switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
        case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
	case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
		break;
	default:
		if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
			AH_PRIVATE(ah)->ah_analog5GhzRev =
				AR_RAD5133_SREV_MAJOR;
			break;
		}
#ifdef AH_DEBUG
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: 5G Radio Chip Rev 0x%02X is not supported by "
		    "this driver\n", __func__,
		    AH_PRIVATE(ah)->ah_analog5GhzRev);
		ecode = HAL_ENOTSUPP;
		goto bad;
#endif
	}
	rfStatus = ar9287RfAttach(ah, &ecode);
	if (!rfStatus) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
		    __func__, ecode);
		goto bad;
	}

	/*
	 * We only implement open-loop TX power control
	 * for the AR9287 in this codebase.
	 */
	if (! ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
		ath_hal_printf(ah, "[ath] AR9287 w/ closed-loop TX power control"
		    " isn't supported.\n");
		ecode = HAL_ENOTSUPP;
		goto bad;
	}

        /*
         * Check whether the power table offset isn't the default.
         * This can occur with eeprom minor V21 or greater on Merlin.
         */
	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, &pwr_table_offset);
	if (pwr_table_offset != AR5416_PWR_TABLE_OFFSET_DB)
		ath_hal_printf(ah, "[ath]: default pwr offset: %d dBm != EEPROM pwr offset: %d dBm; curves will be adjusted.\n",
		    AR5416_PWR_TABLE_OFFSET_DB, (int) pwr_table_offset);

	/* setup rxgain table */
	HAL_INI_INIT(&ahp9287->ah_ini_rxgain, ar9287Modes_rx_gain_9287_1_1, 6);

	/* setup txgain table */
	HAL_INI_INIT(&ahp9287->ah_ini_txgain, ar9287Modes_tx_gain_9287_1_1, 6);

	/*
	 * Got everything we need now to setup the capabilities.
	 */
	if (!ar9287FillCapabilityInfo(ah)) {
		ecode = HAL_EEREAD;
		goto bad;
	}

	ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
	if (ecode != HAL_OK) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error getting mac address from EEPROM\n", __func__);
		goto bad;
        }
	/* XXX How about the serial number ? */
	/* Read Reg Domain */
	AH_PRIVATE(ah)->ah_currentRD =
	    ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);
	AH_PRIVATE(ah)->ah_currentRDext = AR9287_RDEXT_DEFAULT;

	/*
	 * ah_miscMode is populated by ar5416FillCapabilityInfo()
	 * starting from griffin. Set here to make sure that
	 * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
	 * placed into hardware.
	 */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);

	ar9287AniSetup(ah);			/* Anti Noise Immunity */

	/* Setup noise floor min/max/nominal values */
	AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
	AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
	AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
	AH5416(ah)->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_5GHZ;
	AH5416(ah)->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_5GHZ;
	AH5416(ah)->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9287_5GHZ;

	ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

	return ah;
bad:
	if (ah != AH_NULL)
		ah->ah_detach(ah);
	if (status)
		*status = ecode;
	return AH_NULL;
}

static void
ar9287ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore)
{
	if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
		ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
		OS_DELAY(1000);
		OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
		OS_REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);	/* Yes, Kiwi uses the Kite PCIe PHY WA */
	}
}

static void
ar9287WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex = 2;
		if (IEEE80211_IS_CHAN_HT40(chan))
			modesIndex = 3;
		else if (IEEE80211_IS_CHAN_108G(chan))
			modesIndex = 5;
		else
			modesIndex = 4;
	} else {
		freqIndex = 1;
		if (IEEE80211_IS_CHAN_HT40(chan) ||
		    IEEE80211_IS_CHAN_TURBO(chan))
			modesIndex = 2;
		else
			modesIndex = 1;
	}

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);

