Пример #1
0
rtx
compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
		      rtx cinsn)
{
  rtx seq, jump, cond;
  enum machine_mode mode;

  mode = GET_MODE (op0);
  if (mode == VOIDmode)
    mode = GET_MODE (op1);

  start_sequence ();
  if (GET_MODE_CLASS (mode) == MODE_CC)
    {
      /* A hack -- there seems to be no easy generic way how to make a
	 conditional jump from a ccmode comparison.  */
      gcc_assert (cinsn);
      cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
      gcc_assert (GET_CODE (cond) == comp);
      gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
      gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
      emit_jump_insn (copy_insn (PATTERN (cinsn)));
      jump = get_last_insn ();
      gcc_assert (JUMP_P (jump));
      JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
      LABEL_NUSES (JUMP_LABEL (jump))++;
      redirect_jump (jump, label, 0);
    }
  else
    {
      gcc_assert (!cinsn);

      op0 = force_operand (op0, NULL_RTX);
      op1 = force_operand (op1, NULL_RTX);
      do_compare_rtx_and_jump (op0, op1, comp, 0,
			       mode, NULL_RTX, NULL_RTX, label, -1);
      jump = get_last_insn ();
      gcc_assert (JUMP_P (jump));
      JUMP_LABEL (jump) = label;
      LABEL_NUSES (label)++;
    }
  add_reg_note (jump, REG_BR_PROB, GEN_INT (prob));

  seq = get_insns ();
  end_sequence ();

  return seq;
}
Пример #2
0
/*
 * find all asm level function returns and forcibly set the highest bit of the return address
 */
static unsigned int execute_kernexec_retaddr(void)
{
	rtx insn;

	// 1. find function returns
	for (insn = get_insns(); insn; insn = NEXT_INSN(insn)) {
		// rtl match: (jump_insn 41 40 42 2 (return) fptr.c:42 634 {return_internal} (nil))
		//            (jump_insn 12 9 11 2 (parallel [ (return) (unspec [ (0) ] UNSPEC_REP) ]) fptr.c:46 635 {return_internal_long} (nil))
		//            (jump_insn 97 96 98 6 (simple_return) fptr.c:50 -1 (nil) -> simple_return)
		rtx body;

		// is it a retn
		if (!JUMP_P(insn))
			continue;
		body = PATTERN(insn);
		if (GET_CODE(body) == PARALLEL)
			body = XVECEXP(body, 0, 0);
		if (!ANY_RETURN_P(body))
			continue;
		kernexec_instrument_retaddr(insn);
	}

//	print_simple_rtl(stderr, get_insns());
//	print_rtl(stderr, get_insns());

	return 0;
}
Пример #3
0
void
reemit_insn_block_notes (void)
{
  tree cur_block = DECL_INITIAL (cfun->decl);
  rtx insn, note;

  insn = get_insns ();
  if (!active_insn_p (insn))
    insn = next_active_insn (insn);
  for (; insn; insn = next_active_insn (insn))
    {
      tree this_block;

      /* Avoid putting scope notes between jump table and its label.  */
      if (JUMP_P (insn)
	  && (GET_CODE (PATTERN (insn)) == ADDR_VEC
	      || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
	continue;

      this_block = insn_scope (insn);
      /* For sequences compute scope resulting from merging all scopes
	 of instructions nested inside.  */
      if (GET_CODE (PATTERN (insn)) == SEQUENCE)
	{
	  int i;
	  rtx body = PATTERN (insn);

	  this_block = NULL;
	  for (i = 0; i < XVECLEN (body, 0); i++)
	    this_block = choose_inner_scope (this_block,
					 insn_scope (XVECEXP (body, 0, i)));
	}
      if (! this_block)
	continue;

      if (this_block != cur_block)
	{
	  change_scope (insn, cur_block, this_block);
	  cur_block = this_block;
	}
    }

  /* change_scope emits before the insn, not after.  */
  note = emit_note (NOTE_INSN_DELETED);
  change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
  delete_insn (note);

  reorder_blocks ();
}
Пример #4
0
/* Process 1OPI Integer instructions */
bool eval_Integer_1OPI(struct lilith* vm, struct Instruction* c)
{
	#ifdef DEBUG
	char Name[20] = "ILLEGAL_1OPI";
	#endif

	uint32_t Opcode = (c->raw2 * 16) + c->raw_XOP;

	switch(Opcode)
	{
		case 0x2C0: /* JUMP.C */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.C", 19);
			#elif TRACE
			record_trace("JUMP.C");
			#endif

			JUMP_C(vm, c);
			break;
		}
		case 0x2C1: /* JUMP.B */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.B", 19);
			#elif TRACE
			record_trace("JUMP.B");
			#endif

			JUMP_B(vm, c);
			break;
		}
		case 0x2C2: /* JUMP.O */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.O", 19);
			#elif TRACE
			record_trace("JUMP.O");
			#endif

			JUMP_O(vm, c);
			break;
		}
		case 0x2C3: /* JUMP.G */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.G", 19);
			#elif TRACE
			record_trace("JUMP.G");
			#endif

			JUMP_G(vm, c);
			break;
		}
		case 0x2C4: /* JUMP.GE */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.GE", 19);
			#elif TRACE
			record_trace("JUMP.GE");
			#endif

			JUMP_GE(vm, c);
			break;
		}
		case 0x2C5: /* JUMP.E */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.E", 19);
			#elif TRACE
			record_trace("JUMP.E");
			#endif

			JUMP_E(vm, c);
			break;
		}
		case 0x2C6: /* JUMP.NE */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.NE", 19);
			#elif TRACE
			record_trace("JUMP.NE");
			#endif

			JUMP_NE(vm, c);
			break;
		}
		case 0x2C7: /* JUMP.LE */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.LE", 19);
			#elif TRACE
			record_trace("JUMP.LE");
			#endif

			JUMP_LE(vm, c);
			break;
		}
		case 0x2C8: /* JUMP.L */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.L", 19);
			#elif TRACE
			record_trace("JUMP.L");
			#endif

			JUMP_L(vm, c);
			break;
		}
		case 0x2C9: /* JUMP.Z */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.Z", 19);
			#elif TRACE
			record_trace("JUMP.Z");
			#endif

			JUMP_Z(vm, c);
			break;
		}
		case 0x2CA: /* JUMP.NZ */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.NZ", 19);
			#elif TRACE
			record_trace("JUMP.NZ");
			#endif

			JUMP_NZ(vm, c);
			break;
		}
		case 0x2CB: /* JUMP.P */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.P", 19);
			#elif TRACE
			record_trace("JUMP.P");
			#endif

			JUMP_P(vm, c);
			break;
		}
		case 0x2CC: /* JUMP.NP */
		{
			#ifdef DEBUG
			strncpy(Name, "JUMP.NP", 19);
			#elif TRACE
			record_trace("JUMP.NP");
			#endif

			JUMP_NP(vm, c);
			break;
		}
		case 0x2D0: /* CALLI */
		{
			#ifdef DEBUG
			strncpy(Name, "CALLI", 19);
			#elif TRACE
			record_trace("CALLI");
			#endif

			CALLI(vm, c);
			break;
		}
		case 0x2D1: /* LOADI */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADI", 19);
			#elif TRACE
			record_trace("LOADI");
			#endif

			LOADI(vm, c);
			break;
		}
		case 0x2D2: /* LOADUI*/
		{
			#ifdef DEBUG
			strncpy(Name, "LOADUI", 19);
			#elif TRACE
			record_trace("LOADUI");
			#endif

			LOADUI(vm, c);
			break;
		}
		case 0x2D3: /* SALI */
		{
			#ifdef DEBUG
			strncpy(Name, "SALI", 19);
			#elif TRACE
			record_trace("SALI");
			#endif

			SALI(vm, c);
			break;
		}
		case 0x2D4: /* SARI */
		{
			#ifdef DEBUG
			strncpy(Name, "SARI", 19);
			#elif TRACE
			record_trace("SARI");
			#endif

			SARI(vm, c);
			break;
		}
		case 0x2D5: /* SL0I */
		{
			#ifdef DEBUG
			strncpy(Name, "SL0I", 19);
			#elif TRACE
			record_trace("SL0I");
			#endif

			SL0I(vm, c);
			break;
		}
		case 0x2D6: /* SR0I */
		{
			#ifdef DEBUG
			strncpy(Name, "SR0I", 19);
			#elif TRACE
			record_trace("SR0I");
			#endif

			SR0I(vm, c);
			break;
		}
		case 0x2D7: /* SL1I */
		{
			#ifdef DEBUG
			strncpy(Name, "SL1I", 19);
			#elif TRACE
			record_trace("SL1I");
			#endif

			SL1I(vm, c);
			break;
		}
		case 0x2D8: /* SR1I */
		{
			#ifdef DEBUG
			strncpy(Name, "SR1I", 19);
			#elif TRACE
			record_trace("SR1I");
			#endif

			SR1I(vm, c);
			break;
		}
		case 0x2E0: /* LOADR */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADR", 19);
			#elif TRACE
			record_trace("LOADR");
			#endif

			LOADR(vm, c);
			break;
		}
		case 0x2E1: /* LOADR8 */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADR8", 19);
			#elif TRACE
			record_trace("LOADR8");
			#endif

			LOADR8(vm, c);
			break;
		}
		case 0x2E2: /* LOADRU8 */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADRU8", 19);
			#elif TRACE
			record_trace("LOADRU8");
			#endif

			LOADRU8(vm, c);
			break;
		}
		case 0x2E3: /* LOADR16 */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADR16", 19);
			#elif TRACE
			record_trace("LOADR16");
			#endif

			LOADR16(vm, c);
			break;
		}
		case 0x2E4: /* LOADRU16 */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADRU16", 19);
			#elif TRACE
			record_trace("LOADRU16");
			#endif

			LOADRU16(vm, c);
			break;
		}
		case 0x2E5: /* LOADR32 */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADR32", 19);
			#elif TRACE
			record_trace("LOADR32");
			#endif

			LOADR32(vm, c);
			break;
		}
		case 0x2E6: /* LOADRU32 */
		{
			#ifdef DEBUG
			strncpy(Name, "LOADRU32", 19);
			#elif TRACE
			record_trace("LOADRU32");
			#endif

			LOADRU32(vm, c);
			break;
		}
		case 0x2F0: /* STORER */
		{
			#ifdef DEBUG
			strncpy(Name, "STORER", 19);
			#elif TRACE
			record_trace("STORER");
			#endif

			STORER(vm, c);
			break;
		}
		case 0x2F1: /* STORER8 */
		{
			#ifdef DEBUG
			strncpy(Name, "STORER8", 19);
			#elif TRACE
			record_trace("STORER8");
			#endif

			STORER8(vm, c);
			break;
		}
		case 0x2F2: /* STORER16 */
		{
			#ifdef DEBUG
			strncpy(Name, "STORER16", 19);
			#elif TRACE
			record_trace("STORER16");
			#endif

