void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long irqflags; if (del_timer_sync(&dev_priv->uncore.force_wake_timer)) gen6_force_wake_timer((unsigned long)dev_priv); /* Hold uncore.lock across reset to prevent any register access * with forcewake not set correctly */ spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); if (IS_VALLEYVIEW(dev)) vlv_force_wake_reset(dev_priv); else if (IS_GEN6(dev) || IS_GEN7(dev)) __gen6_gt_force_wake_reset(dev_priv); if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) __gen7_gt_force_wake_mt_reset(dev_priv); if (IS_GEN9(dev)) __gen9_gt_force_wake_mt_reset(dev_priv); if (restore) { /* If reset with a user forcewake, try to restore */ unsigned fw = 0; if (IS_VALLEYVIEW(dev)) { if (dev_priv->uncore.fw_rendercount) fw |= FORCEWAKE_RENDER; if (dev_priv->uncore.fw_mediacount) fw |= FORCEWAKE_MEDIA; } else if (IS_GEN9(dev)) { if (dev_priv->uncore.fw_rendercount) fw |= FORCEWAKE_RENDER; if (dev_priv->uncore.fw_mediacount) fw |= FORCEWAKE_MEDIA; if (dev_priv->uncore.fw_blittercount) fw |= FORCEWAKE_BLITTER; } else { if (dev_priv->uncore.forcewake_count) fw = FORCEWAKE_ALL; } if (fw) dev_priv->uncore.funcs.force_wake_get(dev_priv, fw); if (IS_GEN6(dev) || IS_GEN7(dev)) dev_priv->uncore.fifo_count = __raw_i915_read32(dev_priv, GTFIFOCTL) & GT_FIFO_FREE_ENTRIES_MASK; } spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); }
/** * intel_csr_load_program() - write the firmware from memory to register. * @dev_priv: i915 drm device. * * CSR firmware is read from a .bin file and kept in internal memory one time. * Everytime display comes back from low power state this function is called to * copy the firmware from internal memory to registers. */ void intel_csr_load_program(struct drm_i915_private *dev_priv) { u32 *payload = dev_priv->csr.dmc_payload; uint32_t i, fw_size; if (!IS_GEN9(dev_priv)) { DRM_ERROR("No CSR support available for this platform\n"); return; } if (!dev_priv->csr.dmc_payload) { DRM_ERROR("Tried to program CSR with empty payload\n"); return; } fw_size = dev_priv->csr.dmc_fw_size; for (i = 0; i < fw_size; i++) I915_WRITE(CSR_PROGRAM(i), payload[i]); for (i = 0; i < dev_priv->csr.mmio_count; i++) { I915_WRITE(dev_priv->csr.mmioaddr[i], dev_priv->csr.mmiodata[i]); } dev_priv->csr.dc_state = 0; gen9_set_dc_state_debugmask(dev_priv); }
static void intel_fbc_get_reg_params(struct intel_crtc *crtc, struct intel_fbc_reg_params *params) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_fbc *fbc = &dev_priv->fbc; struct intel_fbc_state_cache *cache = &fbc->state_cache; /* Since all our fields are integer types, use memset here so the * comparison function can rely on memcmp because the padding will be * zero. */ memset(params, 0, sizeof(*params)); params->vma = cache->vma; params->crtc.pipe = crtc->pipe; params->crtc.i9xx_plane = to_intel_plane(crtc->base.primary)->i9xx_plane; params->crtc.fence_y_offset = get_crtc_fence_y_offset(fbc); params->fb.format = cache->fb.format; params->fb.stride = cache->fb.stride; params->cfb_size = intel_fbc_calculate_cfb_size(dev_priv, cache); if (IS_GEN9(dev_priv) && !IS_GEMINILAKE(dev_priv)) params->gen9_wa_cfb_stride = DIV_ROUND_UP(cache->plane.src_w, 32 * fbc->threshold) * 8; }