	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_rxgain, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_txgain, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common, 1, regWrites);
}
Пример #14
0
static HAL_BOOL
ar5416LoadNF(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	static const uint32_t ar5416_cca_regs[] = {
		AR_PHY_CCA,
		AR_PHY_CH1_CCA,
		AR_PHY_CH2_CCA,
		AR_PHY_EXT_CCA,
		AR_PHY_CH1_EXT_CCA,
		AR_PHY_CH2_EXT_CCA
	};
	struct ar5212NfCalHist *h;
	int i;
	int32_t val;
	uint8_t chainmask;
	int16_t default_nf = ar5416GetDefaultNF(ah, chan);

	/*
	 * Force NF calibration for all chains.
	 */
	if (AR_SREV_KITE(ah)) {
		/* Kite has only one chain */
		chainmask = 0x9;
	} else if (AR_SREV_MERLIN(ah) || AR_SREV_KIWI(ah)) {
		/* Merlin/Kiwi has only two chains */
		chainmask = 0x1B;
	} else {
		chainmask = 0x3F;
	}

	/*
	 * Write filtered NF values into maxCCApwr register parameter
	 * so we can load below.
	 */
	h = AH5416(ah)->ah_cal.nfCalHist;
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "CCA: ");
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) { 
			int16_t nf_val;

			if (h)
				nf_val = h[i].privNF;
			else
				nf_val = default_nf;

			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t) nf_val << 1) & 0x1ff);
			HALDEBUG(ah, HAL_DEBUG_NFCAL, "[%d: %d]", i, nf_val);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
	}
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "\n");

	/* Load software filtered NF value into baseband internal minCCApwr variable. */
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);

	/* Wait for load to complete, should be fast, a few 10s of us. */
	if (! ar5212WaitNFCalComplete(ah, 1000)) {
		/*
		 * We timed out waiting for the noisefloor to load, probably due to an
		 * in-progress rx. Simply return here and allow the load plenty of time
		 * to complete before the next calibration interval.  We need to avoid
		 * trying to load -50 (which happens below) while the previous load is
		 * still in progress as this can cause rx deafness. Instead by returning
		 * here, the baseband nf cal will just be capped by our present
		 * noisefloor until the next calibration timer.
		 */
		HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "Timeout while waiting for "
		    "nf to load: AR_PHY_AGC_CONTROL=0x%x\n",
		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
		return AH_FALSE;
	}

	/*
	 * Restore maxCCAPower register parameter again so that we're not capped
	 * by the median we just loaded.  This will be initial (and max) value
	 * of next noise floor calibration the baseband does.  
	 */
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) {	
			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t)(-50) << 1) & 0x1ff);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
	}
	return AH_TRUE;
}
Пример #15
0
/*
 * rt2860_rf_select_chan_group
 */
void rt2860_rf_select_chan_group(struct rt2860_softc *sc,
	struct ieee80211_channel *c)
{
	struct ifnet *ifp;
	struct ieee80211com *ic;
	int chan, group;
	uint32_t tmp;

	ifp = sc->ifp;
	ic = ifp->if_l2com;

	chan = ieee80211_chan2ieee(ic, c);
	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
		return;

	if (chan <= 14)
		group = 0;
	else if (chan <= 64)
		group = 1;
	else if (chan <= 128)
		group = 2;
	else
		group = 3;

	rt2860_io_bbp_write(sc, 62, 0x37 - sc->lna_gain[group]);
	rt2860_io_bbp_write(sc, 63, 0x37 - sc->lna_gain[group]);
	rt2860_io_bbp_write(sc, 64, 0x37 - sc->lna_gain[group]);
	rt2860_io_bbp_write(sc, 86, 0x00);

	if (group == 0)
	{
		if (sc->ext_lna_2ghz)
		{
			rt2860_io_bbp_write(sc, 82, 0x62);
			rt2860_io_bbp_write(sc, 75, 0x46);
		}
		else
		{
			rt2860_io_bbp_write(sc, 82, 0x84);
			rt2860_io_bbp_write(sc, 75, 0x50);
		}
	}
	else
	{
		rt2860_io_bbp_write(sc, 82, 0xf2);

