/* Run a zipl program */ static void zipl_run(ScsiBlockPtr *pte) { ComponentHeader *header; ComponentEntry *entry; uint8_t tmp_sec[MAX_SECTOR_SIZE]; read_block(pte->blockno, tmp_sec, "Cannot read header"); header = (ComponentHeader *)tmp_sec; IPL_assert(magic_match(tmp_sec, ZIPL_MAGIC), "No zIPL magic"); IPL_assert(header->type == ZIPL_COMP_HEADER_IPL, "Bad header type"); dputs("start loading images\n"); /* Load image(s) into RAM */ entry = (ComponentEntry *)(&header[1]); while (entry->component_type == ZIPL_COMP_ENTRY_LOAD) { zipl_load_segment(entry); entry++; IPL_assert((uint8_t *)(&entry[1]) <= (tmp_sec + MAX_SECTOR_SIZE), "Wrong entry value"); } IPL_assert(entry->component_type == ZIPL_COMP_ENTRY_EXEC, "No EXEC entry"); /* should not return */ jump_to_IPL_code(entry->load_address); }
/** * uitoa: * @num: an integer (base 10) to be converted. * @str: a pointer to a string to store the conversion. * @len: the length of the passed string. * * Given an integer @num, convert it to a string. The string @str must be * allocated beforehand. The resulting string will be null terminated and * returned. This function only handles numbers between 0 and UINT64_MAX * inclusive. * * Returns: the string @str of the converted integer @num */ char *uitoa(uint64_t num, char *str, size_t len) { size_t num_idx = 1; /* account for NUL */ uint64_t tmp = num; IPL_assert(str != NULL, "uitoa: no space allocated to store string"); /* Count indices of num */ while ((tmp /= 10) != 0) { num_idx++; } /* Check if we have enough space for num and NUL */ IPL_assert(len > num_idx, "uitoa: array too small for conversion"); str[num_idx--] = '\0'; /* Convert int to string */ while (num_idx >= 0) { str[num_idx--] = num % 10 + '0'; num /= 10; } return str; }
static block_number_t load_eckd_segments(block_number_t blk, uint64_t *address) { block_number_t block_nr; int j, rc; BootMapPointer *bprs = (void *)_bprs; bool more_data; memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); read_block(blk, bprs, "BPRS read failed"); do { more_data = false; for (j = 0;; j++) { block_nr = eckd_block_num((void *)&(bprs[j].xeckd)); if (is_null_block_number(block_nr)) { /* end of chunk */ break; } /* we need the updated blockno for the next indirect entry * in the chain, but don't want to advance address */ if (j == (max_bprs_entries - 1)) { break; } IPL_assert(block_size_ok(bprs[j].xeckd.bptr.size), "bad chunk block size"); IPL_assert(eckd_valid_address(&bprs[j]), "bad chunk ECKD addr"); if ((bprs[j].xeckd.bptr.count == 0) && unused_space(&(bprs[j+1]), sizeof(EckdBlockPtr))) { /* This is a "continue" pointer. * This ptr should be the last one in the current * script section. * I.e. the next ptr must point to the unused memory area */ memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); read_block(block_nr, bprs, "BPRS continuation read failed"); more_data = true; break; } /* Load (count+1) blocks of code at (block_nr) * to memory (address). */ rc = virtio_read_many(block_nr, (void *)(*address), bprs[j].xeckd.bptr.count+1); IPL_assert(rc == 0, "code chunk read failed"); *address += (bprs[j].xeckd.bptr.count+1) * virtio_get_block_size(); } } while (more_data); return block_nr; }
static void run_eckd_boot_script(block_number_t mbr_block_nr) { int i; block_number_t block_nr; uint64_t address; ScsiMbr *scsi_mbr = (void *)sec; BootMapScript *bms = (void *)sec; memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(mbr_block_nr, sec, "Cannot read MBR"); block_nr = eckd_block_num((void *)&(scsi_mbr->blockptr)); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(block_nr, sec, "Cannot read Boot Map Script"); for (i = 0; bms->entry[i].type == BOOT_SCRIPT_LOAD; i++) { address = bms->entry[i].address.load_address; block_nr = eckd_block_num(&(bms->entry[i].blkptr)); do { block_nr = load_eckd_segments(block_nr, &address); } while (block_nr != -1); } IPL_assert(bms->entry[i].type == BOOT_SCRIPT_EXEC, "Unknown script entry type"); jump_to_IPL_code(bms->entry[i].address.load_address); /* no return */ }