static void guc_prepare_xfer(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); /* Must program this register before loading the ucode with DMA */ I915_WRITE(GUC_SHIM_CONTROL, GUC_DISABLE_SRAM_INIT_TO_ZEROES | GUC_ENABLE_READ_CACHE_LOGIC | GUC_ENABLE_MIA_CACHING | GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | GUC_ENABLE_MIA_CLOCK_GATING); if (IS_GEN9_LP(dev_priv)) I915_WRITE(GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); else I915_WRITE(GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); if (IS_GEN9(dev_priv)) { /* DOP Clock Gating Enable for GuC clocks */ I915_WRITE(GEN7_MISCCPCTL, (GEN8_DOP_CLOCK_GATE_GUC_ENABLE | I915_READ(GEN7_MISCCPCTL))); /* allows for 5us (in 10ns units) before GT can go to RC6 */ I915_WRITE(GUC_ARAT_C6DIS, 0x1FF); } }
/** * intel_csr_load_program() - write the firmware from memory to register. * @dev: drm device. * * CSR firmware is read from a .bin file and kept in internal memory one time. * Everytime display comes back from low power state this function is called to * copy the firmware from internal memory to registers. */ void intel_csr_load_program(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; __be32 *payload = dev_priv->csr.dmc_payload; uint32_t i, fw_size; if (!IS_GEN9(dev)) { DRM_ERROR("No CSR support available for this platform\n"); return; } mutex_lock(&dev_priv->csr_lock); fw_size = dev_priv->csr.dmc_fw_size; for (i = 0; i < fw_size; i++) I915_WRITE(CSR_PROGRAM_BASE + i * 4, (u32 __force)payload[i]); for (i = 0; i < dev_priv->csr.mmio_count; i++) { I915_WRITE(dev_priv->csr.mmioaddr[i], dev_priv->csr.mmiodata[i]); } dev_priv->csr.state = FW_LOADED; mutex_unlock(&dev_priv->csr_lock); }
/** * intel_gvt_init_vgpu_types - initialize vGPU type list * @gvt : GVT device * * Initialize vGPU type list based on available resource. * */ int intel_gvt_init_vgpu_types(struct intel_gvt *gvt) { unsigned int num_types; unsigned int i, low_avail, high_avail; unsigned int min_low; /* vGPU type name is defined as GVTg_Vx_y which contains * physical GPU generation type and 'y' means maximum vGPU * instances user can create on one physical GPU for this * type. * * Depend on physical SKU resource, might see vGPU types like * GVTg_V4_8, GVTg_V4_4, GVTg_V4_2, etc. We can create * different types of vGPU on same physical GPU depending on * available resource. Each vGPU type will have "avail_instance" * to indicate how many vGPU instance can be created for this * type. * */ low_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE; high_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE; num_types = 4; gvt->types = kzalloc(num_types * sizeof(struct intel_vgpu_type), GFP_KERNEL); if (!gvt->types) return -ENOMEM; min_low = MB_TO_BYTES(32); for (i = 0; i < num_types; ++i) { if (low_avail / min_low == 0) break; gvt->types[i].low_gm_size = min_low; gvt->types[i].high_gm_size = max((min_low<<3), MB_TO_BYTES(384U)); gvt->types[i].fence = 4; gvt->types[i].max_instance = min(low_avail / min_low, high_avail / gvt->types[i].high_gm_size); gvt->types[i].avail_instance = gvt->types[i].max_instance; if (IS_GEN8(gvt->dev_priv)) sprintf(gvt->types[i].name, "GVTg_V4_%u", gvt->types[i].max_instance); else if (IS_GEN9(gvt->dev_priv)) sprintf(gvt->types[i].name, "GVTg_V5_%u", gvt->types[i].max_instance); min_low <<= 1; gvt_dbg_core("type[%d]: %s max %u avail %u low %u high %u fence %u\n", i, gvt->types[i].name, gvt->types[i].max_instance, gvt->types[i].avail_instance, gvt->types[i].low_gm_size, gvt->types[i].high_gm_size, gvt->types[i].fence); } gvt->num_types = i; return 0; }