			STORER16(vm, c);
			break;
		}
		case 0x2F3: /* STORER32 */
		{
			#ifdef DEBUG
			strncpy(Name, "STORER32", 19);
			#elif TRACE
			record_trace("STORER32");
			#endif

			STORER32(vm, c);
			break;
		}
		case 0xA00: /* CMPSKIPI.G */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPI.G", 19);
			#elif TRACE
			record_trace("CMPSKIPI.G");
			#endif

			CMPSKIPI_G(vm, c);
			break;
		}
		case 0xA01: /* CMPSKIPI.GE */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPI.GE", 19);
			#elif TRACE
			record_trace("CMPSKIPI.GE");
			#endif

			CMPSKIPI_GE(vm, c);
			break;
		}
		case 0xA02: /* CMPSKIPI.E */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPI.E", 19);
			#elif TRACE
			record_trace("CMPSKIPI.E");
			#endif

			CMPSKIPI_E(vm, c);
			break;
		}
		case 0xA03: /* CMPSKIPI.NE */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPI.NE", 19);
			#elif TRACE
			record_trace("CMPSKIPI.NE");
			#endif

			CMPSKIPI_NE(vm, c);
			break;
		}
		case 0xA04: /* CMPSKIPI.LE */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPI.LE", 19);
			#elif TRACE
			record_trace("CMPSKIPI.LE");
			#endif

			CMPSKIPI_LE(vm, c);
			break;
		}
		case 0xA05: /* CMPSKIPI.L */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPI.L", 19);
			#elif TRACE
			record_trace("CMPSKIPI.L");
			#endif

			CMPSKIPI_L(vm, c);
			break;
		}
		case 0xA10: /* CMPSKIPUI.G */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPUI.G", 19);
			#elif TRACE
			record_trace("CMPSKIPUI.G");
			#endif

			CMPSKIPUI_G(vm, c);
			break;
		}
		case 0xA11: /* CMPSKIPUI.GE */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPUI.GE", 19);
			#elif TRACE
			record_trace("CMPSKIPUI.GE");
			#endif

			CMPSKIPUI_GE(vm, c);
			break;
		}
		case 0xA14: /* CMPSKIPUI.LE */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPUI.LE", 19);
			#elif TRACE
			record_trace("CMPSKIPUI.LE");
			#endif

			CMPSKIPUI_LE(vm, c);
			break;
		}
		case 0xA15: /* CMPSKIPUI.L */
		{
			#ifdef DEBUG
			strncpy(Name, "CMPSKIPUI.L", 19);
			#elif TRACE
			record_trace("CMPSKIPUI.L");
			#endif

			CMPSKIPUI_L(vm, c);
			break;
		}
		default:
		{
			illegal_instruction(vm, c);
			break;
		}
	}
	#ifdef DEBUG
	fprintf(stdout, "# %s reg%u %d\n", Name, c->reg0, c->raw_Immediate);
	#endif
	return false;
}
Пример #5
0
void
ubsan_expand_si_overflow_mul_check (gimple stmt)
{
  rtx res, op0, op1;
  tree lhs, fn, arg0, arg1;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;

  lhs = gimple_call_lhs (stmt);
  arg0 = gimple_call_arg (stmt, 0);
  arg1 = gimple_call_arg (stmt, 1);
  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();

  do_pending_stack_adjust ();
  op0 = expand_normal (arg0);
  op1 = expand_normal (arg1);

  machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

  enum insn_code icode = optab_handler (mulv4_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[4];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op0, mode);
      create_input_operand (&ops[2], op1, mode);
      create_fixed_operand (&ops[3], do_error);
      if (maybe_expand_insn (icode, 4, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      struct separate_ops ops;
      machine_mode hmode
	= mode_for_size (GET_MODE_PRECISION (mode) / 2, MODE_INT, 1);
      ops.op0 = arg0;
      ops.op1 = arg1;
      ops.op2 = NULL_TREE;
      ops.location = gimple_location (stmt);
      if (GET_MODE_2XWIDER_MODE (mode) != VOIDmode
	  && targetm.scalar_mode_supported_p (GET_MODE_2XWIDER_MODE (mode)))
	{
	  machine_mode wmode = GET_MODE_2XWIDER_MODE (mode);
	  ops.code = WIDEN_MULT_EXPR;
	  ops.type
	    = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), 0);

	  res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
	  rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res,
				     GET_MODE_PRECISION (mode), NULL_RTX, 0);
	  hipart = gen_lowpart (mode, hipart);
	  res = gen_lowpart (mode, res);
	  rtx signbit = expand_shift (RSHIFT_EXPR, mode, res,
				      GET_MODE_PRECISION (mode) - 1,
				      NULL_RTX, 0);
	  /* RES is low half of the double width result, HIPART
	     the high half.  There was overflow if
	     HIPART is different from RES < 0 ? -1 : 0.  */
	  emit_cmp_and_jump_insns (signbit, hipart, EQ, NULL_RTX, mode,
				   false, done_label, PROB_VERY_LIKELY);
	}
      else if (hmode != BLKmode
	       && 2 * GET_MODE_PRECISION (hmode) == GET_MODE_PRECISION (mode))
	{
	  rtx_code_label *large_op0 = gen_label_rtx ();
	  rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
	  rtx_code_label *one_small_one_large = gen_label_rtx ();
	  rtx_code_label *both_ops_large = gen_label_rtx ();
	  rtx_code_label *after_hipart_neg = gen_label_rtx ();
	  rtx_code_label *after_lopart_neg = gen_label_rtx ();
	  rtx_code_label *do_overflow = gen_label_rtx ();
	  rtx_code_label *hipart_different = gen_label_rtx ();

	  unsigned int hprec = GET_MODE_PRECISION (hmode);
	  rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
				      NULL_RTX, 0);
	  hipart0 = gen_lowpart (hmode, hipart0);
	  rtx lopart0 = gen_lowpart (hmode, op0);
	  rtx signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
				       NULL_RTX, 0);
	  rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
				      NULL_RTX, 0);
	  hipart1 = gen_lowpart (hmode, hipart1);
	  rtx lopart1 = gen_lowpart (hmode, op1);
	  rtx signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
				       NULL_RTX, 0);

	  res = gen_reg_rtx (mode);

	  /* True if op0 resp. op1 are known to be in the range of
	     halfstype.  */
	  bool op0_small_p = false;
	  bool op1_small_p = false;
	  /* True if op0 resp. op1 are known to have all zeros or all ones
	     in the upper half of bits, but are not known to be
	     op{0,1}_small_p.  */
	  bool op0_medium_p = false;
	  bool op1_medium_p = false;
	  /* -1 if op{0,1} is known to be negative, 0 if it is known to be
	     nonnegative, 1 if unknown.  */
	  int op0_sign = 1;
	  int op1_sign = 1;

	  if (TREE_CODE (arg0) == SSA_NAME)
	    {
	      wide_int arg0_min, arg0_max;
	      if (get_range_info (arg0, &arg0_min, &arg0_max) == VR_RANGE)
		{
		  unsigned int mprec0 = wi::min_precision (arg0_min, SIGNED);
		  unsigned int mprec1 = wi::min_precision (arg0_max, SIGNED);
		  if (mprec0 <= hprec && mprec1 <= hprec)
		    op0_small_p = true;
		  else if (mprec0 <= hprec + 1 && mprec1 <= hprec + 1)
		    op0_medium_p = true;
		  if (!wi::neg_p (arg0_min, TYPE_SIGN (TREE_TYPE (arg0))))
		    op0_sign = 0;
		  else if (wi::neg_p (arg0_max, TYPE_SIGN (TREE_TYPE (arg0))))
		    op0_sign = -1;
		}
	    }
	  if (TREE_CODE (arg1) == SSA_NAME)
	    {
	      wide_int arg1_min, arg1_max;
	      if (get_range_info (arg1, &arg1_min, &arg1_max) == VR_RANGE)
		{
		  unsigned int mprec0 = wi::min_precision (arg1_min, SIGNED);
		  unsigned int mprec1 = wi::min_precision (arg1_max, SIGNED);
		  if (mprec0 <= hprec && mprec1 <= hprec)
		    op1_small_p = true;
		  else if (mprec0 <= hprec + 1 && mprec1 <= hprec + 1)
		    op1_medium_p = true;
		  if (!wi::neg_p (arg1_min, TYPE_SIGN (TREE_TYPE (arg1))))
		    op1_sign = 0;
		  else if (wi::neg_p (arg1_max, TYPE_SIGN (TREE_TYPE (arg1))))
		    op1_sign = -1;
		}
	    }

	  int smaller_sign = 1;
	  int larger_sign = 1;
	  if (op0_small_p)
	    {
	      smaller_sign = op0_sign;
	      larger_sign = op1_sign;
	    }
	  else if (op1_small_p)
	    {
	      smaller_sign = op1_sign;
	      larger_sign = op0_sign;
	    }
	  else if (op0_sign == op1_sign)
	    {
	      smaller_sign = op0_sign;
	      larger_sign = op0_sign;
	    }

	  if (!op0_small_p)
	    emit_cmp_and_jump_insns (signbit0, hipart0, NE, NULL_RTX, hmode,
				     false, large_op0, PROB_UNLIKELY);

	  if (!op1_small_p)
	    emit_cmp_and_jump_insns (signbit1, hipart1, NE, NULL_RTX, hmode,
				     false, small_op0_large_op1,
				     PROB_UNLIKELY);

	  /* If both op0 and op1 are sign extended from hmode to mode,
	     the multiplication will never overflow.  We can do just one
	     hmode x hmode => mode widening multiplication.  */
	  if (GET_CODE (lopart0) == SUBREG)
	    {
	      SUBREG_PROMOTED_VAR_P (lopart0) = 1;
	      SUBREG_PROMOTED_SET (lopart0, 0);
	    }
	  if (GET_CODE (lopart1) == SUBREG)
	    {
	      SUBREG_PROMOTED_VAR_P (lopart1) = 1;
	      SUBREG_PROMOTED_SET (lopart1, 0);
	    }
	  tree halfstype = build_nonstandard_integer_type (hprec, 0);
	  ops.op0 = make_tree (halfstype, lopart0);
	  ops.op1 = make_tree (halfstype, lopart1);
	  ops.code = WIDEN_MULT_EXPR;
	  ops.type = TREE_TYPE (arg0);
	  rtx thisres
	    = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, thisres);
	  emit_jump (done_label);

	  emit_label (small_op0_large_op1);

	  /* If op0 is sign extended from hmode to mode, but op1 is not,
	     just swap the arguments and handle it as op1 sign extended,
	     op0 not.  */
	  rtx larger = gen_reg_rtx (mode);
	  rtx hipart = gen_reg_rtx (hmode);
	  rtx lopart = gen_reg_rtx (hmode);
	  emit_move_insn (larger, op1);
	  emit_move_insn (hipart, hipart1);
	  emit_move_insn (lopart, lopart0);
	  emit_jump (one_small_one_large);

	  emit_label (large_op0);

	  if (!op1_small_p)
	    emit_cmp_and_jump_insns (signbit1, hipart1, NE, NULL_RTX, hmode,
				     false, both_ops_large, PROB_UNLIKELY);