static void ipl_eckd_cdl(void) { XEckdMbr *mbr; Ipl2 *ipl2 = (void *)sec; IplVolumeLabel *vlbl = (void *)sec; block_number_t block_nr; /* we have just read the block #0 and recognized it as "IPL1" */ sclp_print("CDL\n"); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(1, ipl2, "Cannot read IPL2 record at block 1"); IPL_assert(magic_match(ipl2, IPL2_MAGIC), "No IPL2 record"); mbr = &ipl2->u.x.mbr; IPL_assert(magic_match(mbr, ZIPL_MAGIC), "No zIPL section in IPL2 record."); IPL_assert(block_size_ok(mbr->blockptr.xeckd.bptr.size), "Bad block size in zIPL section of IPL2 record."); IPL_assert(mbr->dev_type == DEV_TYPE_ECKD, "Non-ECKD device type in zIPL section of IPL2 record."); /* save pointer to Boot Script */ block_nr = eckd_block_num((void *)&(mbr->blockptr)); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(2, vlbl, "Cannot read Volume Label at block 2"); IPL_assert(magic_match(vlbl->key, VOL1_MAGIC), "Invalid magic of volume label block"); IPL_assert(magic_match(vlbl->f.key, VOL1_MAGIC), "Invalid magic of volser block"); print_volser(vlbl->f.volser); run_eckd_boot_script(block_nr); /* no return */ }
static void zipl_load_segment(ComponentEntry *entry) { const int max_entries = (MAX_SECTOR_SIZE / sizeof(ScsiBlockPtr)); ScsiBlockPtr *bprs = (void *)sec; const int bprs_size = sizeof(sec); block_number_t blockno; uint64_t address; int i; char err_msg[] = "zIPL failed to read BPRS at 0xZZZZZZZZZZZZZZZZ"; char *blk_no = &err_msg[30]; /* where to print blockno in (those ZZs) */ blockno = entry->data.blockno; address = entry->load_address; debug_print_int("loading segment at block", blockno); debug_print_int("addr", address); do { memset(bprs, FREE_SPACE_FILLER, bprs_size); fill_hex_val(blk_no, &blockno, sizeof(blockno)); read_block(blockno, bprs, err_msg); for (i = 0;; i++) { uint64_t *cur_desc = (void *)&bprs[i]; blockno = bprs[i].blockno; if (!blockno) { break; } /* we need the updated blockno for the next indirect entry in the chain, but don't want to advance address */ if (i == (max_entries - 1)) { break; } if (bprs[i].blockct == 0 && unused_space(&bprs[i + 1], sizeof(ScsiBlockPtr))) { /* This is a "continue" pointer. * This ptr is the last one in the current script section. * I.e. the next ptr must point to the unused memory area. * The blockno is not zero, so the upper loop must continue * reading next section of BPRS. */ break; } address = virtio_load_direct(cur_desc[0], cur_desc[1], 0, (void *)address); IPL_assert(address != -1, "zIPL load segment failed"); } } while (blockno); }
static void ipl_scsi(void) { ScsiMbr *mbr = (void *)sec; uint8_t *ns, *ns_end; int program_table_entries = 0; const int pte_len = sizeof(ScsiBlockPtr); ScsiBlockPtr *prog_table_entry; /* The 0-th block (MBR) was already read into sec[] */ sclp_print("Using SCSI scheme.\n"); debug_print_int("program table", mbr->blockptr.blockno); /* Parse the program table */ read_block(mbr->blockptr.blockno, sec, "Error reading Program Table"); IPL_assert(magic_match(sec, ZIPL_MAGIC), "No zIPL magic"); ns_end = sec + virtio_get_block_size(); for (ns = (sec + pte_len); (ns + pte_len) < ns_end; ns++) { prog_table_entry = (ScsiBlockPtr *)ns; if (!prog_table_entry->blockno) { break; } program_table_entries++; } debug_print_int("program table entries", program_table_entries); IPL_assert(program_table_entries != 0, "Empty Program Table"); /* Run the default entry */ prog_table_entry = (ScsiBlockPtr *)(sec + pte_len); zipl_run(prog_table_entry); /* no return */ }
static inline void verify_boot_info(BootInfo *bip) { IPL_assert(magic_match(bip->magic, ZIPL_MAGIC), "No zIPL magic"); IPL_assert(bip->version == BOOT_INFO_VERSION, "Wrong zIPL version"); IPL_assert(bip->bp_type == BOOT_INFO_BP_TYPE_IPL, "DASD is not for IPL"); IPL_assert(bip->dev_type == BOOT_INFO_DEV_TYPE_ECKD, "DASD is not ECKD"); IPL_assert(bip->flags == BOOT_INFO_FLAGS_ARCH, "Not for this arch"); IPL_assert(block_size_ok(bip->bp.ipl.bm_ptr.eckd.bptr.size), "Bad block size in zIPL section of the 1st record."); }