/** * intel_gvt_init_vgpu_types - initialize vGPU type list * @gvt : GVT device * * Initialize vGPU type list based on available resource. * */ int intel_gvt_init_vgpu_types(struct intel_gvt *gvt) { unsigned int num_types; unsigned int i, low_avail, high_avail; unsigned int min_low; /* vGPU type name is defined as GVTg_Vx_y which contains * physical GPU generation type (e.g V4 as BDW server, V5 as * SKL server). * * Depend on physical SKU resource, might see vGPU types like * GVTg_V4_8, GVTg_V4_4, GVTg_V4_2, etc. We can create * different types of vGPU on same physical GPU depending on * available resource. Each vGPU type will have "avail_instance" * to indicate how many vGPU instance can be created for this * type. * */ low_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE; high_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE; num_types = sizeof(vgpu_types) / sizeof(vgpu_types[0]); gvt->types = kzalloc(num_types * sizeof(struct intel_vgpu_type), GFP_KERNEL); if (!gvt->types) return -ENOMEM; min_low = MB_TO_BYTES(32); for (i = 0; i < num_types; ++i) { if (low_avail / vgpu_types[i].low_mm == 0) break; gvt->types[i].low_gm_size = vgpu_types[i].low_mm; gvt->types[i].high_gm_size = vgpu_types[i].high_mm; gvt->types[i].fence = vgpu_types[i].fence; gvt->types[i].resolution = vgpu_types[i].edid; gvt->types[i].avail_instance = min(low_avail / vgpu_types[i].low_mm, high_avail / vgpu_types[i].high_mm); if (IS_GEN8(gvt->dev_priv)) sprintf(gvt->types[i].name, "GVTg_V4_%s", vgpu_types[i].name); else if (IS_GEN9(gvt->dev_priv)) sprintf(gvt->types[i].name, "GVTg_V5_%s", vgpu_types[i].name); gvt_dbg_core("type[%d]: %s avail %u low %u high %u fence %u res %s\n", i, gvt->types[i].name, gvt->types[i].avail_instance, gvt->types[i].low_gm_size, gvt->types[i].high_gm_size, gvt->types[i].fence, vgpu_edid_str(gvt->types[i].resolution)); } gvt->num_types = i; return 0; }
media_fillfunc_t get_media_fillfunc(int devid) { media_fillfunc_t fill = NULL; if (IS_GEN8(devid)) fill = gen8_media_fillfunc; else if (IS_GEN7(devid)) fill = gen7_media_fillfunc; else if (IS_GEN9(devid)) fill = gen9_media_fillfunc; return fill; }
/* * Load the GuC firmware blob into the MinuteIA. */ static int guc_ucode_xfer(struct intel_uc_fw *guc_fw, struct i915_vma *vma) { struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw); struct drm_i915_private *dev_priv = guc_to_i915(guc); int ret; GEM_BUG_ON(guc_fw->type != INTEL_UC_FW_TYPE_GUC); intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* Enable MIA caching. GuC clock gating is disabled. */ I915_WRITE(GUC_SHIM_CONTROL, GUC_SHIM_CONTROL_VALUE); /* WaDisableMinuteIaClockGating:bxt */ if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) { I915_WRITE(GUC_SHIM_CONTROL, (I915_READ(GUC_SHIM_CONTROL) & ~GUC_ENABLE_MIA_CLOCK_GATING)); } /* WaC6DisallowByGfxPause:bxt */ if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) I915_WRITE(GEN6_GFXPAUSE, 0x30FFF); if (IS_GEN9_LP(dev_priv)) I915_WRITE(GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); else I915_WRITE(GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); if (IS_GEN9(dev_priv)) { /* DOP Clock Gating Enable for GuC clocks */ I915_WRITE(GEN7_MISCCPCTL, (GEN8_DOP_CLOCK_GATE_GUC_ENABLE | I915_READ(GEN7_MISCCPCTL))); /* allows for 5us (in 10ns units) before GT can go to RC6 */ I915_WRITE(GUC_ARAT_C6DIS, 0x1FF); } ret = guc_ucode_xfer_dma(dev_priv, vma); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); return ret; }