		if (sc->ext_lna_5ghz)
			rt2860_io_bbp_write(sc, 75, 0x46);
		else
			rt2860_io_bbp_write(sc, 75, 0x50);
	}

	if (group == 0)
	{
		tmp = 0x2e + sc->lna_gain[group];
	}
	else
	{
		if ((ic->ic_flags & IEEE80211_F_SCAN) || !IEEE80211_IS_CHAN_HT40(c))
			tmp = 0x32 + sc->lna_gain[group] * 5 / 3;
		else
			tmp = 0x3a + sc->lna_gain[group] * 5 / 3;
	}

	rt2860_io_bbp_write(sc, 66, tmp);

	tmp = RT2860_REG_RFTR_ENABLE |
		RT2860_REG_TRSW_ENABLE |
		RT2860_REG_LNA_PE_G1_ENABLE |
		RT2860_REG_LNA_PE_A1_ENABLE |
		RT2860_REG_LNA_PE_G0_ENABLE |
		RT2860_REG_LNA_PE_A0_ENABLE;

	if (group == 0)
		tmp |= RT2860_REG_PA_PE_G1_ENABLE |
			RT2860_REG_PA_PE_G0_ENABLE;
	else
		tmp |= RT2860_REG_PA_PE_A1_ENABLE |
			RT2860_REG_PA_PE_A0_ENABLE;

	if (sc->ntxpath == 1)
		tmp &= ~(RT2860_REG_PA_PE_G1_ENABLE | RT2860_REG_PA_PE_A1_ENABLE);

	if (sc->nrxpath == 1)
		tmp &= ~(RT2860_REG_LNA_PE_G1_ENABLE | RT2860_REG_LNA_PE_A1_ENABLE);

	rt2860_io_mac_write(sc, RT2860_REG_TX_PIN_CFG, tmp);

	tmp = rt2860_io_mac_read(sc, RT2860_REG_TX_BAND_CFG);

	tmp &= ~(RT2860_REG_TX_BAND_BG | RT2860_REG_TX_BAND_A | RT2860_REG_TX_BAND_HT40_ABOVE);

	if (group == 0)
		tmp |= RT2860_REG_TX_BAND_BG;
	else
		tmp |= RT2860_REG_TX_BAND_A;

	/* set central channel position */

	if (IEEE80211_IS_CHAN_HT40U(c))
		tmp |= RT2860_REG_TX_BAND_HT40_BELOW;
	else if (IEEE80211_IS_CHAN_HT40D(c))
		tmp |= RT2860_REG_TX_BAND_HT40_ABOVE;
	else
		tmp |= RT2860_REG_TX_BAND_HT40_BELOW;

	rt2860_io_mac_write(sc, RT2860_REG_TX_BAND_CFG, tmp);

	/* set bandwidth (20MHz or 40MHz) */

	tmp = rt2860_io_bbp_read(sc, 4);

	tmp &= ~0x18;

	if (IEEE80211_IS_CHAN_HT40(c))
		tmp |= 0x10;

	rt2860_io_bbp_write(sc, 4, tmp);

	/* set central channel position */

	tmp = rt2860_io_bbp_read(sc, 3);

	tmp &= ~0x20;

	if (IEEE80211_IS_CHAN_HT40D(c))
		tmp |= 0x20;

	rt2860_io_bbp_write(sc, 3, tmp);

	if (sc->mac_rev == 0x28600100)
	{
		if (!IEEE80211_IS_CHAN_HT40(c))
		{
			rt2860_io_bbp_write(sc, 69, 0x16);
			rt2860_io_bbp_write(sc, 70, 0x08);
			rt2860_io_bbp_write(sc, 73, 0x12);
		}
		else
		{
			rt2860_io_bbp_write(sc, 69, 0x1a);
			rt2860_io_bbp_write(sc, 70, 0x0a);
			rt2860_io_bbp_write(sc, 73, 0x16);
		}
	}