	  /* If op1 is sign extended from hmode to mode, but op0 is not,
	     prepare larger, hipart and lopart pseudos and handle it together
	     with small_op0_large_op1.  */
	  emit_move_insn (larger, op0);
	  emit_move_insn (hipart, hipart0);
	  emit_move_insn (lopart, lopart1);

	  emit_label (one_small_one_large);

	  /* lopart is the low part of the operand that is sign extended
	     to mode, larger is the the other operand, hipart is the
	     high part of larger and lopart0 and lopart1 are the low parts
	     of both operands.
	     We perform lopart0 * lopart1 and lopart * hipart widening
	     multiplications.  */
	  tree halfutype = build_nonstandard_integer_type (hprec, 1);
	  ops.op0 = make_tree (halfutype, lopart0);
	  ops.op1 = make_tree (halfutype, lopart1);
	  rtx lo0xlo1
	    = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);

	  ops.op0 = make_tree (halfutype, lopart);
	  ops.op1 = make_tree (halfutype, hipart);
	  rtx loxhi = gen_reg_rtx (mode);
	  rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (loxhi, tem);

	  /* if (hipart < 0) loxhi -= lopart << (bitsize / 2);  */
	  if (larger_sign == 0)
	    emit_jump (after_hipart_neg);
	  else if (larger_sign != -1)
	    emit_cmp_and_jump_insns (hipart, const0_rtx, GE, NULL_RTX, hmode,
				     false, after_hipart_neg, PROB_EVEN);

	  tem = convert_modes (mode, hmode, lopart, 1);
	  tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
	  tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
				     1, OPTAB_DIRECT);
	  emit_move_insn (loxhi, tem);

	  emit_label (after_hipart_neg);

	  /* if (lopart < 0) loxhi -= larger;  */
	  if (smaller_sign == 0)
	    emit_jump (after_lopart_neg);
	  else if (smaller_sign != -1)
	    emit_cmp_and_jump_insns (lopart, const0_rtx, GE, NULL_RTX, hmode,
				     false, after_lopart_neg, PROB_EVEN);

	  tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
				     1, OPTAB_DIRECT);
	  emit_move_insn (loxhi, tem);

	  emit_label (after_lopart_neg);

	  /* loxhi += (uns) lo0xlo1 >> (bitsize / 2);  */
	  tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
	  tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
				     1, OPTAB_DIRECT);
	  emit_move_insn (loxhi, tem);

	  /* if (loxhi >> (bitsize / 2)
		 == (hmode) loxhi >> (bitsize / 2 - 1))  */
	  rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
					  NULL_RTX, 0);
	  hipartloxhi = gen_lowpart (hmode, hipartloxhi);
	  rtx lopartloxhi = gen_lowpart (hmode, loxhi);
	  rtx signbitloxhi = expand_shift (RSHIFT_EXPR, hmode, lopartloxhi,
					   hprec - 1, NULL_RTX, 0);

	  emit_cmp_and_jump_insns (signbitloxhi, hipartloxhi, NE, NULL_RTX,
				   hmode, false, do_overflow,
				   PROB_VERY_UNLIKELY);

	  /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1;  */
	  rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
					   NULL_RTX, 1);
	  tem = convert_modes (mode, hmode, gen_lowpart (hmode, lo0xlo1), 1);

	  tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
				     1, OPTAB_DIRECT);
	  if (tem != res)
	    emit_move_insn (res, tem);
	  emit_jump (done_label);

	  emit_label (both_ops_large);

	  /* If both operands are large (not sign extended from hmode),
	     then perform the full multiplication which will be the result
	     of the operation.  The only cases which don't overflow are
	     some cases where both hipart0 and highpart1 are 0 or -1.  */
	  ops.code = MULT_EXPR;
	  ops.op0 = make_tree (TREE_TYPE (arg0), op0);
	  ops.op1 = make_tree (TREE_TYPE (arg0), op1);
	  tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, tem);

	  if (!op0_medium_p)
	    {
	      tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
					 NULL_RTX, 1, OPTAB_DIRECT);
	      emit_cmp_and_jump_insns (tem, const1_rtx, GTU, NULL_RTX, hmode,
				       true, do_error, PROB_VERY_UNLIKELY);
	    }

	  if (!op1_medium_p)
	    {
	      tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
					 NULL_RTX, 1, OPTAB_DIRECT);
	      emit_cmp_and_jump_insns (tem, const1_rtx, GTU, NULL_RTX, hmode,
				       true, do_error, PROB_VERY_UNLIKELY);
	    }

	  /* At this point hipart{0,1} are both in [-1, 0].  If they are the
	     same, overflow happened if res is negative, if they are different,
	     overflow happened if res is positive.  */
	  if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
	    emit_jump (hipart_different);
	  else if (op0_sign == 1 || op1_sign == 1)
	    emit_cmp_and_jump_insns (hipart0, hipart1, NE, NULL_RTX, hmode,
				     true, hipart_different, PROB_EVEN);

	  emit_cmp_and_jump_insns (res, const0_rtx, LT, NULL_RTX, mode, false,
				   do_error, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);

	  emit_label (hipart_different);

	  emit_cmp_and_jump_insns (res, const0_rtx, GE, NULL_RTX, mode, false,
				   do_error, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);

	  emit_label (do_overflow);

	  /* Overflow, do full multiplication and fallthru into do_error.  */
	  ops.op0 = make_tree (TREE_TYPE (arg0), op0);
	  ops.op1 = make_tree (TREE_TYPE (arg0), op1);
	  tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, tem);
	}
      else
	{
	  ops.code = MULT_EXPR;
	  ops.type = TREE_TYPE (arg0);
	  res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_jump (done_label);
	}
    }

  emit_label (do_error);
  /* Expand the ubsan builtin call.  */
  push_temp_slots ();
  fn = ubsan_build_overflow_builtin (MULT_EXPR, gimple_location (stmt),
				     TREE_TYPE (arg0), arg0, arg1);
  expand_normal (fn);
  pop_temp_slots ();
  do_pending_stack_adjust ();

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    emit_move_insn (target, res);
}
Пример #6
0
void
ubsan_expand_si_overflow_neg_check (gimple stmt)
{
  rtx res, op1;
  tree lhs, fn, arg1;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;

  lhs = gimple_call_lhs (stmt);
  arg1 = gimple_call_arg (stmt, 1);
  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();

  do_pending_stack_adjust ();
  op1 = expand_normal (arg1);

  machine_mode mode = TYPE_MODE (TREE_TYPE (arg1));
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

  enum insn_code icode = optab_handler (negv3_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[3];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op1, mode);
      create_fixed_operand (&ops[2], do_error);
      if (maybe_expand_insn (icode, 3, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);

      /* Compare the operand with the most negative value.  */
      rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
      emit_cmp_and_jump_insns (op1, minv, NE, NULL_RTX, mode, false,
			       done_label, PROB_VERY_LIKELY);
    }

  emit_label (do_error);
  /* Expand the ubsan builtin call.  */
  push_temp_slots ();
  fn = ubsan_build_overflow_builtin (NEGATE_EXPR, gimple_location (stmt),
				     TREE_TYPE (arg1), arg1, NULL_TREE);
  expand_normal (fn);
  pop_temp_slots ();
  do_pending_stack_adjust ();

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    emit_move_insn (target, res);
}
Пример #7
0
void
ubsan_expand_si_overflow_addsub_check (tree_code code, gimple stmt)
{
  rtx res, op0, op1;
  tree lhs, fn, arg0, arg1;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;

  lhs = gimple_call_lhs (stmt);
  arg0 = gimple_call_arg (stmt, 0);
  arg1 = gimple_call_arg (stmt, 1);
  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();
  do_pending_stack_adjust ();
  op0 = expand_normal (arg0);
  op1 = expand_normal (arg1);

  machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

  enum insn_code icode
    = optab_handler (code == PLUS_EXPR ? addv4_optab : subv4_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[4];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op0, mode);
      create_input_operand (&ops[2], op1, mode);
      create_fixed_operand (&ops[3], do_error);
      if (maybe_expand_insn (icode, 4, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      rtx_code_label *sub_check = gen_label_rtx ();
      int pos_neg = 3;

      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
			  op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);

      /* If we can prove one of the arguments (for MINUS_EXPR only
	 the second operand, as subtraction is not commutative) is always
	 non-negative or always negative, we can do just one comparison
	 and conditional jump instead of 2 at runtime, 3 present in the
	 emitted code.  If one of the arguments is CONST_INT, all we
	 need is to make sure it is op1, then the first
	 emit_cmp_and_jump_insns will be just folded.  Otherwise try
	 to use range info if available.  */
      if (code == PLUS_EXPR && CONST_INT_P (op0))
	{
	  rtx tem = op0;
	  op0 = op1;
	  op1 = tem;
	}
      else if (CONST_INT_P (op1))
	;
      else if (code == PLUS_EXPR && TREE_CODE (arg0) == SSA_NAME)
	{
	  wide_int arg0_min, arg0_max;
	  if (get_range_info (arg0, &arg0_min, &arg0_max) == VR_RANGE)
	    {
	      if (!wi::neg_p (arg0_min, TYPE_SIGN (TREE_TYPE (arg0))))
		pos_neg = 1;
	      else if (wi::neg_p (arg0_max, TYPE_SIGN (TREE_TYPE (arg0))))
		pos_neg = 2;
	    }
	  if (pos_neg != 3)
	    {
	      rtx tem = op0;
	      op0 = op1;
	      op1 = tem;
	    }
	}
      if (pos_neg == 3 && !CONST_INT_P (op1) && TREE_CODE (arg1) == SSA_NAME)
	{
	  wide_int arg1_min, arg1_max;
	  if (get_range_info (arg1, &arg1_min, &arg1_max) == VR_RANGE)
	    {
	      if (!wi::neg_p (arg1_min, TYPE_SIGN (TREE_TYPE (arg1))))
		pos_neg = 1;
	      else if (wi::neg_p (arg1_max, TYPE_SIGN (TREE_TYPE (arg1))))
		pos_neg = 2;
	    }
	}

      /* If the op1 is negative, we have to use a different check.  */
      if (pos_neg == 3)
	emit_cmp_and_jump_insns (op1, const0_rtx, LT, NULL_RTX, mode,
				 false, sub_check, PROB_EVEN);

      /* Compare the result of the operation with one of the operands.  */
      if (pos_neg & 1)
	emit_cmp_and_jump_insns (res, op0, code == PLUS_EXPR ? GE : LE,
				 NULL_RTX, mode, false, done_label,
				 PROB_VERY_LIKELY);