bool lspcon_init(struct intel_digital_port *intel_dig_port) { struct intel_dp *dp = &intel_dig_port->dp; struct intel_lspcon *lspcon = &intel_dig_port->lspcon; struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (!IS_GEN9(dev_priv)) { DRM_ERROR("LSPCON is supported on GEN9 only\n"); return false; } lspcon->active = false; lspcon->mode = DRM_LSPCON_MODE_INVALID; if (!lspcon_probe(lspcon)) { DRM_ERROR("Failed to probe lspcon\n"); return false; } /* * In the SW state machine, lets Put LSPCON in PCON mode only. * In this way, it will work with both HDMI 1.4 sinks as well as HDMI * 2.0 sinks. */ if (lspcon->active && lspcon->mode != DRM_LSPCON_MODE_PCON) { if (lspcon_change_mode(lspcon, DRM_LSPCON_MODE_PCON, true) < 0) { DRM_ERROR("LSPCON mode change to PCON failed\n"); return false; } } if (!intel_dp_read_dpcd(dp)) { DRM_ERROR("LSPCON DPCD read failed\n"); return false; } lspcon->desc_valid = intel_dp_read_desc(dp); DRM_DEBUG_KMS("Success: LSPCON init\n"); return true; }
/* * Generally this is called implicitly by the register read function. However, * if some sequence requires the GT to not power down then this function should * be called at the beginning of the sequence followed by a call to * gen6_gt_force_wake_put() at the end of the sequence. */ void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv, int fw_engine) { unsigned long irqflags; if (!dev_priv->uncore.funcs.force_wake_get) return; intel_runtime_pm_get(dev_priv); /* Redirect to Gen9 specific routine */ if (IS_GEN9(dev_priv->dev)) return gen9_force_wake_get(dev_priv, fw_engine); /* Redirect to VLV specific routine */ if (IS_VALLEYVIEW(dev_priv->dev)) return vlv_force_wake_get(dev_priv, fw_engine); spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); if (dev_priv->uncore.forcewake_count++ == 0) dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); }
/* * see gen6_gt_force_wake_get() */ void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv, int fw_engine) { unsigned long irqflags; bool delayed = false; if (!dev_priv->uncore.funcs.force_wake_put) return; /* Redirect to Gen9 specific routine */ if (IS_GEN9(dev_priv->dev)) { gen9_force_wake_put(dev_priv, fw_engine); goto out; } /* Redirect to VLV specific routine */ if (IS_VALLEYVIEW(dev_priv->dev)) { vlv_force_wake_put(dev_priv, fw_engine); goto out; } spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); WARN_ON(!dev_priv->uncore.forcewake_count); if (--dev_priv->uncore.forcewake_count == 0) { dev_priv->uncore.forcewake_count++; delayed = true; mod_timer_pinned(&dev_priv->uncore.force_wake_timer, jiffies + 1); } spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); out: if (!delayed) intel_runtime_pm_put(dev_priv); }
int intel_uc_init_hw(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; int ret, attempts; if (!i915.enable_guc_loading) return 0; guc_disable_communication(guc); gen9_reset_guc_interrupts(dev_priv); /* We need to notify the guc whenever we change the GGTT */ i915_ggtt_enable_guc(dev_priv); if (i915.enable_guc_submission) { /* * This is stuff we need to have available at fw load time * if we are planning to enable submission later */ ret = i915_guc_submission_init(dev_priv); if (ret) goto err_guc; } /* init WOPCM */ I915_WRITE(GUC_WOPCM_SIZE, intel_guc_wopcm_size(dev_priv)); I915_WRITE(DMA_GUC_WOPCM_OFFSET, GUC_WOPCM_OFFSET_VALUE | HUC_LOADING_AGENT_GUC); /* WaEnableuKernelHeaderValidFix:skl */ /* WaEnableGuCBootHashCheckNotSet:skl,bxt,kbl */ if (IS_GEN9(dev_priv)) attempts = 3; else attempts = 1; while (attempts--) { /* * Always reset the GuC just before (re)loading, so * that the state and timing are fairly predictable */ ret = __intel_uc_reset_hw(dev_priv); if (ret) goto