}
Пример #16
0
static void
r12a_tx_raid(struct rtwn_softc *sc, struct r12a_tx_desc *txd,
    struct ieee80211_node *ni, int ismcast)
{
	struct ieee80211com *ic = &sc->sc_ic;
	struct ieee80211vap *vap = ni->ni_vap;
	struct ieee80211_channel *chan;
	enum ieee80211_phymode mode;
	uint8_t raid;

	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
		ni->ni_chan : ic->ic_curchan;
	mode = ieee80211_chan2mode(chan);

	/* NB: group addressed frames are done at 11bg rates for now */
	if (ismcast || !(ni->ni_flags & IEEE80211_NODE_HT)) {
		switch (mode) {
		case IEEE80211_MODE_11A:
		case IEEE80211_MODE_11B:
		case IEEE80211_MODE_11G:
			break;
		case IEEE80211_MODE_11NA:
			mode = IEEE80211_MODE_11A;
			break;
		case IEEE80211_MODE_11NG:
			mode = IEEE80211_MODE_11G;
			break;
		default:
			device_printf(sc->sc_dev, "unknown mode(1) %d!\n",
			    ic->ic_curmode);
			return;
		}
	}

	switch (mode) {
	case IEEE80211_MODE_11A:
		raid = R12A_RAID_11G;
		break;
	case IEEE80211_MODE_11B:
		raid = R12A_RAID_11B;
		break;
	case IEEE80211_MODE_11G:
		if (vap->iv_flags & IEEE80211_F_PUREG)
			raid = R12A_RAID_11G;
		else
			raid = R12A_RAID_11BG;
		break;
	case IEEE80211_MODE_11NA:
		if (sc->ntxchains == 1)
			raid = R12A_RAID_11GN_1;
		else
			raid = R12A_RAID_11GN_2;
		break;
	case IEEE80211_MODE_11NG:
		if (sc->ntxchains == 1) {
			if (IEEE80211_IS_CHAN_HT40(chan))
				raid = R12A_RAID_11BGN_1_40;
			else
				raid = R12A_RAID_11BGN_1;
		} else {
			if (IEEE80211_IS_CHAN_HT40(chan))
				raid = R12A_RAID_11BGN_2_40;
			else
				raid = R12A_RAID_11BGN_2;
		}
		break;
	default:
		/* TODO: 80 MHz / 11ac */
		device_printf(sc->sc_dev, "unknown mode(2) %d!\n", mode);
		return;
	}

	txd->txdw1 |= htole32(SM(R12A_TXDW1_RAID, raid));
}
Пример #17
0
/*
 * rt2860_rf_set_chan
 */
void rt2860_rf_set_chan(struct rt2860_softc *sc,
	struct ieee80211_channel *c)
{
	struct ifnet *ifp;
	struct ieee80211com *ic;
	const struct rt2860_rf_prog *prog;
	uint32_t r1, r2, r3, r4;
	int8_t txpow1, txpow2;
	int i, chan;

	if (sc->mac_rev == 0x28720200) {
		rt2872_rf_set_chan(sc, c);
		return;
	} 

	ifp = sc->ifp;
	ic = ifp->if_l2com;
	prog = rt2860_rf_2850;

	/* get central channel position */

	chan = ieee80211_chan2ieee(ic, c);

	if ((sc->mac_rev & 0xffff0000) >= 0x30710000) {
		rt3090_set_chan(sc, chan);
		return;
	}

	if (IEEE80211_IS_CHAN_HT40U(c))
		chan += 2;
	else if (IEEE80211_IS_CHAN_HT40D(c))
		chan -= 2;

	RT2860_DPRINTF(sc, RT2860_DEBUG_CHAN,
		"%s: RF set channel: channel=%u, HT%s%s\n",
		device_get_nameunit(sc->dev),
		ieee80211_chan2ieee(ic, c),
		!IEEE80211_IS_CHAN_HT(c) ? " disabled" :
			IEEE80211_IS_CHAN_HT20(c) ? "20":
				IEEE80211_IS_CHAN_HT40U(c) ? "40U" : "40D",
		(ic->ic_flags & IEEE80211_F_SCAN) ? ", scanning" : "");