      /* If we get here, we have to print the error.  */
      if (pos_neg == 3)
	{
	  emit_jump (do_error);

	  emit_label (sub_check);
	}

      /* We have k = a + b for b < 0 here.  k <= a must hold.  */
      if (pos_neg & 2)
	emit_cmp_and_jump_insns (res, op0, code == PLUS_EXPR ? LE : GE,
				 NULL_RTX, mode, false, done_label,
				 PROB_VERY_LIKELY);
    }

  emit_label (do_error);
  /* Expand the ubsan builtin call.  */
  push_temp_slots ();
  fn = ubsan_build_overflow_builtin (code, gimple_location (stmt),
				     TREE_TYPE (arg0), arg0, arg1);
  expand_normal (fn);
  pop_temp_slots ();
  do_pending_stack_adjust ();

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    emit_move_insn (target, res);
}
Пример #8
0
static void
mark_all_labels (rtx f)
{
  rtx insn;
  rtx prev_nonjump_insn = NULL;

  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	mark_jump_label (PATTERN (insn), insn, 0);

	/* If the previous non-jump insn sets something to a label,
	   something that this jump insn uses, make that label the primary
	   target of this insn if we don't yet have any.  That previous
	   insn must be a single_set and not refer to more than one label.
	   The jump insn must not refer to other labels as jump targets
	   and must be a plain (set (pc) ...), maybe in a parallel, and
	   may refer to the item being set only directly or as one of the
	   arms in an IF_THEN_ELSE.  */
	if (! INSN_DELETED_P (insn)
	    && JUMP_P (insn)
	    && JUMP_LABEL (insn) == NULL)
	  {
	    rtx label_note = NULL;
	    rtx pc = pc_set (insn);
	    rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;

	    if (prev_nonjump_insn != NULL)
	      label_note
		= find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);

	    if (label_note != NULL && pc_src != NULL)
	      {
		rtx label_set = single_set (prev_nonjump_insn);
		rtx label_dest
		  = label_set != NULL ? SET_DEST (label_set) : NULL;

		if (label_set != NULL
		    /* The source must be the direct LABEL_REF, not a
		       PLUS, UNSPEC, IF_THEN_ELSE etc.  */
		    && GET_CODE (SET_SRC (label_set)) == LABEL_REF
		    && (rtx_equal_p (label_dest, pc_src)
			|| (GET_CODE (pc_src) == IF_THEN_ELSE
			    && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
				|| rtx_equal_p (label_dest,
						XEXP (pc_src, 2))))))

		  {
		    /* The CODE_LABEL referred to in the note must be the
		       CODE_LABEL in the LABEL_REF of the "set".  We can
		       conveniently use it for the marker function, which
		       requires a LABEL_REF wrapping.  */
		    gcc_assert (XEXP (label_note, 0)
				== XEXP (SET_SRC (label_set), 0));

		    mark_jump_label_1 (label_set, insn, false, true);
		    gcc_assert (JUMP_LABEL (insn)
				== XEXP (SET_SRC (label_set), 0));
		  }
	      }
	  }
	else if (! INSN_DELETED_P (insn))
	  prev_nonjump_insn = insn;
      }
    else if (LABEL_P (insn))
      prev_nonjump_insn = NULL;

  /* If we are in cfglayout mode, there may be non-insns between the
     basic blocks.  If those non-insns represent tablejump data, they
     contain label references that we must record.  */
  if (current_ir_type () == IR_RTL_CFGLAYOUT)
    {
      basic_block bb;
      rtx insn;
      FOR_EACH_BB (bb)
	{
	  for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
	    if (INSN_P (insn))
	      {
		gcc_assert (JUMP_TABLE_DATA_P (insn));
		mark_jump_label (PATTERN (insn), insn, 0);
	      }

	  for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
	    if (INSN_P (insn))
	      {
		gcc_assert (JUMP_TABLE_DATA_P (insn));
		mark_jump_label (PATTERN (insn), insn, 0);
	      }
	}
    }
Пример #9
0
void
do_compare_rtx_and_jump (rtx op0, rtx op1, enum rtx_code code, int unsignedp,
			 enum machine_mode mode, rtx size, rtx if_false_label,
			 rtx if_true_label, int prob)
{
  rtx tem;
  rtx dummy_label = NULL_RTX;
  rtx last;

  /* Reverse the comparison if that is safe and we want to jump if it is
     false.  Also convert to the reverse comparison if the target can
     implement it.  */
  if ((! if_true_label
       || ! can_compare_p (code, mode, ccp_jump))
      && (! FLOAT_MODE_P (mode)
	  || code == ORDERED || code == UNORDERED
	  || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
	  || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
    {
      enum rtx_code rcode;
      if (FLOAT_MODE_P (mode))
        rcode = reverse_condition_maybe_unordered (code);
      else
        rcode = reverse_condition (code);

      /* Canonicalize to UNORDERED for the libcall.  */
      if (can_compare_p (rcode, mode, ccp_jump)
	  || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
	{
          tem = if_true_label;
          if_true_label = if_false_label;
          if_false_label = tem;
	  code = rcode;
	  prob = inv (prob);
	}
    }

  /* If one operand is constant, make it the second one.  Only do this
     if the other operand is not constant as well.  */

  if (swap_commutative_operands_p (op0, op1))
    {
      tem = op0;
      op0 = op1;
      op1 = tem;
      code = swap_condition (code);
    }

  do_pending_stack_adjust ();

  code = unsignedp ? unsigned_condition (code) : code;
  if (0 != (tem = simplify_relational_operation (code, mode, VOIDmode,
						 op0, op1)))
    {
      if (CONSTANT_P (tem))
	{
	  rtx label = (tem == const0_rtx || tem == CONST0_RTX (mode))
		      ? if_false_label : if_true_label;
	  if (label)
	    emit_jump (label);
	  return;
	}

      code = GET_CODE (tem);
      mode = GET_MODE (tem);
      op0 = XEXP (tem, 0);
      op1 = XEXP (tem, 1);
      unsignedp = (code == GTU || code == LTU || code == GEU || code == LEU);
    }

  if (! if_true_label)
    dummy_label = if_true_label = gen_label_rtx ();

  if (GET_MODE_CLASS (mode) == MODE_INT
      && ! can_compare_p (code, mode, ccp_jump))
    {
      switch (code)
	{
	case LTU:
	  do_jump_by_parts_greater_rtx (mode, 1, op1, op0,
					if_false_label, if_true_label, prob);
	  break;

	case LEU:
	  do_jump_by_parts_greater_rtx (mode, 1, op0, op1,
					if_true_label, if_false_label,
					inv (prob));
	  break;

	case GTU:
	  do_jump_by_parts_greater_rtx (mode, 1, op0, op1,
					if_false_label, if_true_label, prob);
	  break;

	case GEU:
	  do_jump_by_parts_greater_rtx (mode, 1, op1, op0,
					if_true_label, if_false_label,
					inv (prob));
	  break;

	case LT:
	  do_jump_by_parts_greater_rtx (mode, 0, op1, op0,
					if_false_label, if_true_label, prob);
	  break;

	case LE:
	  do_jump_by_parts_greater_rtx (mode, 0, op0, op1,
					if_true_label, if_false_label,
					inv (prob));
	  break;

	case GT:
	  do_jump_by_parts_greater_rtx (mode, 0, op0, op1,
					if_false_label, if_true_label, prob);
	  break;

	case GE:
	  do_jump_by_parts_greater_rtx (mode, 0, op1, op0,
					if_true_label, if_false_label,
					inv (prob));
	  break;

	case EQ:
	  do_jump_by_parts_equality_rtx (mode, op0, op1, if_false_label,
					 if_true_label, prob);
	  break;

	case NE:
	  do_jump_by_parts_equality_rtx (mode, op0, op1, if_true_label,
					 if_false_label, inv (prob));
	  break;

	default:
	  gcc_unreachable ();
	}
    }
  else
    {
      if (GET_MODE_CLASS (mode) == MODE_FLOAT
	  && ! can_compare_p (code, mode, ccp_jump)
	  && can_compare_p (swap_condition (code), mode, ccp_jump))
	{
	  rtx tmp;
	  code = swap_condition (code);
	  tmp = op0;
	  op0 = op1;
	  op1 = tmp;
	}

      else if (GET_MODE_CLASS (mode) == MODE_FLOAT
	       && ! can_compare_p (code, mode, ccp_jump)

	       /* Never split ORDERED and UNORDERED.  These must be implemented.  */
	       && (code != ORDERED && code != UNORDERED)

               /* Split a floating-point comparison if we can jump on other
	          conditions...  */
	       && (have_insn_for (COMPARE, mode)

	           /* ... or if there is no libcall for it.  */
	           || code_to_optab[code] == NULL))
        {
	  enum rtx_code first_code;
	  bool and_them = split_comparison (code, mode, &first_code, &code);

	  /* If there are no NaNs, the first comparison should always fall
	     through.  */
	  if (!HONOR_NANS (mode))
	    gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));

	  else
	    {
	      if (and_them)
		{
		  rtx dest_label;
		  /* If we only jump if true, just bypass the second jump.  */
		  if (! if_false_label)
		    {
		      if (! dummy_label)
		        dummy_label = gen_label_rtx ();
		      dest_label = dummy_label;
		    }
		  else
		    dest_label = if_false_label;
                  do_compare_rtx_and_jump (op0, op1, first_code, unsignedp, mode,
					   size, dest_label, NULL_RTX, prob);
		}
              else
                do_compare_rtx_and_jump (op0, op1, first_code, unsignedp, mode,
					 size, NULL_RTX, if_true_label, prob);
	    }
	}

      last = get_last_insn ();
      emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp,
			       if_true_label);
      if (prob != -1 && profile_status != PROFILE_ABSENT)
	{
	  for (last = NEXT_INSN (last);
	       last && NEXT_INSN (last);
	       last = NEXT_INSN (last))
	    if (JUMP_P (last))
	      break;
	  if (!last
	      || !JUMP_P (last)
	      || NEXT_INSN (last)
	      || !any_condjump_p (last))
	    {
	      if (dump_file)
		fprintf (dump_file, "Failed to add probability note\n");
	    }
	  else
	    {
	      gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
	      add_reg_note (last, REG_BR_PROB, GEN_INT (prob));
	    }
	}
    }

  if (if_false_label)
    emit_jump (if_false_label);
  if (dummy_label)
    emit_label (dummy_label);
}
Пример #10
0
static void
merge_in_block (int max_reg, basic_block bb)
{
  rtx insn;
  rtx curr;
  int success_in_block = 0;

  if (dump_file)
    fprintf (dump_file, "\n\nstarting bb %d\n", bb->index);

  FOR_BB_INSNS_REVERSE_SAFE (bb, insn, curr)
    {
      unsigned int uid = INSN_UID (insn);
      bool insn_is_add_or_inc = true;

      if (!NONDEBUG_INSN_P (insn))
	continue;

      /* This continue is deliberate.  We do not want the uses of the
	 jump put into reg_next_use because it is not considered safe to
	 combine a preincrement with a jump.  */
      if (JUMP_P (insn))
	continue;

      if (dump_file)
	dump_insn_slim (dump_file, insn);