err_submission; intel_huc_init_hw(&dev_priv->huc); ret = intel_guc_init_hw(&dev_priv->guc); if (ret == 0 || ret != -EAGAIN) break; DRM_DEBUG_DRIVER("GuC fw load failed: %d; will reset and " "retry %d more time(s)\n", ret, attempts); } /* Did we succeded or run out of retries? */ if (ret) goto err_log_capture; ret = guc_enable_communication(guc); if (ret) goto err_log_capture; intel_guc_auth_huc(dev_priv); if (i915.enable_guc_submission) { if (i915.guc_log_level >= 0) gen9_enable_guc_interrupts(dev_priv); ret = i915_guc_submission_enable(dev_priv); if (ret) goto err_interrupts; } return 0; /* * We've failed to load the firmware :( * * Decide whether to disable GuC submission and fall back to * execlist mode, and whether to hide the error by returning * zero or to return -EIO, which the caller will treat as a * nonfatal error (i.e. it doesn't prevent driver load, but * marks the GPU as wedged until reset). */ err_interrupts: guc_disable_communication(guc); gen9_disable_guc_interrupts(dev_priv); err_log_capture: guc_capture_load_err_log(guc); err_submission: if (i915.enable_guc_submission) i915_guc_submission_fini(dev_priv); err_guc: i915_ggtt_disable_guc(dev_priv); DRM_ERROR("GuC init failed\n"); if (i915.enable_guc_loading > 1 || i915.enable_guc_submission > 1) ret = -EIO; else ret = 0; if (i915.enable_guc_submission) { i915.enable_guc_submission = 0; DRM_NOTE("Falling back from GuC submission to execlist mode\n"); } i915.enable_guc_loading = 0; DRM_NOTE("GuC firmware loading disabled\n"); return ret; }
static void gen7_fbc_activate(struct drm_i915_private *dev_priv) { struct intel_fbc_reg_params *params = &dev_priv->fbc.params; u32 dpfc_ctl; int threshold = dev_priv->fbc.threshold; /* Display WA #0529: skl, kbl, bxt. */ if (IS_GEN9(dev_priv) && !IS_GEMINILAKE(dev_priv)) { u32 val = I915_READ(CHICKEN_MISC_4); val &= ~(FBC_STRIDE_OVERRIDE | FBC_STRIDE_MASK); if (i915_gem_object_get_tiling(params->vma->obj) != I915_TILING_X) val |= FBC_STRIDE_OVERRIDE | params->gen9_wa_cfb_stride; I915_WRITE(CHICKEN_MISC_4, val); } dpfc_ctl = 0; if (IS_IVYBRIDGE(dev_priv)) dpfc_ctl |= IVB_DPFC_CTL_PLANE(params->crtc.i9xx_plane); if (params->fb.format->cpp[0] == 2) threshold++; switch (threshold) { case 4: case 3: dpfc_ctl |= DPFC_CTL_LIMIT_4X; break; case 2: dpfc_ctl |= DPFC_CTL_LIMIT_2X; break; case 1: dpfc_ctl |= DPFC_CTL_LIMIT_1X; break; } if (params->vma->fence) { dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN; I915_WRITE(SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | params->vma->fence->id); I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset); } else { I915_WRITE(SNB_DPFC_CTL_SA,0); I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0); } if (dev_priv->fbc.false_color) dpfc_ctl |= FBC_CTL_FALSE_COLOR; if (IS_IVYBRIDGE(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:ivb */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS); } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */ I915_WRITE(CHICKEN_PIPESL_1(params->crtc.pipe), I915_READ(CHICKEN_PIPESL_1(params->crtc.pipe)) | HSW_FBCQ_DIS); } I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); intel_fbc_recompress(dev_priv); }