	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
		return;

	for (i = 0; prog[i].chan != chan; i++);

	r1 = prog[i].r1;
	r2 = prog[i].r2;
	r3 = prog[i].r3;
	r4 = prog[i].r4;

	txpow1 = sc->txpow1[i];
	txpow2 = sc->txpow2[i];

	if (sc->ntxpath == 1)
		r2 |= (1 << 14);

	if (sc->nrxpath == 2)
		r2 |= (1 << 6);
	else if (sc->nrxpath == 1)
		r2 |= (1 << 17) | (1 << 6);

	if (IEEE80211_IS_CHAN_2GHZ(c))
	{
		r3 = (r3 & 0xffffc1ff) | (txpow1 << 9);
		r4 = (r4 & ~0x001f87c0) | (sc->rf_freq_off << 15) |
		    (txpow2 << 6);
	}
	else
	{
		r3 = r3 & 0xffffc1ff;
		r4 = (r4 & ~0x001f87c0) | (sc->rf_freq_off << 15);

		if (txpow1 >= RT2860_EEPROM_TXPOW_5GHZ_MIN && txpow1 < 0)
		{
			txpow1 = (-RT2860_EEPROM_TXPOW_5GHZ_MIN + txpow1);
			if (txpow1 > RT2860_EEPROM_TXPOW_5GHZ_MAX)
				txpow1 = RT2860_EEPROM_TXPOW_5GHZ_MAX;

			r3 |= (txpow1 << 10);
		}
		else
		{
			if (txpow1 > RT2860_EEPROM_TXPOW_5GHZ_MAX)
				txpow1 = RT2860_EEPROM_TXPOW_5GHZ_MAX;

			r3 |= (txpow1 << 10) | (1 << 9);
		}

		if (txpow2 >= RT2860_EEPROM_TXPOW_5GHZ_MIN && txpow2 < 0)
		{
			txpow2 = (-RT2860_EEPROM_TXPOW_5GHZ_MIN + txpow2);
			if (txpow2 > RT2860_EEPROM_TXPOW_5GHZ_MAX)
				txpow2 = RT2860_EEPROM_TXPOW_5GHZ_MAX;

			r4 |= (txpow2 << 7);
		}
		else
		{
			if (txpow2 > RT2860_EEPROM_TXPOW_5GHZ_MAX)
				txpow2 = RT2860_EEPROM_TXPOW_5GHZ_MAX;

			r4 |= (txpow2 << 7) | (1 << 6);
		}
	}

	if (!(ic->ic_flags & IEEE80211_F_SCAN) && IEEE80211_IS_CHAN_HT40(c))
		r4 |= (1 << 21);

	rt2860_io_rf_write(sc, RT2860_REG_RF_R1, r1);
	rt2860_io_rf_write(sc, RT2860_REG_RF_R2, r2);
	rt2860_io_rf_write(sc, RT2860_REG_RF_R3, r3 & ~(1 << 2));
	rt2860_io_rf_write(sc, RT2860_REG_RF_R4, r4);

	DELAY(200);

	rt2860_io_rf_write(sc, RT2860_REG_RF_R1, r1);
	rt2860_io_rf_write(sc, RT2860_REG_RF_R2, r2);
	rt2860_io_rf_write(sc, RT2860_REG_RF_R3, r3 | (1 << 2));
	rt2860_io_rf_write(sc, RT2860_REG_RF_R4, r4);

	DELAY(200);

	rt2860_io_rf_write(sc, RT2860_REG_RF_R1, r1);
	rt2860_io_rf_write(sc, RT2860_REG_RF_R2, r2);
	rt2860_io_rf_write(sc, RT2860_REG_RF_R3, r3 & ~(1 << 2));
	rt2860_io_rf_write(sc, RT2860_REG_RF_R4, r4);

	rt2860_rf_select_chan_group(sc, c);

	DELAY(1000);
}