      /* Does this instruction increment or decrement a register?  */
      if (parse_add_or_inc (insn, true))
	{
	  int regno = REGNO (inc_insn.reg_res);
	  /* Cannot handle case where there are three separate regs
	     before a mem ref.  Too many moves would be needed to be
	     profitable.  */
	  if ((inc_insn.form == FORM_PRE_INC) || inc_insn.reg1_is_const)
	    {
	      mem_insn.insn = get_next_ref (regno, bb, reg_next_use);
	      if (mem_insn.insn)
		{
		  bool ok = true;
		  if (!inc_insn.reg1_is_const)
		    {
		      /* We are only here if we are going to try a
			 HAVE_*_MODIFY_REG type transformation.  c is a
			 reg and we must sure that the path from the
			 inc_insn to the mem_insn.insn is both def and use
			 clear of c because the inc insn is going to move
			 into the mem_insn.insn.  */
		      int luid = DF_INSN_LUID (mem_insn.insn);
		      rtx other_insn
			= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_use);

		      if (other_insn && luid > DF_INSN_LUID (other_insn))
			ok = false;

		      other_insn
			= get_next_ref (REGNO (inc_insn.reg1), bb, reg_next_def);

		      if (other_insn && luid > DF_INSN_LUID (other_insn))
			ok = false;
		    }

		  if (dump_file)
		    dump_inc_insn (dump_file);

		  if (ok && find_address (&PATTERN (mem_insn.insn)) == -1)
		    {
		      if (dump_file)
			dump_mem_insn (dump_file);
		      if (try_merge ())
			{
			  success_in_block++;
			  insn_is_add_or_inc = false;
			}
		    }
		}
	    }
	}
      else
	{
	  insn_is_add_or_inc = false;
	  mem_insn.insn = insn;
	  if (find_mem (&PATTERN (insn)))
	    success_in_block++;
	}

      /* If the inc insn was merged with a mem, the inc insn is gone
	 and there is noting to update.  */
      if (DF_INSN_UID_GET (uid))
	{
	  df_ref *def_rec;
	  df_ref *use_rec;
	  /* Need to update next use.  */
	  for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
	    {
	      df_ref def = *def_rec;
	      reg_next_use[DF_REF_REGNO (def)] = NULL;
	      reg_next_inc_use[DF_REF_REGNO (def)] = NULL;
	      reg_next_def[DF_REF_REGNO (def)] = insn;
	    }

	  for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
	    {
	      df_ref use = *use_rec;
	      reg_next_use[DF_REF_REGNO (use)] = insn;
	      if (insn_is_add_or_inc)
		reg_next_inc_use[DF_REF_REGNO (use)] = insn;
	      else
		reg_next_inc_use[DF_REF_REGNO (use)] = NULL;
	    }
	}
      else if (dump_file)
	fprintf (dump_file, "skipping update of deleted insn %d\n", uid);
    }
Пример #11
0
/* If INSN can not be used for rematerialization, return negative
   value.  If INSN can be considered as a candidate for
   rematerialization, return value which is the operand number of the
   pseudo for which the insn can be used for rematerialization.  Here
   we consider the insns without any memory, spilled pseudo (except
   for the rematerialization pseudo), or dying or unused regs.  */
static int
operand_to_remat (rtx_insn *insn)
{
  lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
  struct lra_static_insn_data *static_id = id->insn_static_data;
  struct lra_insn_reg *reg, *found_reg = NULL;

  /* Don't rematerialize insns which can change PC.  */
  if (JUMP_P (insn) || CALL_P (insn))
    return -1;
  /* First find a pseudo which can be rematerialized.  */
  for (reg = id->regs; reg != NULL; reg = reg->next)
    /* True FRAME_POINTER_NEEDED might be because we can not follow
       changing sp offsets, e.g. alloca is used.  If the insn contains
       stack pointer in such case, we can not rematerialize it as we
       can not know sp offset at a rematerialization place.  */
    if (reg->regno == STACK_POINTER_REGNUM && frame_pointer_needed)
      return -1;
    else if (reg->type == OP_OUT && ! reg->subreg_p
	     && find_regno_note (insn, REG_UNUSED, reg->regno) == NULL)
      {
	/* We permits only one spilled reg.  */
	if (found_reg != NULL)
	  return -1;
	found_reg = reg;
      }
    /* IRA calculates conflicts separately for subregs of two words
       pseudo.  Even if the pseudo lives, e.g. one its subreg can be
       used lately, another subreg hard register can be already used
       for something else.  In such case, it is not safe to
       rematerialize the insn.  */
    else if (reg->type == OP_IN && reg->subreg_p
	     && reg->regno >= FIRST_PSEUDO_REGISTER
	     && (GET_MODE_SIZE (PSEUDO_REGNO_MODE (reg->regno))
		 == 2 * UNITS_PER_WORD))
      return -1;
  if (found_reg == NULL)
    return -1;
  if (found_reg->regno < FIRST_PSEUDO_REGISTER)
    return -1;
  if (bad_for_rematerialization_p (PATTERN (insn)))
    return -1;
  /* Check the other regs are not spilled. */
  for (reg = id->regs; reg != NULL; reg = reg->next)
    if (found_reg == reg)
      continue;
    else if (reg->type == OP_INOUT)
      return -1;
    else if (reg->regno >= FIRST_PSEUDO_REGISTER
	     && reg_renumber[reg->regno] < 0)
      /* Another spilled reg.  */
      return -1;
    else if (reg->type == OP_IN)
      {
	if (find_regno_note (insn, REG_DEAD, reg->regno) != NULL)
	  /* We don't want to make live ranges longer.  */
	  return -1;
	/* Check that there is no output reg as the input one.  */
	for (struct lra_insn_reg *reg2 = id->regs;
	     reg2 != NULL;
	     reg2 = reg2->next)
	  if (reg2->type == OP_OUT && reg->regno == reg2->regno)
	    return -1;
	if (reg->regno < FIRST_PSEUDO_REGISTER)
	  for (struct lra_insn_reg *reg2 = static_id->hard_regs;
	       reg2 != NULL;
	       reg2 = reg2->next)
	    if (reg2->type == OP_OUT
		&& reg->regno <= reg2->regno
		&& (reg2->regno
		    < (reg->regno
		       + hard_regno_nregs[reg->regno][reg->biggest_mode])))
	      return -1;
      }
  /* Find the rematerialization operand.  */
  int nop = static_id->n_operands;
  for (int i = 0; i < nop; i++)
    if (REG_P (*id->operand_loc[i])
	&& (int) REGNO (*id->operand_loc[i]) == found_reg->regno)
      return i;
  return -1;
}
Пример #12
0
static bool
doloop_optimize (struct loop *loop)
{
    enum machine_mode mode;
    rtx doloop_seq, doloop_pat, doloop_reg;
    rtx iterations, count;
    rtx iterations_max;
    rtx start_label;
    rtx condition;
    unsigned level, est_niter;
    struct niter_desc *desc;
    unsigned word_mode_size;
    unsigned HOST_WIDE_INT word_mode_max;

    if (dump_file)
        fprintf (dump_file, "Doloop: Processing loop %d.\n", loop->num);

    /* APPLE LOCAL begin lno */
    /* Ignore large loops.  */
    if (loop->ninsns > (unsigned) PARAM_VALUE (PARAM_MAX_DOLOOP_INSNS))
    {
        if (dump_file)
            fprintf (dump_file,
                     "Doloop: The loop is too large.\n");
        return false;
    }
    /* APPLE LOCAL end lno */

    iv_analysis_loop_init (loop);

    /* Find the simple exit of a LOOP.  */
    desc = get_simple_loop_desc (loop);

    /* Check that loop is a candidate for a low-overhead looping insn.  */
    if (!doloop_valid_p (loop, desc))
    {
        if (dump_file)
            fprintf (dump_file,
                     "Doloop: The loop is not suitable.\n");
        return false;
    }
    mode = desc->mode;

    est_niter = 3;
    if (desc->const_iter)
        est_niter = desc->niter;
    /* If the estimate on number of iterations is reliable (comes from profile
       feedback), use it.  Do not use it normally, since the expected number
       of iterations of an unrolled loop is 2.  */
    if (loop->header->count)
        est_niter = expected_loop_iterations (loop);

    if (est_niter < 3)
    {
        if (dump_file)
            fprintf (dump_file,
                     "Doloop: Too few iterations (%u) to be profitable.\n",
                     est_niter);
        return false;
    }

    count = copy_rtx (desc->niter_expr);
    iterations = desc->const_iter ? desc->niter_expr : const0_rtx;
    iterations_max = GEN_INT (desc->niter_max);
    level = get_loop_level (loop) + 1;

    /* Generate looping insn.  If the pattern FAILs then give up trying
       to modify the loop since there is some aspect the back-end does
       not like.  */
    start_label = block_label (desc->in_edge->dest);
    doloop_reg = gen_reg_rtx (mode);
    doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
                                 GEN_INT (level), start_label);

    word_mode_size = GET_MODE_BITSIZE (word_mode);
    word_mode_max
        = ((unsigned HOST_WIDE_INT) 1 << (word_mode_size - 1) << 1) - 1;
    if (! doloop_seq
            && mode != word_mode
            /* Before trying mode different from the one in that # of iterations is
            computed, we must be sure that the number of iterations fits into
             the new mode.  */
            && (word_mode_size >= GET_MODE_BITSIZE (mode)
                || desc->niter_max <= word_mode_max))
    {
        if (word_mode_size > GET_MODE_BITSIZE (mode))
        {
            count = simplify_gen_unary (ZERO_EXTEND, word_mode,
                                        count, mode);
            iterations = simplify_gen_unary (ZERO_EXTEND, word_mode,
                                             iterations, mode);
            iterations_max = simplify_gen_unary (ZERO_EXTEND, word_mode,
                                                 iterations_max, mode);
        }
        else
        {
            count = lowpart_subreg (word_mode, count, mode);
            iterations = lowpart_subreg (word_mode, iterations, mode);
            iterations_max = lowpart_subreg (word_mode, iterations_max, mode);
        }
        PUT_MODE (doloop_reg, word_mode);
        doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
                                     GEN_INT (level), start_label);
    }
    if (! doloop_seq)
    {
        if (dump_file)
            fprintf (dump_file,
                     "Doloop: Target unwilling to use doloop pattern!\n");
        return false;
    }

    /* If multiple instructions were created, the last must be the
       jump instruction.  Also, a raw define_insn may yield a plain
       pattern.  */
    doloop_pat = doloop_seq;
    if (INSN_P (doloop_pat))
    {
        while (NEXT_INSN (doloop_pat) != NULL_RTX)
            doloop_pat = NEXT_INSN (doloop_pat);
        if (JUMP_P (doloop_pat))
            doloop_pat = PATTERN (doloop_pat);
        else
            doloop_pat = NULL_RTX;
    }

    if (! doloop_pat
            || ! (condition = doloop_condition_get (doloop_pat)))
    {
        if (dump_file)
            fprintf (dump_file, "Doloop: Unrecognizable doloop pattern!\n");
        return false;
    }

    doloop_modify (loop, desc, doloop_seq, condition, count);
    return true;
}
Пример #13
0
static bool
doloop_valid_p (struct loop *loop, struct niter_desc *desc)
{
    basic_block *body = get_loop_body (loop), bb;
    rtx insn;
    unsigned i;
    bool result = true;

    /* Check for loops that may not terminate under special conditions.  */
    if (!desc->simple_p
            || desc->assumptions
            || desc->infinite)
    {
        /* There are some cases that would require a special attention.
        For example if the comparison is LEU and the comparison value
         is UINT_MAX then the loop will not terminate.  Similarly, if the
         comparison code is GEU and the comparison value is 0, the
         loop will not terminate.