void intel_uncore_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; setup_timer(&dev_priv->uncore.force_wake_timer, gen6_force_wake_timer, (unsigned long)dev_priv); __intel_uncore_early_sanitize(dev, false); if (IS_GEN9(dev)) { dev_priv->uncore.funcs.force_wake_get = __gen9_force_wake_get; dev_priv->uncore.funcs.force_wake_put = __gen9_force_wake_put; } else if (IS_VALLEYVIEW(dev)) { dev_priv->uncore.funcs.force_wake_get = __vlv_force_wake_get; dev_priv->uncore.funcs.force_wake_put = __vlv_force_wake_put; } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { dev_priv->uncore.funcs.force_wake_get = __gen7_gt_force_wake_mt_get; dev_priv->uncore.funcs.force_wake_put = __gen7_gt_force_wake_mt_put; } else if (IS_IVYBRIDGE(dev)) { u32 ecobus; /* IVB configs may use multi-threaded forcewake */ /* A small trick here - if the bios hasn't configured * MT forcewake, and if the device is in RC6, then * force_wake_mt_get will not wake the device and the * ECOBUS read will return zero. Which will be * (correctly) interpreted by the test below as MT * forcewake being disabled. */ mutex_lock(&dev->struct_mutex); __gen7_gt_force_wake_mt_get(dev_priv, FORCEWAKE_ALL); ecobus = __raw_i915_read32(dev_priv, ECOBUS); __gen7_gt_force_wake_mt_put(dev_priv, FORCEWAKE_ALL); mutex_unlock(&dev->struct_mutex); if (ecobus & FORCEWAKE_MT_ENABLE) { dev_priv->uncore.funcs.force_wake_get = __gen7_gt_force_wake_mt_get; dev_priv->uncore.funcs.force_wake_put = __gen7_gt_force_wake_mt_put; } else { DRM_INFO("No MT forcewake available on Ivybridge, this can result in issues\n"); DRM_INFO("when using vblank-synced partial screen updates.\n"); dev_priv->uncore.funcs.force_wake_get = __gen6_gt_force_wake_get; dev_priv->uncore.funcs.force_wake_put = __gen6_gt_force_wake_put; } } else if (IS_GEN6(dev)) { dev_priv->uncore.funcs.force_wake_get = __gen6_gt_force_wake_get; dev_priv->uncore.funcs.force_wake_put = __gen6_gt_force_wake_put; } switch (INTEL_INFO(dev)->gen) { default: WARN_ON(1); return; case 9: ASSIGN_WRITE_MMIO_VFUNCS(gen9); ASSIGN_READ_MMIO_VFUNCS(gen9); break; case 8: if (IS_CHERRYVIEW(dev)) { ASSIGN_WRITE_MMIO_VFUNCS(chv); ASSIGN_READ_MMIO_VFUNCS(chv); } else { ASSIGN_WRITE_MMIO_VFUNCS(gen8); ASSIGN_READ_MMIO_VFUNCS(gen6); } break; case 7: case 6: if (IS_HASWELL(dev)) { ASSIGN_WRITE_MMIO_VFUNCS(hsw); } else { ASSIGN_WRITE_MMIO_VFUNCS(gen6); } if (IS_VALLEYVIEW(dev)) { ASSIGN_READ_MMIO_VFUNCS(vlv); } else { ASSIGN_READ_MMIO_VFUNCS(gen6); } break; case 5: ASSIGN_WRITE_MMIO_VFUNCS(gen5); ASSIGN_READ_MMIO_VFUNCS(gen5); break; case 4: case 3: case 2: ASSIGN_WRITE_MMIO_VFUNCS(gen4); ASSIGN_READ_MMIO_VFUNCS(gen4); break; } i915_check_and_clear_faults(dev); }
static uint32_t *parse_csr_fw(struct drm_i915_private *dev_priv, const struct firmware *fw) { struct intel_css_header *css_header; struct intel_package_header *package_header; struct intel_dmc_header *dmc_header; struct intel_csr *csr = &dev_priv->csr; const struct stepping_info *si = intel_get_stepping_info(dev_priv); uint32_t dmc_offset = CSR_DEFAULT_FW_OFFSET, readcount = 0, nbytes; uint32_t max_fw_size = 0; uint32_t i; uint32_t *dmc_payload; uint32_t required_version; if (!fw) return NULL; /* Extract CSS Header information*/ css_header = (struct intel_css_header *)fw->data; if (sizeof(struct intel_css_header) != (css_header->header_len * 4)) { DRM_ERROR("DMC firmware has wrong CSS header length " "(%u bytes)\n", (css_header->header_len * 4)); return NULL; } csr->version = css_header->version; if (csr->fw_path == i915_modparams.dmc_firmware_path) { /* Bypass version check for firmware override. */ required_version = csr->version; } else if (IS_ICELAKE(dev_priv)) { required_version = ICL_CSR_VERSION_REQUIRED; } else if (IS_CANNONLAKE(dev_priv)) { required_version = CNL_CSR_VERSION_REQUIRED; } else if (IS_GEMINILAKE(dev_priv)) { required_version = GLK_CSR_VERSION_REQUIRED; } else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) { required_version = KBL_CSR_VERSION_REQUIRED; } else if (IS_SKYLAKE(dev_priv)) { required_version = SKL_CSR_VERSION_REQUIRED; } else if (IS_BROXTON(dev_priv)) { required_version = BXT_CSR_VERSION_REQUIRED; } else { MISSING_CASE(INTEL_REVID(dev_priv)); required_version = 0; } if (csr->version != required_version) { DRM_INFO("Refusing to load DMC firmware v%u.%u," " please use v%u.%u\n", CSR_VERSION_MAJOR(csr->version), CSR_VERSION_MINOR(csr->version), CSR_VERSION_MAJOR(required_version), CSR_VERSION_MINOR(required_version)); return NULL; } readcount += sizeof(struct intel_css_header); /* Extract Package Header information*/ package_header = (struct intel_package_header *) &fw->data[readcount]; if (sizeof(struct intel_package_header) != (package_header->header_len * 4)) { DRM_ERROR("DMC firmware has wrong package header length " "(%u bytes)\n", (package_header->header_len * 4)); return NULL; } readcount += sizeof(struct intel_package_header); /* Search for dmc_offset to find firware binary. */ for (i = 0; i < package_header->num_entries; i++) { if (package_header->fw_info[i].substepping == '*' && si->stepping == package_header->fw_info[i].stepping) { dmc_offset = package_header->fw_info[i].offset; break; } else if (si->stepping == package_header->fw_info[i].stepping && si->substepping == package_header->fw_info[i].substepping) { dmc_offset = package_header->fw_info[i].offset; break; } else if (package_header->fw_info[i].stepping == '*' && package_header->fw_info[i].substepping == '*') dmc_offset = package_header->fw_info[i].offset; } if (dmc_offset == CSR_DEFAULT_FW_OFFSET) { DRM_ERROR("DMC firmware not supported for %c stepping\n", si->stepping); return NULL; } /* Convert dmc_offset into number of bytes. By default it is in dwords*/ dmc_offset *= 4; readcount += dmc_offset; /* Extract dmc_header information. */ dmc_header = (struct intel_dmc_header *)&fw->data[readcount]; if (sizeof(struct intel_dmc_header) != (dmc_header->header_len)) { DRM_ERROR("DMC firmware has wrong dmc header length " "(%u bytes)\n", (dmc_header->header_len)); return NULL; } readcount += sizeof(struct intel_dmc_header); /* Cache the dmc header info. */ if (dmc_header->mmio_count > ARRAY_SIZE(csr->mmioaddr)) { DRM_ERROR("DMC firmware has wrong mmio count %u\n", dmc_header->mmio_count); return NULL; } csr->mmio_count = dmc_header->mmio_count; for (i = 0; i < dmc_header->mmio_count; i++) { if (dmc_header->mmioaddr[i] < CSR_MMIO_START_RANGE || dmc_header->mmioaddr[i] > CSR_MMIO_END_RANGE) { DRM_ERROR("DMC firmware has wrong mmio address 0x%x\n", dmc_header->mmioaddr[i]); return NULL; } csr->mmioaddr[i] = _MMIO(dmc_header->mmioaddr[i]); csr->mmiodata[i] = dmc_header->mmiodata[i]; } /* fw_size is in dwords, so multiplied by 4 to convert into bytes. */ nbytes = dmc_header->fw_size * 4; if (INTEL_GEN(dev_priv) >= 11) max_fw_size = ICL_CSR_MAX_FW_SIZE; else if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) max_fw_size = GLK_CSR_MAX_FW_SIZE; else if (IS_GEN9(dev_priv)) max_fw_size = BXT_CSR_MAX_FW_SIZE; else MISSING_CASE(INTEL_REVID(dev_priv)); if (nbytes > max_fw_size) { DRM_ERROR("DMC FW too big (%u bytes)\n", nbytes); return NULL; } csr->dmc_fw_size = dmc_header->fw_size; dmc_payload = kmalloc(nbytes, GFP_KERNEL); if (!dmc_payload) { DRM_ERROR("Memory allocation failed for dmc payload\n"); return NULL; } return memcpy(dmc_payload, &fw->data[readcount], nbytes); }