         If the absolute increment is not 1, the loop can be infinite
         even with LTU/GTU, e.g. for (i = 3; i > 0; i -= 2)

         APPLE LOCAL begin lno
         Note that with LE and GE, the loop behavior is undefined
         (C++ standard section 5 clause 5) if an overflow occurs, say
         between INT_MAX and INT_MAX + 1.  We thus don't have to worry
         about these two cases.
         APPLE LOCAL end lno

         ??? We could compute these conditions at run-time and have a
         additional jump around the loop to ensure an infinite loop.
         However, it is very unlikely that this is the intended
         behavior of the loop and checking for these rare boundary
         conditions would pessimize all other code.

         If the loop is executed only a few times an extra check to
         restart the loop could use up most of the benefits of using a
         count register loop.  Note however, that normally, this
         restart branch would never execute, so it could be predicted
         well by the CPU.  We should generate the pessimistic code by
         default, and have an option, e.g. -funsafe-loops that would
         enable count-register loops in this case.  */
        if (dump_file)
            fprintf (dump_file, "Doloop: Possible infinite iteration case.\n");
        result = false;
        goto cleanup;
    }

    for (i = 0; i < loop->num_nodes; i++)
    {
        bb = body[i];

        for (insn = BB_HEAD (bb);
                insn != NEXT_INSN (BB_END (bb));
                insn = NEXT_INSN (insn))
        {
            /* A called function may clobber any special registers required for
               low-overhead looping.  */
            if (CALL_P (insn))
            {
                if (dump_file)
                    fprintf (dump_file, "Doloop: Function call in loop.\n");
                result = false;
                goto cleanup;
            }

            /* Some targets (eg, PPC) use the count register for branch on table
               instructions.  ??? This should be a target specific check.  */
            if (JUMP_P (insn)
                    && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
                        || GET_CODE (PATTERN (insn)) == ADDR_VEC))
            {
                if (dump_file)
                    fprintf (dump_file, "Doloop: Computed branch in the loop.\n");
                result = false;
                goto cleanup;
            }
        }
    }
    result = true;

cleanup:
    free (body);

    return result;
}
Пример #14
0
static rtx
skip_insns_after_block (basic_block bb)
{
  rtx insn, last_insn, next_head, prev;

  next_head = NULL_RTX;
  if (bb->next_bb != EXIT_BLOCK_PTR)
    next_head = BB_HEAD (bb->next_bb);

  for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
    {
      if (insn == next_head)
	break;

      switch (GET_CODE (insn))
	{
	case BARRIER:
	  last_insn = insn;
	  continue;

	case NOTE:
	  switch (NOTE_LINE_NUMBER (insn))
	    {
	    case NOTE_INSN_BLOCK_END:
	      last_insn = insn;
	      continue;
	    case NOTE_INSN_DELETED:
	    case NOTE_INSN_DELETED_LABEL:
	      continue;

	    default:
	      continue;
	      break;
	    }
	  break;

	case CODE_LABEL:
	  if (NEXT_INSN (insn)
	      && JUMP_P (NEXT_INSN (insn))
	      && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
		  || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
	    {
	      insn = NEXT_INSN (insn);
	      last_insn = insn;
	      continue;
	    }
	  break;

	default:
	  break;
	}

      break;
    }

  /* It is possible to hit contradictory sequence.  For instance:

     jump_insn
     NOTE_INSN_BLOCK_BEG
     barrier

     Where barrier belongs to jump_insn, but the note does not.  This can be
     created by removing the basic block originally following
     NOTE_INSN_BLOCK_BEG.  In such case reorder the notes.  */

  for (insn = last_insn; insn != BB_END (bb); insn = prev)
    {
      prev = PREV_INSN (insn);
      if (NOTE_P (insn))
	switch (NOTE_LINE_NUMBER (insn))
	  {
	  case NOTE_INSN_BLOCK_END:
	  case NOTE_INSN_DELETED:
	  case NOTE_INSN_DELETED_LABEL:
	    continue;
	  default:
	    reorder_insns (insn, insn, last_insn);
	  }
    }

  return last_insn;
}
Пример #15
0
static void
fixup_reorder_chain (void)
{
  basic_block bb, prev_bb;
  int index;
  rtx insn = NULL;

  if (cfg_layout_function_header)
    {
      set_first_insn (cfg_layout_function_header);
      insn = cfg_layout_function_header;
      while (NEXT_INSN (insn))
	insn = NEXT_INSN (insn);
    }

  /* First do the bulk reordering -- rechain the blocks without regard to
     the needed changes to jumps and labels.  */

  for (bb = ENTRY_BLOCK_PTR->next_bb, index = NUM_FIXED_BLOCKS;
       bb != 0;
       bb = bb->aux, index++)
    {
      if (bb->il.rtl->header)
	{
	  if (insn)
	    NEXT_INSN (insn) = bb->il.rtl->header;
	  else
	    set_first_insn (bb->il.rtl->header);
	  PREV_INSN (bb->il.rtl->header) = insn;
	  insn = bb->il.rtl->header;
	  while (NEXT_INSN (insn))
	    insn = NEXT_INSN (insn);
	}
      if (insn)
	NEXT_INSN (insn) = BB_HEAD (bb);
      else
	set_first_insn (BB_HEAD (bb));
      PREV_INSN (BB_HEAD (bb)) = insn;
      insn = BB_END (bb);
      if (bb->il.rtl->footer)
	{
	  NEXT_INSN (insn) = bb->il.rtl->footer;
	  PREV_INSN (bb->il.rtl->footer) = insn;
	  while (NEXT_INSN (insn))
	    insn = NEXT_INSN (insn);
	}
    }

  gcc_assert (index == n_basic_blocks);

  NEXT_INSN (insn) = cfg_layout_function_footer;
  if (cfg_layout_function_footer)
    PREV_INSN (cfg_layout_function_footer) = insn;

  while (NEXT_INSN (insn))
    insn = NEXT_INSN (insn);

  set_last_insn (insn);
#ifdef ENABLE_CHECKING
  verify_insn_chain ();
#endif
  delete_dead_jumptables ();

  /* Now add jumps and labels as needed to match the blocks new
     outgoing edges.  */

  for (bb = ENTRY_BLOCK_PTR->next_bb; bb ; bb = bb->aux)
    {
      edge e_fall, e_taken, e;
      rtx bb_end_insn;
      basic_block nb;
      edge_iterator ei;

      if (EDGE_COUNT (bb->succs) == 0)
	continue;

      /* Find the old fallthru edge, and another non-EH edge for
	 a taken jump.  */
      e_taken = e_fall = NULL;

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->flags & EDGE_FALLTHRU)
	  e_fall = e;
	else if (! (e->flags & EDGE_EH))
	  e_taken = e;

      bb_end_insn = BB_END (bb);
      if (JUMP_P (bb_end_insn))
	{
	  if (any_condjump_p (bb_end_insn))
	    {
	      /* If the old fallthru is still next, nothing to do.  */
	      if (bb->aux == e_fall->dest
		  || e_fall->dest == EXIT_BLOCK_PTR)
		continue;

	      /* The degenerated case of conditional jump jumping to the next
		 instruction can happen for jumps with side effects.  We need
		 to construct a forwarder block and this will be done just
		 fine by force_nonfallthru below.  */
	      if (!e_taken)
		;

	      /* There is another special case: if *neither* block is next,
		 such as happens at the very end of a function, then we'll
		 need to add a new unconditional jump.  Choose the taken
		 edge based on known or assumed probability.  */
	      else if (bb->aux != e_taken->dest)
		{
		  rtx note = find_reg_note (bb_end_insn, REG_BR_PROB, 0);

		  if (note
		      && INTVAL (XEXP (note, 0)) < REG_BR_PROB_BASE / 2
		      && invert_jump (bb_end_insn,
				      (e_fall->dest == EXIT_BLOCK_PTR
				       ? NULL_RTX
				       : label_for_bb (e_fall->dest)), 0))
		    {
		      e_fall->flags &= ~EDGE_FALLTHRU;
#ifdef ENABLE_CHECKING
		      gcc_assert (could_fall_through
				  (e_taken->src, e_taken->dest));
#endif
		      e_taken->flags |= EDGE_FALLTHRU;
		      update_br_prob_note (bb);
		      e = e_fall, e_fall = e_taken, e_taken = e;
		    }
		}

	      /* If the "jumping" edge is a crossing edge, and the fall
		 through edge is non-crossing, leave things as they are.  */
	      else if ((e_taken->flags & EDGE_CROSSING)
		       && !(e_fall->flags & EDGE_CROSSING))
		continue;

	      /* Otherwise we can try to invert the jump.  This will
		 basically never fail, however, keep up the pretense.  */
	      else if (invert_jump (bb_end_insn,
				    (e_fall->dest == EXIT_BLOCK_PTR
				     ? NULL_RTX
				     : label_for_bb (e_fall->dest)), 0))
		{
		  e_fall->flags &= ~EDGE_FALLTHRU;
#ifdef ENABLE_CHECKING
		  gcc_assert (could_fall_through
			      (e_taken->src, e_taken->dest));
#endif
		  e_taken->flags |= EDGE_FALLTHRU;
		  update_br_prob_note (bb);
		  continue;
		}
	    }
	  else
	    {
	      /* Otherwise we have some return, switch or computed
		 jump.  In the 99% case, there should not have been a
		 fallthru edge.  */
	      gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
	      continue;
	    }
	}
      else
	{
	  /* No fallthru implies a noreturn function with EH edges, or
	     something similarly bizarre.  In any case, we don't need to
	     do anything.  */
	  if (! e_fall)
	    continue;

	  /* If the fallthru block is still next, nothing to do.  */
	  if (bb->aux == e_fall->dest)
	    continue;

	  /* A fallthru to exit block.  */
	  if (e_fall->dest == EXIT_BLOCK_PTR)
	    continue;
	}

      /* We got here if we need to add a new jump insn.  */
      nb = force_nonfallthru (e_fall);
      if (nb)
	{
	  nb->il.rtl->visited = 1;
	  nb->aux = bb->aux;
	  bb->aux = nb;
	  /* Don't process this new block.  */
	  bb = nb;

	  /* Make sure new bb is tagged for correct section (same as
	     fall-thru source, since you cannot fall-throu across
	     section boundaries).  */
	  BB_COPY_PARTITION (e_fall->src, single_pred (bb));
	  if (flag_reorder_blocks_and_partition
	      && targetm.have_named_sections
	      && JUMP_P (BB_END (bb))
	      && !any_condjump_p (BB_END (bb))
	      && (EDGE_SUCC (bb, 0)->flags & EDGE_CROSSING))
	    REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
	      (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
	}
    }

  /* Put basic_block_info in the new order.  */

  if (dump_file)
    {
      fprintf (dump_file, "Reordered sequence:\n");
      for (bb = ENTRY_BLOCK_PTR->next_bb, index = NUM_FIXED_BLOCKS;
	   bb;
	   bb = bb->aux, index++)
	{
	  fprintf (dump_file, " %i ", index);
	  if (get_bb_original (bb))
	    fprintf (dump_file, "duplicate of %i ",
		     get_bb_original (bb)->index);
	  else if (forwarder_block_p (bb)
		   && !LABEL_P (BB_HEAD (bb)))
	    fprintf (dump_file, "compensation ");
	  else
	    fprintf (dump_file, "bb %i ", bb->index);
	  fprintf (dump_file, " [%i]\n", bb->frequency);
	}
    }

  prev_bb = ENTRY_BLOCK_PTR;
  bb = ENTRY_BLOCK_PTR->next_bb;
  index = NUM_FIXED_BLOCKS;

  for (; bb; prev_bb = bb, bb = bb->aux, index ++)
    {
      bb->index = index;
      SET_BASIC_BLOCK (index, bb);

      bb->prev_bb = prev_bb;
      prev_bb->next_bb = bb;
    }
  prev_bb->next_bb = EXIT_BLOCK_PTR;
  EXIT_BLOCK_PTR->prev_bb = prev_bb;

  /* Annoying special case - jump around dead jumptables left in the code.  */
  FOR_EACH_BB (bb)
    {
      edge e;
      edge_iterator ei;

      FOR_EACH_EDGE (e, ei, bb->succs)
	if (e->flags & EDGE_FALLTHRU)
	  break;

      if (e && !can_fallthru (e->src, e->dest))
	force_nonfallthru (e);
    }
}
Пример #16
0
static void
print_rtx (const_rtx in_rtx)
{
  int i = 0;
  int j;
  const char *format_ptr;
  int is_insn;

  if (sawclose)
    {
      if (flag_simple)
	fputc (' ', outfile);
      else
	fprintf (outfile, "\n%s%*s", print_rtx_head, indent * 2, "");
      sawclose = 0;
    }

  if (in_rtx == 0)
    {
      fputs ("(nil)", outfile);
      sawclose = 1;
      return;
    }
  else if (GET_CODE (in_rtx) > NUM_RTX_CODE)
    {
       fprintf (outfile, "(??? bad code %d\n%s%*s)", GET_CODE (in_rtx),
		print_rtx_head, indent * 2, "");
       sawclose = 1;
       return;
    }

  is_insn = INSN_P (in_rtx);

  /* Print name of expression code.  */
  if (flag_simple && CONST_INT_P (in_rtx))
    fputc ('(', outfile);
  else
    fprintf (outfile, "(%s", GET_RTX_NAME (GET_CODE (in_rtx)));

  if (! flag_simple)
    {
      if (RTX_FLAG (in_rtx, in_struct))
	fputs ("/s", outfile);

      if (RTX_FLAG (in_rtx, volatil))
	fputs ("/v", outfile);

      if (RTX_FLAG (in_rtx, unchanging))
	fputs ("/u", outfile);

      if (RTX_FLAG (in_rtx, frame_related))
	fputs ("/f", outfile);

      if (RTX_FLAG (in_rtx, jump))
	fputs ("/j", outfile);

      if (RTX_FLAG (in_rtx, call))
	fputs ("/c", outfile);

      if (RTX_FLAG (in_rtx, return_val))
	fputs ("/i", outfile);

      /* Print REG_NOTE names for EXPR_LIST and INSN_LIST.  */
      if ((GET_CODE (in_rtx) == EXPR_LIST
	   || GET_CODE (in_rtx) == INSN_LIST
	   || GET_CODE (in_rtx) == INT_LIST)
	  && (int)GET_MODE (in_rtx) < REG_NOTE_MAX)
	fprintf (outfile, ":%s",
		 GET_REG_NOTE_NAME (GET_MODE (in_rtx)));

      /* For other rtl, print the mode if it's not VOID.  */
      else if (GET_MODE (in_rtx) != VOIDmode)
	fprintf (outfile, ":%s", GET_MODE_NAME (GET_MODE (in_rtx)));

#ifndef GENERATOR_FILE
      if (GET_CODE (in_rtx) == VAR_LOCATION)
	{
	  if (TREE_CODE (PAT_VAR_LOCATION_DECL (in_rtx)) == STRING_CST)
	    fputs (" <debug string placeholder>", outfile);
	  else
	    print_mem_expr (outfile, PAT_VAR_LOCATION_DECL (in_rtx));
	  fputc (' ', outfile);
	  print_rtx (PAT_VAR_LOCATION_LOC (in_rtx));
	  if (PAT_VAR_LOCATION_STATUS (in_rtx)
	      == VAR_INIT_STATUS_UNINITIALIZED)
	    fprintf (outfile, " [uninit]");
	  sawclose = 1;
	  i = GET_RTX_LENGTH (VAR_LOCATION);
	}
#endif
    }

#ifndef GENERATOR_FILE
  if (CONST_DOUBLE_AS_FLOAT_P (in_rtx))
    i = 5;
#endif

  /* Get the format string and skip the first elements if we have handled
     them already.  */
  format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx)) + i;
  for (; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
    switch (*format_ptr++)
      {
	const char *str;

      case 'T':
	str = XTMPL (in_rtx, i);
	goto string;

      case 'S':
      case 's':
	str = XSTR (in_rtx, i);
      string:

	if (str == 0)
	  fputs (" \"\"", outfile);
	else
	  fprintf (outfile, " (\"%s\")", str);
	sawclose = 1;
	break;

	/* 0 indicates a field for internal use that should not be printed.
	   An exception is the third field of a NOTE, where it indicates
	   that the field has several different valid contents.  */
      case '0':
	if (i == 1 && REG_P (in_rtx))
	  {
	    if (REGNO (in_rtx) != ORIGINAL_REGNO (in_rtx))
	      fprintf (outfile, " [%d]", ORIGINAL_REGNO (in_rtx));
	  }
#ifndef GENERATOR_FILE
	else if (i == 1 && GET_CODE (in_rtx) == SYMBOL_REF)
	  {
	    int flags = SYMBOL_REF_FLAGS (in_rtx);
	    if (flags)
	      fprintf (outfile, " [flags %#x]", flags);
	  }
	else if (i == 2 && GET_CODE (in_rtx) == SYMBOL_REF)
	  {
	    tree decl = SYMBOL_REF_DECL (in_rtx);
	    if (decl)
	      print_node_brief (outfile, "", decl, dump_flags);
	  }
#endif
	else if (i == 4 && NOTE_P (in_rtx))
	  {
	    switch (NOTE_KIND (in_rtx))
	      {
	      case NOTE_INSN_EH_REGION_BEG:
	      case NOTE_INSN_EH_REGION_END:
		if (flag_dump_unnumbered)
		  fprintf (outfile, " #");
		else
		  fprintf (outfile, " %d", NOTE_EH_HANDLER (in_rtx));
		sawclose = 1;
		break;

	      case NOTE_INSN_BLOCK_BEG:
	      case NOTE_INSN_BLOCK_END:
#ifndef GENERATOR_FILE
		dump_addr (outfile, " ", NOTE_BLOCK (in_rtx));
#endif
		sawclose = 1;
		break;

	      case NOTE_INSN_BASIC_BLOCK:
		{
#ifndef GENERATOR_FILE
		  basic_block bb = NOTE_BASIC_BLOCK (in_rtx);
		  if (bb != 0)
		    fprintf (outfile, " [bb %d]", bb->index);
#endif
		  break;
	        }

	      case NOTE_INSN_DELETED_LABEL:
	      case NOTE_INSN_DELETED_DEBUG_LABEL:
		{
		  const char *label = NOTE_DELETED_LABEL_NAME (in_rtx);
		  if (label)
		    fprintf (outfile, " (\"%s\")", label);
		  else
		    fprintf (outfile, " \"\"");
		}
		break;

	      case NOTE_INSN_SWITCH_TEXT_SECTIONS:
		{
#ifndef GENERATOR_FILE
		  basic_block bb = NOTE_BASIC_BLOCK (in_rtx);
		  if (bb != 0)
		    fprintf (outfile, " [bb %d]", bb->index);
#endif
		  break;
		}

	      case NOTE_INSN_VAR_LOCATION:
	      case NOTE_INSN_CALL_ARG_LOCATION:
#ifndef GENERATOR_FILE
		fputc (' ', outfile);
		print_rtx (NOTE_VAR_LOCATION (in_rtx));
#endif
		break;

	      case NOTE_INSN_CFI:
#ifndef GENERATOR_FILE
		fputc ('\n', outfile);
		output_cfi_directive (outfile, NOTE_CFI (in_rtx));
		fputc ('\t', outfile);
#endif
		break;

	      default:
		break;
	      }
	  }
	else if (i == 8 && JUMP_P (in_rtx) && JUMP_LABEL (in_rtx) != NULL)
	  {
	    /* Output the JUMP_LABEL reference.  */
	    fprintf (outfile, "\n%s%*s -> ", print_rtx_head, indent * 2, "");
	    if (GET_CODE (JUMP_LABEL (in_rtx)) == RETURN)
	      fprintf (outfile, "return");
	    else if (GET_CODE (JUMP_LABEL (in_rtx)) == SIMPLE_RETURN)
	      fprintf (outfile, "simple_return");
	    else
	      fprintf (outfile, "%d", INSN_UID (JUMP_LABEL (in_rtx)));
	  }
	else if (i == 0 && GET_CODE (in_rtx) == VALUE)
	  {
#ifndef GENERATOR_FILE
	    cselib_val *val = CSELIB_VAL_PTR (in_rtx);

	    fprintf (outfile, " %u:%u", val->uid, val->hash);
	    dump_addr (outfile, " @", in_rtx);
	    dump_addr (outfile, "/", (void*)val);
#endif
	  }
	else if (i == 0 && GET_CODE (in_rtx) == DEBUG_EXPR)
	  {
#ifndef GENERATOR_FILE
	    fprintf (outfile, " D#%i",
		     DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (in_rtx)));
#endif
	  }
	else if (i == 0 && GET_CODE (in_rtx) == ENTRY_VALUE)
	  {
	    indent += 2;
	    if (!sawclose)
	      fprintf (outfile, " ");
	    print_rtx (ENTRY_VALUE_EXP (in_rtx));
	    indent -= 2;
	  }
	break;

      case 'e':
      do_e:
	indent += 2;
	if (i == 7 && INSN_P (in_rtx))
	  /* Put REG_NOTES on their own line.  */
	  fprintf (outfile, "\n%s%*s",
		   print_rtx_head, indent * 2, "");
	if (!sawclose)
	  fprintf (outfile, " ");
	print_rtx (XEXP (in_rtx, i));
	indent -= 2;
	break;

      case 'E':
      case 'V':
	indent += 2;
	if (sawclose)
	  {
	    fprintf (outfile, "\n%s%*s",
		     print_rtx_head, indent * 2, "");
	    sawclose = 0;
	  }
	fputs (" [", outfile);
	if (NULL != XVEC (in_rtx, i))
	  {
	    indent += 2;
	    if (XVECLEN (in_rtx, i))
	      sawclose = 1;

	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
	      print_rtx (XVECEXP (in_rtx, i, j));

	    indent -= 2;
	  }
	if (sawclose)
	  fprintf (outfile, "\n%s%*s", print_rtx_head, indent * 2, "");

	fputs ("]", outfile);
	sawclose = 1;
	indent -= 2;
	break;

      case 'w':
	if (! flag_simple)
	  fprintf (outfile, " ");
	fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, XWINT (in_rtx, i));
	if (! flag_simple)
	  fprintf (outfile, " [" HOST_WIDE_INT_PRINT_HEX "]",
		   (unsigned HOST_WIDE_INT) XWINT (in_rtx, i));
	break;

      case 'i':
	if (i == 5 && INSN_P (in_rtx))
	  {
#ifndef GENERATOR_FILE
	    /*  Pretty-print insn locations.  Ignore scoping as it is mostly
		redundant with line number information and do not print anything
		when there is no location information available.  */
	    if (INSN_LOCATION (in_rtx) && insn_file (in_rtx))
	      fprintf(outfile, " %s:%i", insn_file (in_rtx), insn_line (in_rtx));
#endif
	  }
	else if (i == 6 && GET_CODE (in_rtx) == ASM_OPERANDS)
	  {
#ifndef GENERATOR_FILE
	    fprintf (outfile, " %s:%i",
		     LOCATION_FILE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx)),
		     LOCATION_LINE (ASM_OPERANDS_SOURCE_LOCATION (in_rtx)));
#endif
	  }
	else if (i == 1 && GET_CODE (in_rtx) == ASM_INPUT)
	  {
#ifndef GENERATOR_FILE
	    fprintf (outfile, " %s:%i",
		     LOCATION_FILE (ASM_INPUT_SOURCE_LOCATION (in_rtx)),
		     LOCATION_LINE (ASM_INPUT_SOURCE_LOCATION (in_rtx)));
#endif
	  }
	else if (i == 6 && NOTE_P (in_rtx))
	  {
	    /* This field is only used for NOTE_INSN_DELETED_LABEL, and
	       other times often contains garbage from INSN->NOTE death.  */
	    if (NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_LABEL
		|| NOTE_KIND (in_rtx) == NOTE_INSN_DELETED_DEBUG_LABEL)
	      fprintf (outfile, " %d",  XINT (in_rtx, i));
	  }
#if !defined(GENERATOR_FILE) && NUM_UNSPECV_VALUES > 0
	else if (i == 1
		 && GET_CODE (in_rtx) == UNSPEC_VOLATILE
		 && XINT (in_rtx, 1) >= 0
		 && XINT (in_rtx, 1) < NUM_UNSPECV_VALUES)
	  fprintf (outfile, " %s", unspecv_strings[XINT (in_rtx, 1)]);
#endif
#if !defined(GENERATOR_FILE) && NUM_UNSPEC_VALUES > 0
	else if (i == 1
		 && (GET_CODE (in_rtx) == UNSPEC
		     || GET_CODE (in_rtx) == UNSPEC_VOLATILE)
		 && XINT (in_rtx, 1) >= 0
		 && XINT (in_rtx, 1) < NUM_UNSPEC_VALUES)
	  fprintf (outfile, " %s", unspec_strings[XINT (in_rtx, 1)]);
#endif
	else
	  {
	    int value = XINT (in_rtx, i);
	    const char *name;

#ifndef GENERATOR_FILE
	    if (REG_P (in_rtx) && (unsigned) value < FIRST_PSEUDO_REGISTER)
	      fprintf (outfile, " %d %s", value, reg_names[value]);
	    else if (REG_P (in_rtx)
		     && (unsigned) value <= LAST_VIRTUAL_REGISTER)
	      {
		if (value == VIRTUAL_INCOMING_ARGS_REGNUM)
		  fprintf (outfile, " %d virtual-incoming-args", value);
		else if (value == VIRTUAL_STACK_VARS_REGNUM)
		  fprintf (outfile, " %d virtual-stack-vars", value);
		else if (value == VIRTUAL_STACK_DYNAMIC_REGNUM)
		  fprintf (outfile, " %d virtual-stack-dynamic", value);
		else if (value == VIRTUAL_OUTGOING_ARGS_REGNUM)
		  fprintf (outfile, " %d virtual-outgoing-args", value);
		else if (value == VIRTUAL_CFA_REGNUM)
		  fprintf (outfile, " %d virtual-cfa", value);
		else if (value == VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM)
		  fprintf (outfile, " %d virtual-preferred-stack-boundary",
			   value);
		else
		  fprintf (outfile, " %d virtual-reg-%d", value,
			   value-FIRST_VIRTUAL_REGISTER);
	      }
	    else
#endif
	      if (flag_dump_unnumbered
		     && (is_insn || NOTE_P (in_rtx)))
	      fputc ('#', outfile);
	    else
	      fprintf (outfile, " %d", value);

#ifndef GENERATOR_FILE
	    if (REG_P (in_rtx) && REG_ATTRS (in_rtx))
	      {
		fputs (" [", outfile);
		if (ORIGINAL_REGNO (in_rtx) != REGNO (in_rtx))
		  fprintf (outfile, "orig:%i", ORIGINAL_REGNO (in_rtx));
		if (REG_EXPR (in_rtx))
		  print_mem_expr (outfile, REG_EXPR (in_rtx));

		if (REG_OFFSET (in_rtx))
		  fprintf (outfile, "+" HOST_WIDE_INT_PRINT_DEC,
			   REG_OFFSET (in_rtx));
		fputs (" ]", outfile);
	      }
#endif

	    if (is_insn && &INSN_CODE (in_rtx) == &XINT (in_rtx, i)
		&& XINT (in_rtx, i) >= 0
		&& (name = get_insn_name (XINT (in_rtx, i))) != NULL)
	      fprintf (outfile, " {%s}", name);
	    sawclose = 0;
	  }
	break;

      /* Print NOTE_INSN names rather than integer codes.  */

      case 'n':
	fprintf (outfile, " %s", GET_NOTE_INSN_NAME (XINT (in_rtx, i)));
	sawclose = 0;
	break;

      case 'u':
	if (XEXP (in_rtx, i) != NULL)
	  {
	    rtx sub = XEXP (in_rtx, i);
	    enum rtx_code subc = GET_CODE (sub);

	    if (GET_CODE (in_rtx) == LABEL_REF)
	      {
		if (subc == NOTE
		    && NOTE_KIND (sub) == NOTE_INSN_DELETED_LABEL)
		  {
		    if (flag_dump_unnumbered)
		      fprintf (outfile, " [# deleted]");
		    else
		      fprintf (outfile, " [%d deleted]", INSN_UID (sub));
		    sawclose = 0;
		    break;
		  }

		if (subc != CODE_LABEL)
		  goto do_e;
	      }

	    if (flag_dump_unnumbered
		|| (flag_dump_unnumbered_links && (i == 1 || i == 2)
		    && (INSN_P (in_rtx) || NOTE_P (in_rtx)
			|| LABEL_P (in_rtx) || BARRIER_P (in_rtx))))
	      fputs (" #", outfile);
	    else
	      fprintf (outfile, " %d", INSN_UID (sub));
	  }
	else
	  fputs (" 0", outfile);
	sawclose = 0;
	break;

      case 't':
#ifndef GENERATOR_FILE
	if (i == 0 && GET_CODE (in_rtx) == DEBUG_IMPLICIT_PTR)
	  print_mem_expr (outfile, DEBUG_IMPLICIT_PTR_DECL (in_rtx));
	else if (i == 0 && GET_CODE (in_rtx) == DEBUG_PARAMETER_REF)
	  print_mem_expr (outfile, DEBUG_PARAMETER_REF_DECL (in_rtx));
	else
	  dump_addr (outfile, " ", XTREE (in_rtx, i));
#endif
	break;

      case '*':
	fputs (" Unknown", outfile);
	sawclose = 0;
	break;

      case 'B':
#ifndef GENERATOR_FILE
	if (XBBDEF (in_rtx, i))
	  fprintf (outfile, " %i", XBBDEF (in_rtx, i)->index);
#endif
	break;

      default:
	gcc_unreachable ();
      }

  switch (GET_CODE (in_rtx))
    {
#ifndef GENERATOR_FILE
    case MEM:
      if (__builtin_expect (final_insns_dump_p, false))
	fprintf (outfile, " [");
      else
	fprintf (outfile, " [" HOST_WIDE_INT_PRINT_DEC,
		 (HOST_WIDE_INT) MEM_ALIAS_SET (in_rtx));

      if (MEM_EXPR (in_rtx))
	print_mem_expr (outfile, MEM_EXPR (in_rtx));

      if (MEM_OFFSET_KNOWN_P (in_rtx))
	fprintf (outfile, "+" HOST_WIDE_INT_PRINT_DEC, MEM_OFFSET (in_rtx));

      if (MEM_SIZE_KNOWN_P (in_rtx))
	fprintf (outfile, " S" HOST_WIDE_INT_PRINT_DEC, MEM_SIZE (in_rtx));

      if (MEM_ALIGN (in_rtx) != 1)
	fprintf (outfile, " A%u", MEM_ALIGN (in_rtx));

      if (!ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (in_rtx)))
	fprintf (outfile, " AS%u", MEM_ADDR_SPACE (in_rtx));

      fputc (']', outfile);
      break;

    case CONST_DOUBLE:
      if (FLOAT_MODE_P (GET_MODE (in_rtx)))
	{
	  char s[60];

	  real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx),
			   sizeof (s), 0, 1);
	  fprintf (outfile, " %s", s);

	  real_to_hexadecimal (s, CONST_DOUBLE_REAL_VALUE (in_rtx),
			       sizeof (s), 0, 1);
	  fprintf (outfile, " [%s]", s);
	}
      break;
#endif

    case CODE_LABEL:
      fprintf (outfile, " [%d uses]", LABEL_NUSES (in_rtx));
      switch (LABEL_KIND (in_rtx))
	{
	  case LABEL_NORMAL: break;
	  case LABEL_STATIC_ENTRY: fputs (" [entry]", outfile); break;
	  case LABEL_GLOBAL_ENTRY: fputs (" [global entry]", outfile); break;
	  case LABEL_WEAK_ENTRY: fputs (" [weak entry]", outfile); break;
	  default: gcc_unreachable ();
	}
      break;

    default:
      break;
    }

  fputc (')', outfile);
  sawclose = 1;
}